1
|
Oliveira NF, Monteiro MMLV, Mainieri NS, Tamura AS, Pereira LM, Crepaldi LD, Coutinho-Silva R, Savio LEB, Silva CLM. P2Y 2-P2X7 receptors cross-talk in primed mesenteric endothelial cells upregulates NF-κB signaling favoring mononuclear cell adhesion in schistosomiasis. Front Immunol 2024; 14:1328897. [PMID: 38239348 PMCID: PMC10794548 DOI: 10.3389/fimmu.2023.1328897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Schistosomiasis is an intravascular infectious disease that impacts over 200 million people globally. In its chronic stage, it leads to mesenteric inflammation with significant involvement of monocytes/macrophages. Endothelial cells lining the vessel lumens play a crucial role, and mount of evidence links this disease to a downregulation of endoprotective cell signaling favoring a primed and proinflammatory endothelial cell phenotype and therefore the loss of immunovascular homeostasis. One hallmark of infectious and inflammatory conditions is the release of nucleotides into the extracellular milieu, which, in turn, act as innate messengers, activating purinergic receptors and triggering cell-to-cell communication. ATP influences the progression of various diseases through P2X and P2Y purinergic receptor subtypes. Among these receptors, P2Y2 (P2Y2R) and P2X7 (P2X7R) receptors stand out, known for their roles in inflammation. However, their specific role in schistosomiasis has remained largely unexplored. Therefore, we hypothesized that endothelial P2Y2R and P2X7R could contribute to monocyte adhesion to mesenteric endothelial cells in schistosomiasis. Using a preclinical murine model of schistosomiasis associated with endothelial dysfunction and age-matched control mice, we showed that endothelial P2Y2R and P2X7R activation increased monocyte adhesion to cultured primary endothelial cells in both groups. However, a distinct upregulation of endothelial P2Y2R-driven canonical Ca2+ signaling was observed in the infected group, amplifying adhesion. In the control group, the coactivation of endothelial P2Y2R and P2X7R did not alter the maximal monocyte adhesion induced by each receptor individually. However, in the infected group, this coactivation induced a distinct upregulation of P2Y2R-P2X7R-driven canonical signaling, IL-1β release, and VCAM-1 expression, with underlying mechanisms involving inflammasome and NF-κB signaling. Therefore, current data suggest that schistosomiasis alters endothelial cell P2Y2R/P2X7R signaling during inflammation. These discoveries advance our understanding of schistosomiasis. This intricate interplay, driven by PAMP-triggered endothelial P2Y2R/P2X7R cross-talk, emerges as a potential key player in the mesenteric inflammation during schistosomiasis.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nathália Santos Mainieri
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Shuiti Tamura
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia Massimo Pereira
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Diniz Crepaldi
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Claudia Lucia Martins Silva
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Chen J, Wen J, Fu Y, Li X, Huang J, Guan X, Zhou Y. A bifunctional bortezomib-loaded porous nano-hydroxyapatite/alginate scaffold for simultaneous tumor inhibition and bone regeneration. J Nanobiotechnology 2023; 21:174. [PMID: 37264410 DOI: 10.1186/s12951-023-01940-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Treatments of osteolytic lesions due to malignant metastasis remain one of the major clinical challenges. The residual tumor cells after surgical resections and an acidic tumor microenvironment are unfavorable for osteogenic induction. Bortezomib (BTZ), a proteasome inhibitor used in chemotherapy, also has an osteogenic potential in concentration- and Ca2+-dependent manners. In this study, controlled delivery of BTZ in a novel bifunctional scaffold based on nano-hydroxyapatite (nHA) and sodium alginate (SA) nanocomposite, namely BTZ/nHA@SA, has been explored. By smartly adjusting microenvironments, a sustainable release of Ca2+ from nHA could be achieved, which was not only able to cross-link SA but also to regulate the switch between the dual functions of tumor inhibition and bone regeneration of BTZ to promote the osteogenic pathway. The freeze-dried BTZ/nHA@SA scaffold has excellent interconnectivity, is capable to promote the attachment and proliferation of mouse embryonic osteoblast precursor cells, as well as effectively induces breast cancer cell death in vitro. Furthermore, in vivo, studies using a mouse tumor model and a rabbit femoral defect model showed that the BTZ/nHA@SA scaffold could promote tumor ablation, and also enhance bone repair. Therefore, the BTZ/nHA@SA scaffold has unique dual functions of inhibiting tumor recurrence and promoting bone tissue regeneration simultaneously. This smart bi-functional scaffold offers a promising novel approach for oncological treatments by synchronously orchestrating tumor inhibition and tissue regeneration for the repair of neoplastic bone defects.
