1
|
Golledge J, Parra S, Aldons PM, Frescos N, Iseli RK, Pardey TM, Pretorius CF, Shum OR, Yates PA, Bascoul CB, Doolittle DK, Rege AA, Thanawala VJ, Giles H, Woodward MC. A randomised, double-blind, placebo-controlled study to determine the analgesic efficacy, safety and tolerability of VPX638 administered topically to painful wounds. Wound Repair Regen 2025; 33:e70008. [PMID: 39943695 PMCID: PMC11822243 DOI: 10.1111/wrr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/19/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
New analgesics are needed for painful wounds. Multiple reports suggest that topical sevoflurane may have analgesic effects. This placebo-controlled randomised trial evaluated the analgesic efficacy and safety of VPX638 (topical sevoflurane). Seventy-eight participants with painful wounds, were enrolled at eight Australian centres and randomly allocated to receive 2 × 5 mL of VPX638 (N = 39) or placebo (N = 40) during one wound dressing change. Numerical pain rating scores and use of opioids were recorded for 24 h. The primary endpoint was pain during wound cleaning, secondary endpoints evaluated pain for 24 h after drug application and opioids use. There was no significant difference in mean pain scores during wound cleaning between VPX638 and placebo (0.854; p = 0.23). The mean differences in summed pain intensity difference from baseline suggested VPX638 provided greater analgesia compared to placebo over 8 h (p < 0.02), 12 h (p < 0.01) and 24 h (p < 0.05) and significantly longer duration of analgesia, 24.3 h for VPX638 versus 7.1 h for placebo (p < 0.01). In the 24 h after drug administration, participants receiving VPX638 had a 50% decrease in opioid use over 24 h compared with placebo. VPX638 appeared safe and well-tolerated. In conclusion, this small placebo-controlled randomised trial suggested that VPX638 provides analgesia and is opioid-sparing for up to 24 h after wound cleaning. It supports the need for further evaluation of the benefit of VPX638 as a topical analgesic for painful wounds.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular DiseaseJames Cook University and Townsville University Hospital and Australian Institute of Tropical Health and MedicineTownsvilleQueenslandAustralia
| | | | - Pat M. Aldons
- The Prince Charles HospitalBrisbaneQueenslandAustralia
| | | | | | | | | | - Omar R. Shum
- Wollongong HospitalWollongongNew South WalesAustralia
| | - Paul A. Yates
- Austin HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | | | | | | | | | | | | |
Collapse
|
2
|
Manohara N, Ferrari A, Greenblatt A, Berardino A, Peixoto C, Duarte F, Moyiaeri Z, Robba C, Nascimento F, Kreuzer M, Vacas S, Lobo FA. Electroencephalogram monitoring during anesthesia and critical care: a guide for the clinician. J Clin Monit Comput 2024:10.1007/s10877-024-01250-2. [PMID: 39704777 DOI: 10.1007/s10877-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Perioperative anesthetic, surgical and critical careinterventions can affect brain physiology and overall brain health. The clinical utility of electroencephalogram (EEG) monitoring in anesthesia and intensive care settings is multifaceted, offering critical insights into the level of consciousness and depth of anesthesia, facilitating the titration of anesthetic doses, and enabling the detection of ischemic events and epileptic activity. Additionally, EEG monitoring can aid in predicting perioperative neurocognitive disorders, assessing the impact of systemic insults on cerebral function, and informing neuroprognostication. This review provides a comprehensive overview of the fundamental principles of electroencephalography, including the foundations of processed and quantitative electroencephalography. It further explores the characteristic EEG signatures associated wtih anesthetic drugs, the interpretation of the EEG data during anesthesia, and the broader clinical benefits and applications of EEG monitoring in both anesthetic practice and intensive care environments.
