1
|
Zhao G, Zhao Y, Lu H, Chang Z, Liu H, Wang H, Liang W, Liu Y, Zhu T, Rom O, Guo Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest 2022; 132:e158309. [PMID: 36066968 PMCID: PMC9621131 DOI: 10.1172/jci158309] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/01/2022] [Indexed: 01/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II- (Ang II-) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ziyi Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Hongyu Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Huilun Wang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Oren Rom
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Science Center–Shreveport, Shreveport, Louisiana, USA
| | - Yanhong Guo
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Minerva T. Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Yao B, Wan X, Zheng X, Zhong T, Hu J, Zhou Y, Qin A, Ma Y, Yin D. Critical roles of microRNA-141-3p and CHD8 in hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Cell Biosci 2020; 10:20. [PMID: 32123560 PMCID: PMC7035710 DOI: 10.1186/s13578-020-00384-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cardiovascular diseases are currently the leading cause of death in humans. The high mortality of cardiac diseases is associated with myocardial ischemia and reperfusion (I/R). Recent studies have reported that microRNAs (miRNAs) play important roles in cell apoptosis. However, it is not known yet whether miR-141-3p contributes to the regulation of cardiomyocyte apoptosis. It has been well established that in vitro hypoxia/reoxygenation (H/R) model can follow in vivo myocardial I/R injury. This study aimed to investigate the effects of miR-141-3p and CHD8 on cardiomyocyte apoptosis following H/R. Results We found that H/R remarkably reduces the expression of miR-141-3p but enhances CHD8 expression both in mRNA and protein in H9c2 cardiomyocytes. We also found either overexpression of miR-141-3p by transfection of miR-141-3p mimics or inhibition of CHD8 by transfection of small interfering RNA (siRNA) significantly decrease cardiomyocyte apoptosis induced by H/R. Moreover, miR-141-3p interacts with CHD8. Furthermore, miR-141-3p and CHD8 reduce the expression of p21. Conclusion MiR-141-3p and CHD8 play critical roles in cardiomyocyte apoptosis induced by H/R. These studies suggest that miR-141-3p and CHD8 mediated cardiomyocyte apoptosis may offer a novel therapeutic strategy against myocardial I/R injury-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Bifeng Yao
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Xiaoya Wan
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Xinbin Zheng
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Ting Zhong
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Jia Hu
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Yu Zhou
- 2Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Anna Qin
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Yeshuo Ma
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China
| | - Deling Yin
- 1Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410008 Hunan China.,3Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37604 USA
| |
Collapse
|
3
|
Kunkel GR, Tracy JA, Jalufka FL, Lekven AC. CHD8short, a naturally-occurring truncated form of a chromatin remodeler lacking the helicase domain, is a potent transcriptional coregulator. Gene 2018; 641:303-309. [DOI: 10.1016/j.gene.2017.10.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
|
4
|
EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma. Oncogene 2017; 36:5995-6005. [PMID: 28671673 PMCID: PMC5666320 DOI: 10.1038/onc.2017.202] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
Ewing sarcoma (EWS) is a paediatric bone cancer with high metastatic potential. Cellular plasticity resulting from dynamic cytoskeletal reorganization, typically regulated via the Rho pathway, is a prerequisite for metastasis initiation. Here, we interrogated the role of the Ewing sarcoma driver oncogene EWS-FLI1 in cytoskeletal reprogramming. We report that EWS-FLI1 strongly represses the activity of the Rho-F-actin signal pathway transcriptional effector MRTFB, affecting the expression of a large number of EWS-FLI1-anticorrelated genes including structural and regulatory cytoskeletal genes. Consistent with this finding, chromatin immunoprecipitation sequencing (ChIP-seq) revealed strong overlaps in myocardin-related transcription factor B (MRTFB) and EWS-FLI1 chromatin occupation, especially for EWS-FLI1-anticorrelated genes. Binding of the transcriptional co-activator Yes-associated protein (YAP)-1, enrichment of TEAD-binding motifs in these shared genomic binding regions and overlapping transcriptional footprints of MRTFB and TEAD factors led us to propose synergy between MRTFB and the YAP/TEAD complex in the regulation of EWS-FLI1-anticorrelated genes. We propose that EWS-FLI1 suppresses the Rho-actin pathway by perturbation of a MRTFB/YAP-1/TEAD transcriptional module, which directly affects the actin-autoregulatory feedback loop. As spontaneous fluctuations in EWS-FLI1 levels of Ewing sarcoma cells in vitro and in vivo, associated with a switch between a proliferative, non-migratory EWS-FLI1-high and a non-proliferative highly migratory EWS-FLI1-low state, were recently described, our data provide a mechanistic basis for the underlying EWS-FLI1-dependent reversible cytoskeletal reprogramming of Ewing sarcoma cells.