Collapse
Affiliation(s)
- Jiafei Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Junru Wen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P.R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P.R. China.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Xiaoxu Guan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| | - Yi Zhou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Tagliatti E, Cortese K. Imaging Endocytosis Dynamics in Health and Disease. MEMBRANES 2022; 12:membranes12040393. [PMID: 35448364 PMCID: PMC9028293 DOI: 10.3390/membranes12040393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake, guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover, it plays an important role in dead cell clearance and defense against external microbes. Finally, endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments. Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been associated with several human conditions such as cancer, neurological disorders, and virus infections, among others. Over the last decades, a lot of research has been focused on developing advanced imaging methods to monitor endocytosis events with high resolution in living cells and tissues. These include fluorescence imaging, electron microscopy, and correlative and super-resolution microscopy. In this review, we outline the major endocytic pathways and briefly discuss how defects in the molecular machinery of these pathways lead to disease. We then discuss the current imaging methodologies used to study endocytosis in different contexts, highlighting strengths and weaknesses.
Collapse
Affiliation(s)
- Erica Tagliatti
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Milano, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Correspondence: (E.T.); (K.C.)
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
- Correspondence: (E.T.); (K.C.)
| |
Collapse
|
4
|
Gardinier JD, Chougule A, Zhang C. The mechanotransduction of MLO-Y4 cells is disrupted by the senescence-associated secretory phenotype of neighboring cells. J Cell Physiol 2022; 237:2249-2257. [PMID: 35102547 PMCID: PMC9052359 DOI: 10.1002/jcp.30690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Age-related bone loss is attributed to the accumulation of senescent cells and their increasing production of inflammatory cytokines as part of the senescence-associated secretory phenotype (SASP). In otherwise healthy individuals, osteocytes play a key role in maintaining bone mass through their primary function of responding to skeletal loading. Given that osteocytes' response to loading is known to steadily decline with age, we hypothesized that the increasing presence of senescent cells and their SASP inhibit osteocytes' response to loading. To test this hypothesis, we developed two in vitro models of senescent osteocytes and osteoblasts derived from MLO-Y4 and MC3T3 cell lines, respectively. The senescent phenotype was unique to each cell type based on distinct changes in cell cycle inhibitors and SASP profile. The SASP profile of senescent osteocytes was in part dependent on nuclear factor-κB signaling and presents a new potential mechanism to target the SASP in bone. Nonsenescent MLO-Y4 cells cultured with the SASP of each senescent cell type failed to exhibit changes in gene expression as well as ERK phosphorylation and prostaglandin E2 release. The SASP of senescent osteocytes had the largest effect and neutralizing interleukin-6 (IL-6) as part of the SASP restored osteocytes' response to loading. The loss in mechanotransduction due to IL-6 was attributed to a decrease in P2X7 expression and overall sensitivity to purinergic signaling. Altogether, these findings demonstrate that the SASP of senescent cells have a negative effect on the mechanotransduction of osteocytes and that IL-6 is a key SASP component that contributes to the loss in mechanotransduction.
Collapse
Affiliation(s)
- Joseph D Gardinier
- Bone and Joint Center, Henry Ford Health System, Henry Ford Hospital, Detroit, Michigan, USA
| | - Amit Chougule
- Bone and Joint Center, Henry Ford Health System, Henry Ford Hospital, Detroit, Michigan, USA
| | - Chunbin Zhang
- Bone and Joint Center, Henry Ford Health System, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
5
|
Murrell-Lagnado RD, Kawate T. Methods for Studying Cholesterol-Dependent Regulation of P2X7 Receptors. Methods Mol Biol 2022; 2510:253-264. [PMID: 35776329 DOI: 10.1007/978-1-0716-2384-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cholesterol dynamically regulates P2X7 receptor function in both physiological and pathological conditions. Studies suggest that cholesterol suppresses P2X7 receptor activity through direct binding or through indirect effects on the biophysical properties of the membrane. Notably, the palmitoylated C-terminus seems to counteract the action of cholesterol to make it less inhibitory. However, the mechanism underlying cholesterol-dependent regulation of P2X7 receptor remains unclear. Here we describe detailed methods that facilitate the quantification of P2X7 channel activity while controlling the amount of cholesterol in the system. We will first describe the use of methyl-β-cyclodextrin (MCD), a cyclic oligosaccharide consisting of seven glucose monomers, to decrease or increase plasma membrane cholesterol levels. We will then describe protocols for the reconstitution of purified P2X7 in proteoliposomes of defined lipid composition. These methods can be combined with commonly used techniques such as dye-uptake assays or electrophysiology. We also describe a fluorescence assay to measure cholesterol-binding to P2X7. These approaches are complementary to cryo-EM or molecular dynamics simulations, which are also powerful tools for investigating cholesterol-P2X7 interactions. An improved understanding of the mechanisms of action of cholesterol on P2X7 may contribute to elucidate the roles of this receptor in ageing, inflammation, and cancer, whose progression correlates with the level of cholesterol.
