1
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Hessel AL, Ma W, Mazara N, Rice PE, Nissen D, Gong H, Kuehn M, Irving T, Linke WA. Titin force in muscle cells alters lattice order, thick and thin filament protein formation. Proc Natl Acad Sci U S A 2022; 119:e2209441119. [PMID: 36409887 PMCID: PMC9860331 DOI: 10.1073/pnas.2209441119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle force production is increased at longer compared to shorter muscle lengths because of length-dependent priming of thick filament proteins in the contractile unit before contraction. Using small-angle X-ray diffraction in combination with a mouse model that specifically cleaves the stretch-sensitive titin protein, we found that titin cleavage diminished the length-dependent priming of the thick filament. Strikingly, a titin-sensitive, length-dependent priming was also present in thin filaments, which seems only possible via bridge proteins between thick and thin filaments in resting muscle, potentially myosin-binding protein C. We further show that these bridges can be forcibly ruptured via high-speed stretches. Our results advance a paradigm shift to the fundamental regulation of length-dependent priming, with titin as the key driver.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Nicole Mazara
- School of Kinesiology, University of British Columbia, Vancouver, CanadaV6T 1Z1
| | - Paige E. Rice
- Department of Biological Sciences, Northern Arizona University, FlagstaffAZ 86011
| | - Devin Nissen
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Henry Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| |
Collapse
|
3
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Wette SG, Lamb GD, Murphy RM. Nuclei isolation methods fail to accurately assess the subcellular localization and behaviour of proteins in skeletal muscle. Acta Physiol (Oxf) 2021; 233:e13730. [PMID: 34492163 DOI: 10.1111/apha.13730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022]
Abstract
AIM Subcellular fractionation is often used to determine the subcellular localization of proteins, including whether a protein translocates to the nucleus in response to a given stimulus. Examining nuclear proteins in skeletal muscle is difficult because myonuclear proteins are challenging to isolate unless harsh treatments are used. This study aimed to determine the most effective method for isolating and preserving proteins in their native state in skeletal muscle. METHODS We compared the ability of detergents, commercially available kit-based and K+ -based physiological methodologies for isolating myonuclear proteins from resting samples of human muscle by determining the presence of marker proteins for each fraction by western blot analyses. RESULTS We found that following the initial pelleting of nuclei, treatment with 1% Triton-X 100, 1% CHAPS or 0.5% Na-deoxycholate under various ionic conditions resulted in the nuclear proteins being either resistant to isolation or the proteins present behaving aberrantly. The nuclear proteins in brain tissue were also resistant to 1% Triton-X 100 isolation. Here, we demonstrate aberrant behaviour and erroneous localization of proteins using the kit-based method. The aberrant behaviour was the activation of Ca2+ -dependent protease calpain-3, and the erroneous localization was the presence of calpain-3 and troponin I in the nuclear fraction. CONCLUSION Our findings indicate that it may not be possible to reliably determine the translocation of proteins between subcellular locations and the nucleus using subcellular fractionation techniques. This study highlights the importance of validating subcellular fractionation methodologies using several subcellular-specific markers and solutions that are physiologically relevant to the intracellular milieu.