Collapse
Affiliation(s)
- Nitin Manohara
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates
| | | | - Adam Greenblatt
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Andrea Berardino
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | | - Flávia Duarte
- Department of Anesthesiology, Hospital Garcia de Orta, Almada, Portugal
| | - Zahra Moyiaeri
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates
| | | | - Fabio Nascimento
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Susana Vacas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco A Lobo
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Prüser M, Wiedmann F, Schmidt C. Comment on: 'Physiological and pathophysiological roles of the KCNK3 potassium channel in the pulmonary circulation and the heart' by Saint-Martin Willer et al. J Physiol 2024; 602:2141-2142. [PMID: 38607230 DOI: 10.1113/jp286611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Affiliation(s)
- Merten Prüser
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Saint-Martin Willer A, Santos-Gomes J, Adão R, Brás-Silva C, Eyries M, Pérez-Vizcaino F, Capuano V, Montani D, Antigny F. Physiological and pathophysiological roles of the KCNK3 potassium channel in the pulmonary circulation and the heart. J Physiol 2023; 601:3717-3737. [PMID: 37477289 DOI: 10.1113/jp284936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Joana Santos-Gomes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mélanie Eyries
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
5
|
Han L, Zhao S, Xu F, Wang Y, Zhou R, Huang S, Ding Y, Deng D, Mao W, Chen X. Sevoflurane Increases Hippocampal Theta Oscillations and Impairs Memory Via TASK-3 Channels. Front Pharmacol 2021; 12:728300. [PMID: 34776954 PMCID: PMC8581481 DOI: 10.3389/fphar.2021.728300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Sevoflurane can induce memory impairment during clinical anesthesia; however, the underlying mechanisms are largely unknown. TASK-3 channels are one of the potential targets of sevoflurane. Accumulating evidence supports a negative role of intracranial theta rhythms (4–12 Hz) in memory formation. Here, we investigated whether TASK-3 channels contribute to sevoflurane-induced memory impairment by regulating hippocampal theta rhythms. In this study, the memory performance of mice was tested by contextual fear conditioning and inhibitory avoidance experiments. The hippocampal local field potentials (LFPs) were recorded from chronically implanted electrodes located in CA3 region. The results showed that sevoflurane concentration-dependently impaired the memory function of mice, as evidenced by the decreased time mice spent on freezing and reduced latencies for mice to enter the shock compartment. Our electrophysiological results revealed that sevoflurane also enhanced the spectral power of hippocampal LFPs (1–30 Hz), particularly in memory-related theta rhythms (4–12 Hz). These effects were mitigated by viral-mediated knockdown of TASK-3 channels in the hippocampal CA3 region. The knockdown of hippocampal TASK-3 channels significantly reduced the enhancing effect of sevoflurane on hippocampal theta rhythms and alleviated sevoflurane-induced memory impairment. Our data indicate that sevoflurane can increase hippocampal theta oscillations and impair memory function via TASK-3 channels.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruihui Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
7
|
General Anesthesia Disrupts Complex Cortical Dynamics in Response to Intracranial Electrical Stimulation in Rats. eNeuro 2021; 8:ENEURO.0343-20.2021. [PMID: 34301724 PMCID: PMC8354715 DOI: 10.1523/eneuro.0343-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
The capacity of human brain to sustain complex cortical dynamics appears to be strongly associated with conscious experience and consistently drops when consciousness fades. For example, several recent studies in humans found a remarkable reduction of the spatiotemporal complexity of cortical responses to local stimulation during dreamless sleep, general anesthesia, and coma. However, this perturbational complexity has never been directly estimated in non-human animals in vivo previously, and the mechanisms that prevent neocortical neurons to engage in complex interactions are still unclear. Here, we quantify the complexity of electroencephalographic (EEG) responses to intracranial electrical stimulation in rats, comparing wakefulness to propofol, sevoflurane, and ketamine anesthesia. The evoked activity changed from highly complex in wakefulness to far simpler with propofol and sevoflurane. The reduced complexity was associated with a suppression of high frequencies that preceded a reduced phase-locking, and disruption of functional connectivity and pattern diversity. We then showed how these parameters dissociate with ketamine and depend on intensity and site of stimulation. Our results support the idea that brief periods of activity-dependent neuronal silence can interrupt complex interactions in neocortical circuits, and open the way for further mechanistic investigations of the neuronal basis for consciousness and loss of consciousness across species.