Collapse
Affiliation(s)
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
The mechanosensory and mechanotransductive processes mediated by ion channels and the impact on bone metabolism: A systematic review. Arch Biochem Biophys 2021; 711:109020. [PMID: 34461086 DOI: 10.1016/j.abb.2021.109020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Mechanical environments were associated with alterations in bone metabolism. Ion channels present on bone cells are indispensable for bone metabolism and can be directly or indirectly activated by mechanical stimulation. This review aimed to discuss the literature reporting the mechanical regulatory effects of ion channels on bone cells and bone tissue. An electronic search was conducted in PubMed, Embase and Web of Science. Studies about mechanically induced alteration of bone cells and bone tissue by ion channels were included. Ion channels including TRP family channels, Ca2+ release-activated Ca2+ channels (CRACs), Piezo1/2 channels, purinergic receptors, NMDA receptors, voltage-sensitive calcium channels (VSCCs), TREK2 potassium channels, calcium- and voltage-dependent big conductance potassium (BKCa) channels, small conductance, calcium-activated potassium (SKCa) channels and epithelial sodium channels (ENaCs) present on bone cells and bone tissue participate in the mechanical regulation of bone development in addition to contributing to direct or indirect mechanotransduction such as altered membrane potential and ionic flux. Physiological (beneficial) mechanical stimulation could induce the anabolism of bone cells and bone tissue through ion channels, but abnormal (harmful) mechanical stimulation could also induce the catabolism of bone cells and bone tissue through ion channels. Functional expression of ion channels is vital for the mechanotransduction of bone cells. Mechanical activation (opening) of ion channels triggers ion influx and induces the activation of intracellular modulators that can influence bone metabolism. Therefore, mechanosensitive ion channels provide new insights into therapeutic targets for the treatment of bone-related diseases such as osteopenia and aseptic implant loosening.
Collapse
|
7
|
Gardinier JD. The Diminishing Returns of Mechanical Loading and Potential Mechanisms that Desensitize Osteocytes. Curr Osteoporos Rep 2021; 19:436-443. [PMID: 34216359 PMCID: PMC9306018 DOI: 10.1007/s11914-021-00693-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Adaptation to mechanical loading is critical to maintaining bone mass and offers therapeutic potential to preventing age-related bone loss and osteoporosis. However, increasing the duration of loading is met with "diminishing returns" as the anabolic response quickly becomes saturated. As a result, the anabolic response to daily activities and repetitive bouts of loading is limited by the underlying mechanisms that desensitize and render bone unresponsive at the cellular level. Osteocytes are the primary cells that respond to skeletal loading and facilitate the overall anabolic response. Although many of osteocytes' signaling mechanisms activated in response to loading are considered anabolic in nature, several of them can also render osteocytes insensitive to further stimuli and thereby creating a negative feedback loop that limits osteocytes' overall response. The purpose of this review is to examine the potential mechanisms that may contribute to the loss of mechanosensitivity. In particular, we examined the inactivation/desensitization of ion channels and signaling molecules along with the potential role of endocytosis and cytoskeletal reorganization. The significance in defining the negative feedback loop is the potential to identify unique targets for enabling osteocytes to maintain their sensitivity. In doing so, we can begin to cultivate new strategies that capitalize on the anabolic nature of daily activities that repeatedly load the skeleton.
Collapse
|
8
|
Kong Q, Quan Y, Tian G, Zhou J, Liu X. Purinergic P2 Receptors: Novel Mediators of Mechanotransduction. Front Pharmacol 2021; 12:671809. [PMID: 34025431 PMCID: PMC8138185 DOI: 10.3389/fphar.2021.671809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanosensing and mechanotransduction are vital processes in mechanobiology and play critical roles in regulating cellular behavior and fate. There is increasing evidence that purinergic P2 receptors, members of the purinergic family, play a crucial role in cellular mechanotransduction. Thus, information on the specific mechanism of P2 receptor-mediated mechanotransduction would be valuable. In this review, we focus on purinergic P2 receptor signaling pathways and describe in detail the interaction of P2 receptors with other mechanosensitive molecules, including transient receptor potential channels, integrins, caveolae-associated proteins and hemichannels. In addition, we review the activation of purinergic P2 receptors and the role of various P2 receptors in the regulation of various pathophysiological processes induced by mechanical stimuli.