Collapse
Affiliation(s)
- Stefan G. Wette
- Department of Biochemistry and Genetics La Trobe Institute for Molecular ScienceLa Trobe University Melbourne Victoria Australia
| | - Graham D. Lamb
- Department of Physiology, Anatomy and Microbiology School of Life Sciences La Trobe University Melbourne Victoria Australia
| | - Robyn M. Murphy
- Department of Biochemistry and Genetics La Trobe Institute for Molecular ScienceLa Trobe University Melbourne Victoria Australia
- Department of Physiology, Anatomy and Microbiology School of Life Sciences La Trobe University Melbourne Victoria Australia
| |
Collapse
|
5
|
Abstract
The sarcomeric titin springs and accessory proteins modulate muscle force and mechanical signaling at the N2A signalosome.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| |
Collapse
|
6
|
Affiliation(s)
- Robbert J van der Pijl
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
7
|
van der Pijl RJ, van den Berg M, van de Locht M, Shen S, Bogaards SJP, Conijn S, Langlais P, Hooijman PE, Labeit S, Heunks LMA, Granzier H, Ottenheijm CAC. Muscle ankyrin repeat protein 1 (MARP1) locks titin to the sarcomeric thin filament and is a passive force regulator. J Gen Physiol 2021; 153:212403. [PMID: 34152365 PMCID: PMC8222902 DOI: 10.1085/jgp.202112925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Muscle ankyrin repeat protein 1 (MARP1) is frequently up-regulated in stressed muscle, but its effect on skeletal muscle function is poorly understood. Here, we focused on its interaction with the titin–N2A element, found in titin’s molecular spring region. We show that MARP1 binds to F-actin, and that this interaction is stronger when MARP1 forms a complex with titin–N2A. Mechanics and super-resolution microscopy revealed that MARP1 “locks” titin–N2A to the sarcomeric thin filament, causing increased extension of titin’s elastic PEVK element and, importantly, increased passive force. In support of this mechanism, removal of thin filaments abolished the effect of MARP1 on passive force. The clinical relevance of this mechanism was established in diaphragm myofibers of mechanically ventilated rats and of critically ill patients. Thus, MARP1 regulates passive force by locking titin to the thin filament. We propose that in stressed muscle, this mechanism protects the sarcomere from mechanical damage.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Marloes van den Berg
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Martijn van de Locht
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Sylvia J P Bogaards
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Stefan Conijn
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paul Langlais
- Division of Endocrinology, University of Arizona, Tucson, AZ
| | - Pleuni E Hooijman
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Leo M A Heunks
- Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| |
Collapse
|
8
|
Boskovic S, Marín Juez R, Stamenkovic N, Radojkovic D, Stainier DY, Kojic S. The stress responsive gene ankrd1a is dynamically regulated during skeletal muscle development and upregulated following cardiac injury in border zone cardiomyocytes in adult zebrafish. Gene 2021; 792:145725. [PMID: 34010705 DOI: 10.1016/j.gene.2021.145725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Ankyrin repeat domain 1 (ANKRD1) is a functionally pleiotropic protein found in the nuclei and sarcomeres of cardiac and skeletal muscles, with a proposed role in linking myofibrilar stress and transcriptional regulation. Rapid upregulation of its expression in response to both physiological and pathological stress supports the involvement of ANKRD1 in muscle tissue adaptation and remodeling. However, the exact role of ANKRD1 remains poorly understood. To begin to investigate its function at higher resolution, we have generated and characterized a TgBAC(ankrd1a:EGFP) zebrafish line. This reporter line displays transgene expression in slow skeletal muscle fibers during development and exercise responsiveness in adult cardiac muscle. To better understand the role of Ankrd1a in pathological conditions in adult zebrafish, we assessed ankrd1a expression after cardiac ventricle cryoinjury and observed localized upregulation in cardiomyocytes in the border zone. We show that this expression in injured hearts is recapitulated by the TgBAC(ankrd1a:EGFP) reporter. Our results identify novel expression domains of ankrd1a and suggest an important role for Ankrd1a in the early stress response and regeneration of cardiac tissue. This new reporter line will help decipher the role of Ankrd1a in striated muscle stress response, including after cardiac injury.
Collapse
Affiliation(s)
- Srdjan Boskovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biology, University of Belgrade, 11042 Belgrade, Serbia.
| | - Rubén Marín Juez
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Nemanja Stamenkovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biology, University of Belgrade, 11042 Belgrade, Serbia
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biology, University of Belgrade, 11042 Belgrade, Serbia
| | - Didier Yr Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Snezana Kojic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biology, University of Belgrade, 11042 Belgrade, Serbia.