Collapse
|
5
|
Kong L, Hu N, Du X, Wang W, Chen H, Li W, Wei S, Zhuang H, Li X, Li C. Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. J Transl Med 2016; 14:23. [PMID: 26801758 PMCID: PMC4724160 DOI: 10.1186/s12967-016-0775-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) contribute to recanalization of deep vein thrombosis (DVT). This study aimed to detect miRNA expression profiles in EPCs from patients with DVT and characterize the role of miRNA in EPCs dysfunction. Methods EPCs was isolated from DVT patients and control subjects, and miRNA expression profiles were compared to screen differential miRNAs. The candidate miRNAs were confirmed by RT-PCR analysis. The targets of miRNA were identified by bioinformatics analyses, luciferase reporter assay and gene expression analyses. The apoptosis, migration and tube formation of EPCs were examined by flow cytometry, transwell assay and matrigel tube formation assay. A rat model of venous thrombosis was established as in vivo model. Results We identified miR-483-3p as a candidate miRNA upregulated in EPCs from DVT patients. By using miR-483-3p agomir and antagomir, we demonstrated that miR-483-3p decreased the migration and tube formation while increased the apoptosis of EPCs. Moreover, we identified serum response factor (SRF) as the target of miR-483-3p, and showed that SRF knockdown decreased the migration and tube formation while increased the apoptosis of EPCs. In addition, miR-483-3p inhibition led to enhanced ability of homing and thrombus resolution of EPCs in rat model of venous thrombosis. Conclusions miR-483-3p is upregulated in EPCs from DVT patients, and it targets SRF to decrease EPCs migration and tube formation and increase apoptosis in vitro, while decrease EPCs homing and thrombus resolution in vivo. MiR-483-3p is a potential therapeutic target in DVT treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0775-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingshang Kong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Nan Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Xiaolong Du
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hong Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Wendong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Sen Wei
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Hao Zhuang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
6
|
Epstein B, Storfer A. Comparative Genomics of an Emerging Amphibian Virus. G3 (BETHESDA, MD.) 2015; 6:15-27. [PMID: 26530419 PMCID: PMC4704714 DOI: 10.1534/g3.115.023762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022]
Abstract
Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination.
Collapse
Affiliation(s)
- Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
7
|
Subtil-Rodríguez A, Vázquez-Chávez E, Ceballos-Chávez M, Rodríguez-Paredes M, Martín-Subero JI, Esteller M, Reyes JC. The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes. Nucleic Acids Res 2013; 42:2185-96. [PMID: 24265227 PMCID: PMC3936757 DOI: 10.1093/nar/gkt1161] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The precise regulation of S-phase-specific genes is critical for cell proliferation. How the repressive chromatin configuration mediated by the retinoblastoma protein and repressor E2F factors changes at the G1/S transition to allow transcription activation is unclear. Here we show ChIP-on-chip studies that reveal that the chromatin remodeller CHD8 binds ∼ 2000 transcriptionally active promoters. The spectrum of CHD8 target genes was enriched in E2F-dependent genes. We found that CHD8 binds E2F-dependent promoters at the G1/S transition but not in quiescent cells. Consistently, CHD8 was required for G1/S-specific expression of these genes and for cell cycle re-entry on serum stimulation of quiescent cells. We also show that CHD8 interacts with E2F1 and, importantly, loading of E2F1 and E2F3, but not E2F4, onto S-specific promoters, requires CHD8. However, CHD8 recruiting is independent of these factors. Recruiting of MLL histone methyltransferase complexes to S-specific promoters was also severely impaired in the absence of CHD8. Furthermore, depletion of CHD8 abolished E2F1 overexpression-dependent S-phase stimulation of serum-starved cells, highlighting the essential role of CHD8 in E2F-dependent transcription activation.