Collapse
Affiliation(s)
- Qihang Kong
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Quan
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Geer Tian
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Carluccio M, Zuccarini M, Ziberi S, Giuliani P, Morabito C, Mariggiò MA, Lonardo MT, Adinolfi E, Orioli E, Di Iorio P, Caciagli F, Ciccarelli R. Involvement of P2X7 Receptors in the Osteogenic Differentiation of Mesenchymal Stromal/Stem Cells Derived from Human Subcutaneous Adipose Tissue. Stem Cell Rev Rep 2020; 15:574-589. [PMID: 30955192 DOI: 10.1007/s12015-019-09883-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ionotropic P2X7 receptor (P2X7R) is involved in bone homeostasis but its role in osteogenesis is controversial. Thus, we investigated the expression of P2X7R and the effects exerted by its modulation in mesenchymal stromal cells from human subcutaneous adipose tissue (S-ASCs), which have potential therapeutic application in bone regenerative medicine. We found that undifferentiated S-ASCs expressed P2X7R and its functional splice variants P2X7AR and P2X7BR. Cell stimulation by P2X7R agonist BzATP (100 μM) neither modified proliferation nor caused membrane pore opening while increasing intracellular Ca2+ levels and migration. The P2X7R antagonist A438079 reversed these effects. However, 25-100 μM BzATP, administered to S-ASCs undergoing osteogenic differentiation, dose-dependently decreased extracellular matrix mineralization and expression of osteogenic transcription factors Runx2, alkaline phosphatase and osteopontin. These effects were not coupled to cell proliferation reduction or to cell death increase, but were associated to decrease in P2X7AR and P2X7BR expression. In contrast, expression of P2X7R, especially P2X7BR isoform, significantly increased during the osteogenic process. Noteworthy, the antagonist A438079, administered alone, at first restrained cell differentiation, enhancing it later. Accordingly, A438079 reversed BzATP effects only in the second phase of S-ASCs osteogenic differentiation. Apyrase, a diphosphohydrolase converting ATP/ADP into AMP, showed a similar behavior. Altogether, findings related to A438079 or apyrase effects suggest an earlier and prevailing pro-osteogenic activity by endogenous ATP and a later one by adenosine derived from endogenous ATP metabolism. Conversely, P2X7R pharmacological stimulation by BzATP, mimicking the effects of high ATP levels occurring during tissue injuries, depressed receptor expression/activity impairing MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Caterina Morabito
- Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Maria A Mariggiò
- Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Elena Adinolfi
- Department of Morphology, Surgery end Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery end Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy. .,StemTeCh Group, Chieti, Italy.
| |
Collapse
|
10
|
The Role of P2X7 Purinergic Receptors in the Renal Inflammation Associated with Angiotensin II-induced Hypertension. Int J Mol Sci 2020; 21:ijms21114041. [PMID: 32516946 PMCID: PMC7312644 DOI: 10.3390/ijms21114041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Purinergic receptors play a central role in the renal pathophysiology of angiotensin II-induced hypertension, since elevated ATP chronically activates P2X7 receptors in this model. The changes induced by the P2X antagonist Brilliant blue G (BBG) in glomerular hemodynamics and in tubulointerstitial inflammation resulting from angiotensin II infusion were studied. Rats received angiotensin II (435 ng·kg-1·min-1, 2 weeks) alone or in combination with BBG (50 mg/kg/day intraperitoneally). BBG did not modify hypertension (214.5 ± 1.4 vs. 212.7 ± 0.5 mmHg), but restored to near normal values afferent (7.03 ± 1.00 to 2.97 ± 0.27 dyn.s.cm-5) and efferent (2.62 ± 0.03 to 1.29 ± 0.09 dyn.s.cm-5) arteriolar resistances, glomerular plasma flow (79.23 ± 3.15 to 134.30 ± 1.11 nl/min), ultrafiltration coefficient (0.020 ± 0.002 to 0.036 ± 0.003 nl/min/mmHg) and single nephron glomerular filtration rate (22.28 ± 2.04 to 34.46 ± 1.54 nl/min). Angiotensin II induced overexpression of P2X7 receptors in renal tubular cells and in infiltrating T and B lymphocytes and macrophages. All inflammatory cells were increased by angiotensin II infusion and reduced by 20% to 50% (p < 0.05) by BBG administration. Increased IL-2, IL-6, TNFα, IL-1β, IL-18 and overexpression of NLRP3 inflammasome were induced by angiotensin II and suppressed by BBG. These studies suggest that P2X7 receptor-mediated renal vasoconstriction, tubulointerstitial inflammation and activation of NLRP3 inflammasome are associated with angiotensin II-induced hypertension.