| |
Collapse
|
9
|
Wette SG, Birch NP, Soop M, Zügel M, Murphy RM, Lamb GD, Smith HK. Expression of titin-linked putative mechanosensing proteins in skeletal muscle after power resistance exercise in resistance-trained men. J Appl Physiol (1985) 2020; 130:545-561. [PMID: 33356984 DOI: 10.1152/japplphysiol.00711.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the molecular responses to power resistance exercise that lead to skeletal muscle remodeling and enhanced athletic performance. We assessed the expression of titin-linked putative mechanosensing proteins implicated in muscle remodeling: muscle ankyrin repeat proteins (Ankrd 1, Ankrd 2, and Ankrd 23), muscle-LIM proteins (MLPs), muscle RING-finger protein-1 (MuRF-1), and associated myogenic proteins (MyoD1, myogenin, and myostatin) in skeletal muscle in response to power resistance exercise with or without a postexercise meal, in fed, resistance-trained men. A muscle sample was obtained from the vastus lateralis of seven healthy men on separate days, 3 h after 90 min of rest (Rest) or power resistance exercise with (Ex + Meal) or without (Ex) a postexercise meal to quantify mRNA and protein levels. The levels of phosphorylated HSP27 (pHSP27-Ser15) and cytoskeletal proteins in muscle and creatine kinase activity in serum were also assessed. The exercise increased (P ≤ 0.05) pHSP27-Ser15 (∼6-fold) and creatine kinase (∼50%), whereas cytoskeletal protein levels were unchanged (P > 0.05). Ankrd 1 (∼15-fold) and MLP (∼2-fold) mRNA increased, whereas Ankrd 2, Ankrd 23, MuRF-1, MyoD1, and myostatin mRNA were unchanged. Ankrd 1 (∼3-fold, Ex) and MLPb (∼20-fold, Ex + Meal) protein increased, but MLPa, Ankrd 2, Ankrd 23, and the myogenic proteins were unchanged. The postexercise meal did not affect the responses observed. Power resistance exercise, as performed in practice, induced subtle early responses in the expression of MLP and Ankrd 1 yet had little effect on the other proteins investigated. These findings suggest possible roles for MLP and Ankrd 1 in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.NEW & NOTEWORTHY This is the first study to assess the early changes in the expression of titin-linked putative mechanosensing proteins and associated myogenic regulatory factors in skeletal muscle after power resistance exercise in fed, resistance-trained men. We report that power resistance exercise induces subtle early responses in the expression of Ankrd 1 and MLP, suggesting these proteins play a role in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.
Collapse
Affiliation(s)
- Stefan G Wette
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Mattias Soop
- Department of Surgery, Ersta Hospital, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Martina Zügel
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine, University of Ulm, Ulm, Germany
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Heather K Smith
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Muniz MMM, Fonseca LFS, Dos Santos Silva DB, de Oliveira HR, Baldi F, Chardulo AL, Ferro JA, Cánovas A, de Albuquerque LG. Identification of novel mRNA isoforms associated with meat tenderness using RNA sequencing data in beef cattle. Meat Sci 2020; 173:108378. [PMID: 33248741 DOI: 10.1016/j.meatsci.2020.108378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
The Warner-Bratzler shear force (WBSF) and myofibrillar fragmentation index (MFI) are complementary methodologies used to measure beef tenderness. Longissimus thoracis samples from the 20 most extreme bulls (out of 80 bulls set) for WBSF (tender (n = 10) and tough (n = 10)) and MFI (high (n = 10) and low (n = 10)) traits were collected to perform transcriptomic analysis using RNA-Sequencing. All analysis were performed through CLC Genomics Workbench. A total of 39 and 27 transcripts for WBSF and MFI phenotypes were DE, respectively. The possible DE novel mRNA isoforms, for WBSF and MFI traits, are myosin encoders (e.g. MYL1 and MYL6). In addition, we identified potential mRNA isoforms related to genes affecting the speed fibers degradation during the meat aging process. The DE novel transcripts are transcripted by genes with biological functions related to oxidative process, energy production and striated muscle contraction. The results suggest that the identified mRNA isoforms could be used as potential candidate to select animals in order to improve meat tenderness.