Collapse
Affiliation(s)
- Alicia Subtil-Rodríguez
- Molecular Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Av. Americo Vespucio 41092 Seville, Spain, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Spain and Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Sawada G, Ueo H, Matsumura T, Uchi R, Ishibashi M, Mima K, Kurashige J, Takahashi Y, Akiyoshi S, Sudo T, Sugimachi K, Doki Y, Mori M, Mimori K. CHD8 is an independent prognostic indicator that regulates Wnt/β-catenin signaling and the cell cycle in gastric cancer. Oncol Rep 2013; 30:1137-42. [PMID: 23835524 DOI: 10.3892/or.2013.2597] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/25/2013] [Indexed: 01/23/2023] Open
Abstract
The chromodomain helicase DNA-binding (CHD) family comprises a class of chromatin remodeling enzymes. Previous studies suggest that CHD8 may negatively regulate various genes and signaling pathways, such as the Wnt/β‑catenin pathway. However, few studies have investigated the role of CHD8 in cancer cells. We analyzed the expression of CHD8 in cancer lesions and corresponding non-cancerous tissues to demonstrate the prognostic significance of CHD8 expression in 101 cases of gastric cancer. We also investigated the functional implications of aberrant CHD8 expression by conducting gene set enrichment analysis (GSEA). Expression of CHD8 mRNA was significantly lower in gastric cancer tissues compared to that in corresponding normal tissues (P=0.003). In multivariate analysis for overall survival, we found that CHD8 expression was an independent prognostic factor in gastric cancer. Moreover, GSEA revealed that CHD8 was significantly associated with genes involved in the Wnt/β‑catenin pathway and in the cell cycle. In addition, knockdown of CHD8 expression in the gastric cancer cell lines, MKN45 and NUGC4, promoted proliferation. In conclusion, the present study suggests that loss of CHD8 expression may be a novel indicator for biological aggressiveness in gastric cancer.
Collapse
Affiliation(s)
- Genta Sawada
- Department of Surgery, Beppu Hospital, Kyushu University, Beppu 874-0838, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chang CM, Chao CC. Protein kinase CK2 enhances Mcl-1 gene expression through the serum response factor-mediated pathway in the rat hippocampus. J Neurosci Res 2013; 91:808-17. [PMID: 23553788 DOI: 10.1002/jnr.23212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/30/2012] [Accepted: 01/07/2013] [Indexed: 01/07/2023]
Abstract
The protein kinase CK2 (casein kinase 2) is a ubiquitous serine/threonine protein kinase that suppresses apoptosis. CK2 is composed of catalytic and regulatory subunits, and CK2-dependent phosphorylation is a global mechanism in the inhibition of caspase signaling pathways. The serum response factor (SRF) is an important regulator of cell growth and differentiation. Although CK2 has been shown to phosphorylate SRF in vitro, the biological relevance of this interaction remains largely unclear. We observed increased SRF phosphorylation and increased Mcl-1 gene expression in hippocampal CA1 neurons following transfection with a plasmid expressing the wild-type CK2α (CK2αWT) protein, whereas transfection with a plasmid expressing a catalytically inactive mutant of CK2α (CK2α156A) reduced Mcl-1 gene expression. Cotransfection with a plasmid expressing the inactive SRF99A mutant inhibited the CK2αWT-induced upregulation of Mcl-1 gene expression. The expression of either the CK2α156A or the SRF99A mutant also inhibited the glutamate-induced upregulation of Mcl-1 protein expression in PC12 cells. Our results suggest that CK2-mediated signaling represents a cellular mechanism that may aid in the development of alternative therapeutic strategies to attenuate apoptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Chia-Ming Chang
- Institute of Neurosciences, National Chengchi University, Taipei, Taiwan
| | | |
Collapse
|
10
|