Collapse
|
8
|
Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021; 254:367-380. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
K2P channel is the leaky potassium channel that is critical to keep up the negative resting membrane potential for legitimate electrical conductivity of the excitable tissues. Recently, many substances and medication elements are discovered that could either straightforwardly or in a roundabout way influence the 15 distinctive K+ ion channels including TWIK, TREK, TASK, TALK, THIK, and TRESK. Opening and shutting of these channels or any adjustment in their conduct is thought to alter the pathophysiological condition of CNS. There is no document available till now to explain in detail about the molecular mechanism of agents acting on K2P channel. Accordingly, in this review we cover the current research and mechanism of action of these channels, we have also tried to mention the detailed effect of drugs and how the channel behavior changes by focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India.
| | - Punita Agarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| |
Collapse
|
9
|
Wiedmann F, Beyersdorf C, Zhou XB, Kraft M, Foerster KI, El-Battrawy I, Lang S, Borggrefe M, Haefeli WE, Frey N, Schmidt C. The Experimental TASK-1 Potassium Channel Inhibitor A293 Can Be Employed for Rhythm Control of Persistent Atrial Fibrillation in a Translational Large Animal Model. Front Physiol 2021; 11:629421. [PMID: 33551849 PMCID: PMC7858671 DOI: 10.3389/fphys.2020.629421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Upregulation of the two-pore-domain potassium channel TASK-1 (hK2 P 3.1) was recently described in patients suffering from atrial fibrillation (AF) and resulted in shortening of the atrial action potential. In the human heart, TASK-1 channels facilitate repolarization and are specifically expressed in the atria. In the present study, we tested the antiarrhythmic effects of the experimental ion channel inhibitor A293 that is highly affine for TASK-1 in a porcine large animal model of persistent AF. METHODS Persistent AF was induced in German landrace pigs by right atrial burst stimulation via implanted pacemakers using a biofeedback algorithm over 14 days. Electrophysiological and echocardiographic investigations were performed before and after the pharmacological treatment period. A293 was intravenously administered once per day. After a treatment period of 14 days, atrial cardiomyocytes were isolated for patch clamp measurements of currents and atrial action potentials. Hemodynamic consequences of TASK-1 inhibition were measured upon acute A293 treatment. RESULTS In animals with persistent AF, the A293 treatment significantly reduced the AF burden (6.5% vs. 95%; P < 0.001). Intracardiac electrophysiological investigations showed that the atrial effective refractory period was prolonged in A293 treated study animals, whereas, the QRS width, QT interval, and ventricular effective refractory periods remained unchanged. A293 treatment reduced the upregulation of the TASK-1 current as well as the shortening of the action potential duration caused by AF. No central nervous side effects were observed. A mild but significant increase in pulmonary artery pressure was observed upon acute TASK-1 inhibition. CONCLUSION Pharmacological inhibition of atrial TASK-1 currents exerts in vivo antiarrhythmic effects that can be employed for rhythm control in a porcine model of persistent AF. Care has to be taken as TASK-1 inhibition may increase pulmonary artery pressure levels.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| | - Christoph Beyersdorf
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| | - Xiao-Bo Zhou
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- First Department of Medicine, University Medical Center, Mannheim University, Mannheim, Germany
| | - Manuel Kraft
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| | - Kathrin I. Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, Heidelberg, Germany
| | - Ibrahim El-Battrawy
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- First Department of Medicine, University Medical Center, Mannheim University, Mannheim, Germany
| | - Siegfried Lang
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- First Department of Medicine, University Medical Center, Mannheim University, Mannheim, Germany
| | - Martin Borggrefe
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- First Department of Medicine, University Medical Center, Mannheim University, Mannheim, Germany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Competitive Interactions between Halothane and Isoflurane at the Carotid Body and TASK Channels. Anesthesiology 2020; 133:1046-1059. [DOI: 10.1097/aln.0000000000003520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background
The degree to which different volatile anesthetics depress carotid body hypoxic response relates to their ability to activate TASK potassium channels. Most commonly, volatile anesthetic pairs act additively at their molecular targets. We examined whether this applied to carotid body TASK channels.
Methods
We studied halothane and isoflurane effects on hypoxia-evoked rise in intracellular calcium (Ca2+i, using the indicator Indo-1) in isolated neonatal rat glomus cells, and TASK single-channel activity (patch clamping) in native glomus cells and HEK293 cell line cells transiently expressing TASK-1.