Collapse
Affiliation(s)
- Maria Malane Magalhães Muniz
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| | | | | | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil
| | - Artur Loyola Chardulo
- National Council for Scientific and Technological Development (CNPq), Brazil; São Paulo State University (Unesp), College of Veterinary and Animal Science, Botucatu, SP, Brazil
| | - Jesus Aparecido Ferro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Lucia Galvão de Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil.
| |
Collapse
|
11
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
12
|
Cloning and expression profiling of muscle regulator ANKRD2 in domestic chicken Gallus gallus. Histochem Cell Biol 2020; 154:383-396. [PMID: 32653935 DOI: 10.1007/s00418-020-01899-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Striated muscle signaling protein and transcriptional regulator ANKRD2 participates in myogenesis, myogenic differentiation, muscle adaptation and stress response. It is preferentially expressed in slow, oxidative fibers of mammalian skeletal muscle. In this study, we report on characterization of chicken ANKRD2. The chicken ANKRD2 coding region contains 1002 bp and encodes a 334-amino acid protein which shares approximately 58% identity with human and mouse orthologs, mostly in the conserved region of ankyrin repeats. Comprehensive analysis of the ANKRD2 gene and protein expression in adult chicken demonstrated its predominant expression in red muscles of thigh and drumstick, compared to white muscle. It was not detected in heart and white pectoral muscle. Uneven expression of ANKRD2 in chicken skeletal muscles, observed by immunohistochemistry, was attributed to its selective expression in slow, oxidative, type I and fast, oxidative-glycolytic, type IIA myofibers. Association of chicken ANKRD2 with phenotypic differences between red and white muscles points to its potential role in the process of myofiber-type specification. In addition to expression in slow oxidative myofibers, as demonstrated for mammalian protein, chicken ANKRD2 was also detected in fast fibers with mixed oxidative and glycolytic metabolism. This finding suggests that ANKRD2 is responsive to metabolic differences between types of avian myofibers and orientates future studies towards investigation of its role in molecular mechanisms of myofiber-type-specific gene expression.
Collapse
|
13
|
Effects of voluntary wheel running on mitochondrial content and dynamics in rat skeletal muscle. J Muscle Res Cell Motil 2020; 42:67-76. [PMID: 32441024 DOI: 10.1007/s10974-020-09580-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/09/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
This study reports that in rat skeletal muscle the proteins specifically responsible for mitochondrial dynamics, mitofusin-2 (MFN2) and mitochondrial dynamics protein 49 (MiD49), are higher (p < 0.05) in oxidative soleus (SOL) muscle compared with predominantly glycolytic extensor digitorum longus (EDL) muscle, but not seen for optic atrophy 1 (OPA1; p = 0.06). Markers of mitochondrial content, complex I component, NADH:Ubiquinone oxidoreductase subunit A9 (NDUFA9) and complex IV protein, cytochrome C oxidase subunit IV (COXIV; p < 0.05) were also higher in SOL compared with EDL muscle; however, there was no difference in mitochondrial content between muscles, as measured using a citrate synthase assay (p > 0.05). SOL and EDL muscles were compared between age-matched sedentary rats that were housed individually with (RUN) or without (SED) free-access to a running wheel for 12 weeks and showed no change in mitochondrial content, as examined by the abundances of NDUFA9 and COXIV proteins, as well as citrate synthase activity, in either muscle (p > 0.05). Compared to SED animals, MiD49 and OPA1 were not different in either EDL or SOL muscles, and MFN2 was higher in SOL muscles from RUN rats (p < 0.05). Overall, these findings reveal that voluntary wheel running is an insufficient stimulus to result in a significantly higher abundance of most markers of mitochondrial content or dynamics, and it is likely that a greater stimulus, such as either adding resistance to the wheel or an increase in running volume by using a treadmill, is required for mitochondrial adaptation in rat skeletal muscle.