Shanks MO, Lund LM, Manni S, Russell M, Mauban JRH, Bond M. Chromodomain helicase binding protein 8 (Chd8) is a novel A-kinase anchoring protein expressed during rat cardiac development. PLoS One 2012; 7:e46316. [PMID: 23071553 PMCID: PMC3468582 DOI: 10.1371/journal.pone.0046316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) bind the regulatory subunits of protein kinase A (PKA) and localize the holoenzyme to discrete signaling microdomains in multiple subcellular compartments. Despite emerging evidence for a nuclear pool of PKA that rapidly responds to activation of the PKA signaling cascade, only a few AKAPs have been identified that localize to the nucleus. Here we show a PKA-binding domain in the amino terminus of Chd8, and demonstrate subcellular colocalization of Chd8 with RII. RII overlay and immunoprecipitation assays demonstrate binding between Chd8-S and RIIα. Binding is abrogated upon dephosphorylation of RIIα. By immunofluorescence, we identified nuclear and perinuclear pools of Chd8 in HeLa cells and rat neonatal cardiomyocytes. We also show high levels of Chd8 mRNA in RNA extracted from post-natal rat hearts. These data add Chd8 to the short list of known nuclear AKAPs, and implicate a function for Chd8 in post-natal rat cardiac development.
Collapse
Affiliation(s)
- Maureen O. Shanks
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Linda M. Lund
- Department of Biochemistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Sabrina Manni
- Department of Medicine, Clinical Immunology and Hematology Branches, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mary Russell
- Department of Biological Sciences, Trumbull Campus, Kent State University, Warren, Ohio, United States of America
| | - Joseph R. H. Mauban
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Meredith Bond
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Touw K, Chakraborty S, Zhang W, Obukhov AG, Tune JD, Gunst SJ, Herring BP. Altered calcium signaling in colonic smooth muscle of type 1 diabetic mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G66-76. [PMID: 21979758 PMCID: PMC3345965 DOI: 10.1152/ajpgi.00183.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/30/2011] [Indexed: 01/31/2023]
Abstract
Seventy-six percent of diabetic patients develop gastrointestinal symptoms, such as constipation. However, the direct effects of diabetes on intestinal smooth muscle are poorly described. This study aimed to identify the role played by smooth muscle in mediating diabetes-induced colonic dysmotility. To induce type 1 diabetes, mice were injected intraperitoneally with low-dose streptozotocin once a day for 5 days. Animals developed hyperglycemia (>200 mg/dl) 1 wk after the last injection and were euthanized 7-8 wk after the last treatment. Computed tomography demonstrated decreased overall gastrointestinal motility in the diabetic mice. In vitro contractility of colonic smooth muscle rings from diabetic mice was also decreased. Fura-2 ratiometric Ca(2+) imaging showed attenuated Ca(2+) increases in response to KCl stimulation that were associated with decreased light chain phosphorylation in diabetic mice. The diabetic mice also exhibited elevated basal Ca(2+) levels, increased myosin phosphatase targeting subunit 1 expression, and significant changes in expression of Ca(2+) handling proteins, as determined by quantitative RT-PCR and Western blotting. Mice that were hyperglycemic for <1 wk also showed decreased colonic contractile responses that were associated with decreased Ca(2+) increases in response to KCl stimulation, although without an elevation in basal Ca(2+) levels or a significant change in the expression of Ca(2+) signaling molecules. These data demonstrate that type 1 diabetes is associated with decreased depolarization-induced Ca(2+) influx in colonic smooth muscle that leads to attenuated myosin light chain phosphorylation and impaired colonic contractility.