Collapse
|
11
|
Savio LEB, de Andrade Mello P, Santos SACS, de Sousa JC, Oliveira SDS, Minshall RD, Kurtenbach E, Wu Y, Longhi MS, Robson SC, Coutinho-Silva R. P2X7 receptor activation increases expression of caveolin-1 and formation of macrophage lipid rafts, thereby boosting CD39 activity. J Cell Sci 2020; 133:jcs.237560. [PMID: 32005701 DOI: 10.1242/jcs.237560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are tissue-resident immune cells that are crucial for the initiation and maintenance of immune responses. Purinergic signaling modulates macrophage activity and impacts cellular plasticity. The ATP-activated purinergic receptor P2X7 (also known as P2RX7) has pro-inflammatory properties, which contribute to macrophage activation. P2X7 receptor signaling is, in turn, modulated by ectonucleotidases, such as CD39 (also known as ENTPD1), expressed in caveolae and lipid rafts. Here, we examined P2X7 receptor activity and determined impacts on ectonucleotidase localization and function in macrophages primed with lipopolysaccharide (LPS). First, we verified that ATP boosts CD39 activity and caveolin-1 protein expression in LPS-primed macrophages. Drugs that disrupt cholesterol-enriched domains - such as nystatin and methyl-β-cyclodextrin - decreased CD39 enzymatic activity in all circumstances. We noted that CD39 colocalized with lipid raft markers (flotillin-2 and caveolin-1) in macrophages that had been primed with LPS followed by treatment with ATP. P2X7 receptor inhibition blocked these ATP-mediated increases in caveolin-1 expression and inhibited the colocalization with CD39. Further, we found that STAT3 activation is significantly attenuated caveolin-1-deficient macrophages treated with LPS or LPS+BzATP. Taken together, our data suggest that P2X7 receptor triggers the initiation of lipid raft-dependent mechanisms that upregulates CD39 activity and could contribute to limit macrophage responses restoring homeostasis.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Stephanie Alexia Cristina Silva Santos
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Júlia Costa de Sousa
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Suellen D S Oliveira
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Richard D Minshall
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA.,Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Eleonora Kurtenbach
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Yan Wu
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol 2019; 29:727-739. [PMID: 31227311 DOI: 10.1016/j.tcb.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022]
Abstract
Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, super-resolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy - from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.
Collapse
|
13
|
Green JP, Souilhol C, Xanthis I, Martinez-Campesino L, Bowden NP, Evans PC, Wilson HL. Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling. Cardiovasc Res 2019; 114:324-335. [PMID: 29126223 PMCID: PMC5852506 DOI: 10.1093/cvr/cvx213] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are incompletely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors and downstream signalling was assessed. Methods and results Cultured human endothelial cells were exposed to atheroprotective (high uniform) or atheroprone (low oscillatory) shear stress for 72 h prior to assessment of ATP responses. Imaging of cells loaded with a calcium-sensitive fluorescent dye revealed that atheroprone flow enhanced extracellular calcium influx in response to 300 µM 2'(3')-O-(4-Benzoylbenzoyl) adenosine-5'-triphosphate. Pre-treatment with pharmacological inhibitors demonstrated that this process required purinergic P2X7 receptors. The mechanism involved altered expression of P2X7, which was induced by atheroprone flow conditions in cultured cells. Similarly, en face staining of the murine aorta revealed enriched P2X7 expression at an atheroprone site. Functional studies in cultured endothelial cells showed that atheroprone flow induced p38 phosphorylation and up-regulation of E-selectin and IL-8 secretion via a P2X7-dependent mechanism. Moreover, genetic deletion of P2X7 significantly reduced E-selectin at atheroprone regions of the murine aorta. Conclusions These findings reveal that P2X7 is regulated by shear forces leading to its accumulation at atheroprone sites that are exposed to disturbed patterns of blood flow. P2X7 promotes endothelial inflammation at atheroprone sites by transducing ATP signals into p38 activation. Thus P2X7 integrates vascular mechanical responses with purinergic signalling to promote endothelial dysfunction and may provide an attractive potential therapeutic target to prevent or reduce atherosclerosis.