Collapse
|
14
|
Ren X, Xu H, Barker RG, Lamb GD, Murphy RM. Elevated MMP2 abundance and activity in mdx mice are alleviated by prenatal taurine supplementation. Am J Physiol Cell Physiol 2020; 318:C1083-C1091. [PMID: 32208990 DOI: 10.1152/ajpcell.00437.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle-wasting disorder that leads to early death. The mdx mouse is a naturally occurring mutant model for DMD. It lacks dystrophin and displays peak muscle cell necrosis at ~28 days (D28), but in contrast to DMD, mdx mice experience muscle regeneration by D70. We hypothesized that matrix metalloproteinase-2 (MMP2) and/or MMP9 play key roles in the degeneration/regeneration phases in mdx mice. MMP2 abundance in muscle homogenates, measured by calibrated Western blotting, and activity, measured by zymogram, were lower at D70 compared with D28 in both mdx and wild-type (WT) mice. Importantly, MMP2 abundance was higher in both D28 and D70 mdx mice than in age-matched WT mice. The higher MMP2 abundance was not due to infiltrating macrophages, because MMP2 content was still higher in isolated muscle fibers where most macrophages had been removed. Prenatal supplementation with the amino acid taurine, which improved muscle strength in D28 mdx mice, produced approximately twofold lower MMP2 activity, indicating that increased MMP2 abundance is not required when muscle damage is attenuated. There was no difference in MMP9 abundance between age-matched WT and mdx mice (P > 0.05). WT mice displayed decreased MMP9 abundance as they aged. While MMP9 may have a role during age-related skeletal muscle growth, it does not appear essential for degeneration/regeneration cycles in the mdx mouse. Our findings indicate that MMP2 plays a more active role than MMP9 in the degenerative phases of muscle fibers in D28 mdx mice.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Hongyang Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Robert G Barker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Kelly CM, Manukian S, Kim E, Gage MJ. Differences in stability and calcium sensitivity of the Ig domains in titin's N2A region. Protein Sci 2020; 29:1160-1171. [PMID: 32112607 DOI: 10.1002/pro.3848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/11/2022]
Abstract
Titin is a large filamentous protein that spans half a sarcomere, from Z-disk to M-line. The N2A region within the titin molecule exists between the proximal immunoglobulin (Ig) region and the PEVK region and protein-protein interactions involving this region are required for normal muscle function. The N2A region consists of four Ig domains (I80-I83) with a 105 amino acid linker region between I80 and I81 that has a helical nature. Using chemical stability measurements, we show that predicted differences between the adjacent Ig domains (I81-I83) correlate with experimentally determined differences in chemical stability and refolding kinetics. Our work further shows that I83 has the lowest ΔGunfolding , which is increased in the presence of calcium (pCa 4.3), indicating that Ca2+ plays a role in stabilizing this immunoglobulin domain. The characteristics of N2A's three Ig domains provide insight into the stability of the binding sites for proteins that interact with the N2A region. This work also provides insights into how Ca2+ might influence binding events involving N2A.
Collapse
Affiliation(s)
- Colleen M Kelly
- Chemistry Department, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,UMass Movement Center, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Sophia Manukian
- Chemistry Department, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Emily Kim
- Chemistry Department, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Matthew J Gage
- Chemistry Department, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,UMass Movement Center, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
16
|
Qiu Y, Yang S, Pan T, Yu L, Liu J, Zhu Y, Wang H. ANKRD22 is involved in the progression of prostate cancer. Oncol Lett 2019; 18:4106-4113. [PMID: 31516611 PMCID: PMC6732940 DOI: 10.3892/ol.2019.10738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a common malignant tumor in elderly men. As a novel metabolic-reprogramming molecule, the role of ankyrin repeat domain 22 (ANKRD22) in the tumorigenesis and progression of prostate cancer remains unknown. In the present study, mouse monoclonal antibodies against human ANKRD22 were prepared using recombinant ANKRD22 from prokaryotic expression and validated. Subsequently, these antibodies were used to evaluate ANKRD22 levels via immunohistochemical staining in prostate cancer tissues. Finally, the association between ANKRD22 levels and prostate cancer progression was analyzed in 636 samples of prostate cancer using The Cancer Genome Atlas (TCGA) database. A total of four anti-ANKRD22 monoclonal antibodies were generated and validated, which could be effectively blocked by recombinant ANKRD22 protein. Using these antibodies for immunohistochemical staining, ANKRD22 was detected in prostate cancer cells in both the cytoplasm and nucleus. Bioinformatics analysis demonstrated that the mRNA level of ANKRD22 was inversely associated with prostate cancer stage (P<0.05) and Gleason score (P<0.01) in TCGA database. Patients with higher ANKRD22 mRNA levels exhibited longer disease-free survival following radical prostatectomy. These findings suggest that ANKRD22 may negatively regulate the progression of prostate cancer. The prepared ANKRD22 antibodies with high specificity provide a powerful tool in ANKRD22 research.