Collapse
Affiliation(s)
- Ketrija Touw
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-β-catenin signaling pathway. Mol Cell Biol 2011; 32:501-12. [PMID: 22083958 DOI: 10.1128/mcb.06409-11] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Members of the chromodomain helicase DNA-binding (CHD) family of proteins are thought to regulate gene expression. Among mammalian CHD proteins, CHD8 was originally isolated as a negative regulator of the Wnt-β-catenin signaling pathway that binds directly to β-catenin and suppresses its transactivation activity. The mechanism by which CHD8 inhibits β-catenin-dependent transcription has been unclear, however. Here we show that CHD8 promotes the association of β-catenin and histone H1, with formation of the trimeric complex on chromatin being required for inhibition of β-catenin-dependent transactivation. A CHD8 mutant that lacks the histone H1 binding domain did not show such inhibitory activity, indicating that histone H1 recruitment is essential for the inhibitory effect of CHD8. Furthermore, either depletion of histone H1 or expression of a dominant negative mutant of this protein resulted in enhancement of the response to Wnt signaling. These observations reveal a new mode of regulation of the Wnt signaling pathway by CHD8, which counteracts β-catenin function through recruitment of histone H1 to Wnt target genes. Given that CHD8 is expressed predominantly during embryogenesis, it may thus contribute to setting a threshold for responsiveness to Wnt signaling that operates in a development-dependent manner.
Collapse
|
13
|
Gan Q, Thiébaud P, Thézé N, Jin L, Xu G, Grant P, Owens GK. WD repeat-containing protein 5, a ubiquitously expressed histone methyltransferase adaptor protein, regulates smooth muscle cell-selective gene activation through interaction with pituitary homeobox 2. J Biol Chem 2011; 286:21853-64. [PMID: 21531708 PMCID: PMC3122240 DOI: 10.1074/jbc.m111.233098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/27/2011] [Indexed: 01/29/2023] Open
Abstract
WD repeat-containing protein 5 (WDR5) is a common component of mammalian mixed lineage leukemia methyltransferase family members and is important for histone H3 lysine 4 methylation (H3K4me), which has been implicated in control of activation of cell lineage genes during embryogenesis. However, WDR5 has not been considered to play a specific regulatory role in epigenetic programming of cell lineage because it is ubiquitously expressed. Previous work from our laboratory showed the appearance of histone H3K4me within smooth muscle cell (SMC)-marker gene promoters during the early stages of development of SMC from multipotential embryonic cells but did not elucidate the underlying mechanisms that mediate SMC-specific and locus-selective H3K4me. Results presented herein show that knockdown of WDR5 significantly decreased SMC-marker gene expression in cultured SMC differentiation systems and in Xenopus laevis embryos in vivo. In addition, we showed that WDR5 complexes within SMC progenitor cells contained H3K4 methyltransferase enzymatic activity and that knockdown of WDR5 selectively decreased H3K4me1 and H3K4me3 enrichment within SMC-marker gene promoter loci. Moreover, we present evidence that it is recruited to these gene promoter loci through interaction with a SMC-selective pituitary homeobox 2 (Pitx2). Taken together, studies provide evidence for a novel mechanism for epigenetic control of SMC-marker gene expression during development through interaction of WDR5, homeodomain proteins, and chromatin remodeling enzymes.
Collapse
Affiliation(s)
- Qiong Gan
- From the Departments of Molecular Physiology and Biological Physics
| | - Pierre Thiébaud
- the Université Victor Ségalen Bordeaux 2, 146, rue Léo Saignat Bâtiment 1B, 33076 Bordeaux Cedex, France
| | - Nadine Thézé
- the Université Victor Ségalen Bordeaux 2, 146, rue Léo Saignat Bâtiment 1B, 33076 Bordeaux Cedex, France
| | - Li Jin
- From the Departments of Molecular Physiology and Biological Physics
| | | | - Patrick Grant
- Biochemistry, University of Virginia, Charlottesville, Virginia 22908 and
| | - Gary K. Owens
- From the Departments of Molecular Physiology and Biological Physics
| |
Collapse
|