Collapse
Affiliation(s)
- Jack P Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Ioannis Xanthis
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Laura Martinez-Campesino
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Neil P Bowden
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.,Bateson Centre, University of Sheffield, Sheffield, UK.,INSIGNEO Institute, University of Sheffield, Sheffield, UK
| | - Heather L Wilson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Zeng D, Yao P, Zhao H. P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol 2018; 234:2095-2103. [PMID: 30317598 DOI: 10.1002/jcp.27544] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Abundant evidence indicted that P2X7 receptor show a essential role in human health and some human diseases including hypertension, atherosclerosis, pulmonary inflammation, tuberculosis infection, psychiatric disorders, and cancer. P2X7 receptor also has an important role in some central nervous system diseases such as neurodegenerative disorders. Recently, more research suggested that P2X7 receptor also plays a crucial role in bone and joint diseases. But the effect of P2X7 receptor on skeletal and joint diseases has not been systematically reviewed. In this article, the role of P2X7 receptor in skeletal and joint diseases is elaborated. The activation of P2X7 receptor can ameliorate osteoporosis by inducing a fine balance between osteoclastic resorption and osteoblastic bone formation. The activation of P2X7 receptor can relieve the stress fracture injury by increasing the response to mechanical loading and inducing osteogenesis. But the activation of P2X7 receptor mediates the cell growth and cell proliferation in bone cancer. In addition, the activation of P2X7 receptor can aggravate the process of some joint diseases such as osteoarthritis, rheumatoid arthritis, and acute gouty arthritis. The inhibition of P2X7 receptor can alleviate the pathological process of joint disease to some extent. In conclusion, P2X7 receptor may be a critical regulator and therapeutic target for bone and joint diseases.
Collapse
Affiliation(s)
- Dehui Zeng
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Pingbo Yao
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Nursing College, University of South China, Hengyang, China
| |
Collapse
|
15
|
Tanaka S, Fujio Y, Nakayama H. Caveolae-Specific CaMKII Signaling in the Regulation of Voltage-Dependent Calcium Channel and Cardiac Hypertrophy. Front Physiol 2018; 9:1081. [PMID: 30131723 PMCID: PMC6090180 DOI: 10.3389/fphys.2018.01081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/19/2018] [Indexed: 02/04/2023] Open
Abstract
Cardiac hypertrophy is a major risk for the progression of heart failure; however, the underlying molecular mechanisms contributing to this process remain elusive. The caveolae microdomain plays pivotal roles in various cellular processes such as lipid homeostasis, signal transduction, and endocytosis, and also serves as a signaling platform. Although the caveolae microdomain has been postulated to have a major contribution to the development of cardiac pathologies, including cardiac hypertrophy, recent evidence has placed this role into question. Lack of direct evidence and appropriate methods for determining activation of caveolae-specific signaling has thus far limited the ability to obtain a definite answer to the question. In this review, we focus on the potential physiological and pathological roles of the multifunctional kinase Ca2+/calmodulin-dependent kinase II and voltage-dependent L-type calcium channel in the caveolae, toward gaining a better understanding of the contribution of caveolae-based signaling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Tozzi M, Larsen AT, Lange SC, Giannuzzo A, Andersen MN, Novak I. The P2X7 receptor and pannexin-1 are involved in glucose-induced autocrine regulation in β-cells. Sci Rep 2018; 8:8926. [PMID: 29895988 PMCID: PMC5997690 DOI: 10.1038/s41598-018-27281-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/31/2018] [Indexed: 01/02/2023] Open
Abstract
Extracellular ATP is an important short-range signaling molecule that promotes various physiological responses virtually in all cell types, including pancreatic β-cells. It is well documented that pancreatic β-cells release ATP through exocytosis of insulin granules upon glucose stimulation. We hypothesized that glucose might stimulate ATP release through other non-vesicular mechanisms. Several purinergic receptors are found in β-cells and there is increasing evidence that purinergic signaling regulates β-cell functions and survival. One of the receptors that may be relevant is the P2X7 receptor, but its detailed role in β-cell physiology is unclear. In this study we investigated roles of the P2X7 receptor and pannexin-1 in ATP release, intracellular ATP, Ca2+ signals, insulin release and cell proliferation/survival in β-cells. Results show that glucose induces rapid release of ATP and significant fraction of release involves the P2X7 receptor and pannexin-1, both expressed in INS-1E cells, rat and mouse β-cells. Furthermore, we provide pharmacological evidence that extracellular ATP, via P2X7 receptor, stimulates Ca2+ transients and cell proliferation in INS-1E cells and insulin secretion in INS-1E cells and rat islets. These data indicate that the P2X7 receptor and pannexin-1 have important functions in β-cell physiology, and should be considered in understanding and treatment of diabetes.