Collapse
Affiliation(s)
- Yiqing Qiu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Saisai Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Lin Yu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingwen Liu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hongping Wang
- Department of Gerontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
17
|
Ankrd2 in Mechanotransduction and Oxidative Stress Response in Skeletal Muscle: New Cues for the Pathogenesis of Muscular Laminopathies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7318796. [PMID: 31428229 PMCID: PMC6681624 DOI: 10.1155/2019/7318796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Ankrd2 (ankyrin repeats containing domain 2) or Arpp (ankyrin repeat, PEST sequence, and proline-rich region) is a member of the muscle ankyrin repeat protein family. Ankrd2 is mostly expressed in skeletal muscle, where it plays an intriguing role in the transcriptional response to stress induced by mechanical stimulation as well as by cellular reactive oxygen species. Our studies in myoblasts from Emery-Dreifuss muscular dystrophy 2, a LMNA-linked disease affecting skeletal and cardiac muscles, demonstrated that Ankrd2 is a lamin A-binding protein and that mutated lamins found in Emery-Dreifuss muscular dystrophy change the dynamics of Ankrd2 nuclear import, thus affecting oxidative stress response. In this review, besides describing the latest advances related to Ankrd2 studies, including novel discoveries on Ankrd2 isoform-specific functions, we report the main findings on the relationship of Ankrd2 with A-type lamins and discuss known and potential mechanisms involving defective Ankrd2-lamin A interplay in the pathogenesis of muscular laminopathies.
Collapse
|
18
|
Ren X, Lamb GD, Murphy RM. Distribution and activation of matrix metalloproteinase-2 in skeletal muscle fibers. Am J Physiol Cell Physiol 2019; 317:C613-C625. [PMID: 31241984 DOI: 10.1152/ajpcell.00113.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A substantial intracellular localization of matrix metalloproteinase 2 (MMP2) has been reported in cardiomyocytes, where it plays a role in the degradation of the contractile apparatus following ischemia-reperfusion injury. Whether MMP2 may have a similar function in skeletal muscle is unknown. This study determined that the absolute amount of MMP2 is similar in rat skeletal and cardiac muscle and human muscle (~10-18 nmol/kg muscle wet wt) but is ~50- to 100-fold less than the amount of calpain-1. We compared mechanically skinned muscle fibers, where the extracellular matrix (ECM) is completely removed, with intact fiber segments and found that ~30% of total MMP2 was associated with the ECM, whereas ~70% was inside the muscle fibers. Concordant with whole muscle fractionation, further separation of skinned fiber segments into cytosolic, membranous, and cytoskeletal and nuclear compartments indicated that ~57% of the intracellular MMP2 was freely diffusible, ~6% was associated with the membrane, and ~37% was bound within the fiber. Under native zymography conditions, only 10% of MMP2 became active upon prolonged (17 h) exposure to 20 μM Ca2+, a concentration that would fully activate calpain-1 in seconds to minutes; full activation of MMP2 would require ~1 mM Ca2+. Given the prevalence of intracellular MMP2 in skeletal muscle, it is necessary to investigate its function using physiological conditions, including isolation of any potential functional relevance of MMP2 from that of the abundant protease calpain-1.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
van der Pijl R, Strom J, Conijn S, Lindqvist J, Labeit S, Granzier H, Ottenheijm C. Titin-based mechanosensing modulates muscle hypertrophy. J Cachexia Sarcopenia Muscle 2018; 9:947-961. [PMID: 29978560 PMCID: PMC6204599 DOI: 10.1002/jcsm.12319] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Titin is an elastic sarcomeric filament that has been proposed to play a key role in mechanosensing and trophicity of muscle. However, evidence for this proposal is scarce due to the lack of appropriate experimental models to directly test the role of titin in mechanosensing. METHODS We used unilateral diaphragm denervation (UDD) in mice, an in vivo model in which the denervated hemidiaphragm is passively stretched by the contralateral, innervated hemidiaphragm and hypertrophy rapidly occurs. RESULTS In wildtype mice, the denervated hemidiaphragm mass increased 48 ± 3% after 6 days of UDD, due to the addition of both sarcomeres in series and in parallel. To test whether titin stiffness modulates the hypertrophy response, RBM20ΔRRM and TtnΔIAjxn mouse models were used, with decreased and increased titin stiffness, respectively. RBM20ΔRRM mice (reduced stiffness) showed a 20 ± 6% attenuated hypertrophy response, whereas the TtnΔIAjxn mice (increased stiffness) showed an 18 ± 8% exaggerated response after UDD. Thus, muscle hypertrophy scales with titin stiffness. Protein expression analysis revealed that titin-binding proteins implicated previously in muscle trophicity were induced during UDD, MARP1 & 2, FHL1, and MuRF1. CONCLUSIONS Titin functions as a mechanosensor that regulates muscle trophicity.