Collapse
Affiliation(s)
- Marco Tozzi
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anna T Larsen
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie C Lange
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Giannuzzo
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin N Andersen
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Murrell-Lagnado RD. Regulation of P2X Purinergic Receptor Signaling by Cholesterol. CURRENT TOPICS IN MEMBRANES 2017; 80:211-232. [PMID: 28863817 DOI: 10.1016/bs.ctm.2017.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
P2X receptors are cation-selective channels that are activated by the binding of extracellular ATP. They have a high permeability to Ca2+, Na+, and K+ and are expressed widely throughout the nervous, immune, cardiovascular, skeletal, gastrointestinal, respiratory, and endocrine systems. Seven mammalian subtypes of P2X receptor subunits have been identified, P2X1-7, and those that function as homotrimeric receptors (P2X1, 2, 3, 4, and 7) are targeted to lipid rafts, although they show limited resistance to solubilization by Triton X-100. Recent crystal structures of P2X3 and P2X4 receptors have provided considerable high-resolution information about the architecture of this family of receptors and yet the molecular details of how they are regulated by cholesterol are unknown. Currents mediated by the P2X1-4 receptors are either inhibited or relatively insensitive to cholesterol depletion, but there is no clear evidence to support the direct binding of cholesterol to these receptors. In contrast, the activity of the low-affinity, proinflammatory P2X7 receptor is potentiated by cholesterol depletion and regions within the proximal C-terminus play an important role in coupling changes in cholesterol to the gating of the pore. Based upon our understanding of the lipid signaling events that are triggered downstream of P2X7 receptor activation, a change in the levels of cholesterol may contribute to the sensitization of receptor currents and the dilation of the pore that occurs following prolonged, high-level stimulation. This chapter focuses on the regulation of P2X7 receptor signaling by cholesterol and our current understanding of the mechanisms that underlie this.
Collapse
Affiliation(s)
- Ruth D Murrell-Lagnado
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
18
|
Abstract
Over the past decade, interest in caveolae biology has peaked. These small bulb-shaped plasma membrane invaginations of 50-80nm diameter present in most cell types have been upgraded from simple membrane structures to a more complex bona fide organelle. However, although caveolae are involved in several essential cellular functions and pathologies, the underlying molecular mechanisms remain poorly defined. Following the identification of caveolins and cavins as the main caveolae constituents, recent studies have brought new insight into their structural organization as a coat. In this review, we discuss how these new data on caveolae can be integrated in the context of their role in signaling and pathophysiology.
Collapse
|
19
|
Agrawal A, Henriksen Z, Syberg S, Petersen S, Aslan D, Solgaard M, Nissen N, Larsen TK, Schwarz P, Steinberg TH, Jørgensen NR. P2X7Rs are involved in cell death, growth and cellular signaling in primary human osteoblasts. Bone 2017; 95:91-101. [PMID: 27856358 DOI: 10.1016/j.bone.2016.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
The ionotropic ATP-gated P2X7 receptor (P2X7R) is involved in the regulation of many physiological functions including bone metabolism. Several studies on osteoblasts from rodents and human osteoblast-like cell lines have addressed the expression and function of P2X7R on these bone-forming cells however; its role in human primary osteoblasts has not yet been reported. The aim of this study was to assess the expression of the P2X7R in bone marrow-derived stromal cells and in primary human trabecular osteoblasts and to determine the function in bone formation and cell signaling. We report that osteoblasts derived from human trabecular explants express a functional P2X7R capable of agonist-induced increase in intracellular calcium concentration and a positive permeability to fluorescent dyes. These osteoblasts are fully differentiated cells with alkaline phosphatase activity and the ability to form mineralized nodules. We show that the transcriptional regulation of osteoblastic markers can be modulated by P2X7R activity or blockade thereby influencing the differentiation, proliferation and bone matrix formation by these primary human osteoblasts. Finally, we demonstrate that the P2X7R is involved in propagation of mechanically-induced intercellular signaling in addition to the known mechanisms involving calcium signaling via P2Y2 receptors and gap junction.
Collapse
Affiliation(s)
- Ankita Agrawal
- Research Centre for Ageing and Osteoporosis, Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Zanne Henriksen
- Research Centre for Ageing and Osteoporosis, Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Susanne Syberg
- Research Centre for Ageing and Osteoporosis, Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Solveig Petersen
- Research Centre for Ageing and Osteoporosis, Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Derya Aslan
- Research Centre for Ageing and Osteoporosis, Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Marie Solgaard
- Research Centre for Ageing and Osteoporosis, Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Nis Nissen
- Department of Orthopedic Surgery, Kolding Hospital, Kolding, Denmark
| | | | - Peter Schwarz
- Research Centre for Ageing and Osteoporosis, Department of Endocrinology, Rigshospitalet, Denmark; Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark
| | - Thomas H Steinberg
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Niklas Rye Jørgensen
- Research Centre for Ageing and Osteoporosis, Department of Clinical Biochemistry, Rigshospitalet, Denmark; OPEN, Odense Patient data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
20
|
Abstract
The P2X7 receptor is a trimeric ion channel gated by extracellular adenosine 5'-triphosphate. The receptor is present on an increasing number of different cells types including stem, blood, glial, neural, ocular, bone, dental, exocrine, endothelial, muscle, renal and skin cells. The P2X7 receptor induces various downstream events in a cell-specific manner, including inflammatory molecule release, cell proliferation and death, metabolic events, and phagocytosis. As such this receptor plays important roles in heath and disease. Increasing knowledge about the P2X7 receptor has been gained from studies of, but not limited to, protein chemistry including cloning, site-directed mutagenesis, crystal structures and atomic modeling, as well as from studies of primary tissues and transgenic mice. This chapter focuses on the P2X7 receptor itself. This includes the P2RX7 gene and its products including splice and polymorphic variants. This chapter also reviews modulators of P2X7 receptor activation and inhibition, as well as the transcriptional regulation of the P2RX7 gene via its promoter and enhancer regions, and by microRNA and long-coding RNA. Furthermore, this chapter discusses the post-translational modification of the P2X7 receptor by N-linked glycosylation, adenosine 5'-diphosphate ribosylation and palmitoylation. Finally, this chapter reviews interaction partners of the P2X7 receptor, and its cellular localisation and trafficking within cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
21
|
Martinez NA, Ayala AM, Martinez M, Martinez-Rivera FJ, Miranda JD, Silva WI. Caveolin-1 Regulates the P2Y2 Receptor Signaling in Human 1321N1 Astrocytoma Cells. J Biol Chem 2016; 291:12208-22. [PMID: 27129210 DOI: 10.1074/jbc.m116.730226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
Damage to the CNS can cause a differential spatio-temporal release of multiple factors, such as nucleotides, ATP and UTP. The latter interact with neuronal and glial nucleotide receptors. The P2Y2 nucleotide receptor (P2Y2R) has gained prominence as a modulator of gliotic responses after CNS injury. Still, the molecular mechanisms underlying these responses in glia are not fully understood. Membrane-raft microdomains, such as caveolae, and their constituent caveolins, modulate receptor signaling in astrocytes; yet, their role in P2Y2R signaling has not been adequately explored. Hence, this study evaluated the role of caveolin-1 (Cav-1) in modulating P2Y2R subcellular distribution and signaling in human 1321N1 astrocytoma cells. Recombinant hP2Y2R expressed in 1321N1 cells and Cav-1 were found to co-fractionate in light-density membrane-raft fractions, co-localize via confocal microscopy, and co-immunoprecipitate. Raft localization was dependent on ATP stimulation and Cav-1 expression. This hP2Y2R/Cav-1 distribution and interaction was confirmed with various cell model systems differing in the expression of both P2Y2R and Cav-1, and shRNA knockdown of Cav-1 expression. Furthermore, shRNA knockdown of Cav-1 expression decreased nucleotide-induced increases in the intracellular Ca(2+) concentration in 1321N1 and C6 glioma cells without altering TRAP-6 and carbachol Ca(2+) responses. In addition, Cav-1 shRNA knockdown also decreased AKT phosphorylation and altered the kinetics of ERK1/2 activation in 1321N1 cells. Our findings strongly suggest that P2Y2R interaction with Cav-1 in membrane-raft caveolae of 1321N1 cells modulates receptor coupling to its downstream signaling machinery. Thus, P2Y2R/Cav-1 interactions represent a novel target for controlling P2Y2R function after CNS injury.
Collapse
Affiliation(s)
| | | | | | - Freddyson J Martinez-Rivera
- Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936
| | | | | |
Collapse
|