Collapse
Affiliation(s)
- Robbert van der Pijl
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | - Joshua Strom
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Stefan Conijn
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | - Johan Lindqvist
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Siegfried Labeit
- Department of Integrative PathophysiologyMedical Faculty MannheimMannheimGermany
- Myomedix GmbHNeckargemuendGermany
| | - Henk Granzier
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Coen Ottenheijm
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
20
|
Boskovic S, Marín-Juez R, Jasnic J, Reischauer S, El Sammak H, Kojic A, Faulkner G, Radojkovic D, Stainier DYR, Kojic S. Characterization of zebrafish (Danio rerio) muscle ankyrin repeat proteins reveals their conserved response to endurance exercise. PLoS One 2018; 13:e0204312. [PMID: 30252882 PMCID: PMC6155536 DOI: 10.1371/journal.pone.0204312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022] Open
Abstract
Muscle proteins with ankyrin repeats (MARPs) ANKRD1 and ANKRD2 are titin-associated proteins with a putative role as transcriptional co-regulators in striated muscle, involved in the cellular response to mechanical, oxidative and metabolic stress. Since many aspects of the biology of MARPs, particularly exact mechanisms of their action, in striated muscle are still elusive, research in this field will benefit from novel animal model system. Here we investigated the MARPs found in zebrafish for protein structure, evolutionary conservation, spatiotemporal expression profiles and response to increased muscle activity. Ankrd1 and Ankrd2 show overall moderate conservation at the protein level, more pronounced in the region of ankyrin repeats, motifs indispensable for their function. The two zebrafish genes, ankrd1a and ankrd1b, counterparts of mammalian ANKRD1/Ankrd1, have different expression profiles during first seven days of development. Mild increase of ankrd1a transcript levels was detected at 72 hpf (1.74±0.24 fold increase relative to 24 hpf time point), while ankrd1b expression was markedly upregulated from 24 hpf onward and peaked at 72 hpf (92.18±36.95 fold increase relative to 24 hpf time point). Spatially, they exhibited non-overlapping expression patterns during skeletal muscle development in trunk (ankrd1a) and tail (ankrd1b) somites. Expression of ankrd2 was barely detectable. Zebrafish MARPs, expressed at a relatively low level in adult striated muscle, were found to be responsive to endurance exercise training consisting of two bouts of 3 hours of forced swimming daily, for five consecutive days. Three hours after the last exercise bout, ankrd1a expression increased in cardiac muscle (6.19±5.05 fold change), while ankrd1b and ankrd2 were upregulated in skeletal muscle (1.97±1.05 and 1.84±0.58 fold change, respectively). This study provides the foundation to establish zebrafish as a novel in vivo model for further investigation of MARPs function in striated muscle.
Collapse
Affiliation(s)
- Srdjan Boskovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hadil El Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Dragica Radojkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
21
|
Cenni V. Letter to the editor: Comments on Wette et al. (2017): "Characterization of muscle ankyrin repeat proteins in human skeletal muscle". Am J Physiol Cell Physiol 2017; 313:C469-C470. [PMID: 28993323 DOI: 10.1152/ajpcell.00151.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Vittoria Cenni
- Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna, Bologna, Italy; and .,Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
22
|
Wette SG, Smith HK, Lamb GD, Murphy RM. Reply to "Letter to the editor: Comments on Wette et al. (2017): 'Characterization of muscle ankyrin repeat proteins in human skeletal muscle'". Am J Physiol Cell Physiol 2017; 313:C471-C472. [PMID: 28993324 DOI: 10.1152/ajpcell.00180.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Stefan G Wette
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Heather K Smith
- Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia; and
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia;
| |
Collapse
|