Results
Halothane (5%) depressed glomus cell Ca2+i hypoxic response (mean ± SD, 94 ± 4% depression; P < 0.001 vs. control). Isoflurane (5%) had a less pronounced effect (53 ± 10% depression; P < 0.001 vs. halothane). A mix of 3% isoflurane/1.5% halothane depressed cell Ca2+i response (51 ± 17% depression) to a lesser degree than 1.5% halothane alone (79 ± 15%; P = 0.001), but similar to 3% isoflurane alone (44 ± 22%; P = 0.224), indicating subadditivity. Halothane and isoflurane increased glomus cell TASK-1/TASK-3 activity, but mixes had a lesser effect than that seen with halothane alone: 4% halothane/4% isoflurane yielded channel open probabilities 127 ± 55% above control, versus 226 ± 12% for 4% halothane alone (P = 0.009). Finally, in HEK293 cell line cells, progressively adding isoflurane (1.5 to 5%) to halothane (2.5%) reduced TASK-1 channel activity from 120 ± 38% above control, to 88 ± 48% (P = 0.034).
Conclusions
In all three experimental models, the effects of isoflurane and halothane combinations were quantitatively consistent with the modeling of weak and strong agonists competing at a common receptor on the TASK channel.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
11
|
Wiedmann F, Beyersdorf C, Zhou X, Büscher A, Kraft M, Nietfeld J, Walz TP, Unger LA, Loewe A, Schmack B, Ruhparwar A, Karck M, Thomas D, Borggrefe M, Seemann G, Katus HA, Schmidt C. Pharmacologic TWIK-Related Acid-Sensitive K+ Channel (TASK-1) Potassium Channel Inhibitor A293 Facilitates Acute Cardioversion of Paroxysmal Atrial Fibrillation in a Porcine Large Animal Model. J Am Heart Assoc 2020; 9:e015751. [PMID: 32390491 PMCID: PMC7660874 DOI: 10.1161/jaha.119.015751] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-related acid-sensitive K+ channel (TASK-1; hK2P3.1) two-pore-domain potassium channel was recently shown to regulate the atrial action potential duration. In the human heart, TASK-1 channels are specifically expressed in the atria. Furthermore, upregulation of atrial TASK-1 currents was described in patients suffering from atrial fibrillation (AF). We therefore hypothesized that TASK-1 channels represent an ideal target for antiarrhythmic therapy of AF. In the present study, we tested the antiarrhythmic effects of the high-affinity TASK-1 inhibitor A293 on cardioversion in a porcine model of paroxysmal AF. Methods and Results Heterologously expressed human and porcine TASK-1 channels are blocked by A293 to a similar extent. Patch clamp measurements from isolated human and porcine atrial cardiomyocytes showed comparable TASK-1 currents. Computational modeling was used to investigate the conditions under which A293 would be antiarrhythmic. German landrace pigs underwent electrophysiological studies under general anesthesia. Paroxysmal AF was induced by right atrial burst stimulation. After induction of AF episodes, intravenous administration of A293 restored sinus rhythm within cardioversion times of 177±63 seconds. Intravenous administration of A293 resulted in significant prolongation of the atrial effective refractory period, measured at cycle lengths of 300, 400 and 500 ms, whereas the surface ECG parameters and the ventricular effective refractory period lengths remained unchanged. Conclusions Pharmacological inhibition of atrial TASK-1 currents exerts antiarrhythmic effects in vivo as well as in silico, resulting in acute cardioversion of paroxysmal AF. Taken together, these experiments indicate the therapeutic potential of A293 for AF treatment.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Christoph Beyersdorf
- Department of Cardiology University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Xiaobo Zhou
- DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,First Department of Medicine University Medical Center Mannheim Germany
| | - Antonius Büscher
- Department of Cardiology University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Manuel Kraft
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Jendrik Nietfeld
- Department of Cardiology University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Teo Puig Walz
- Institute for Experimental Cardiovascular Medicine University Heart Center Freiburg Bad Krozingen Germany.,Medical Center University of Freiburg, and Faculty of Medicine University of Freiburg Germany
| | - Laura A Unger
- Institute of Biomedical Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Axel Loewe
- Institute of Biomedical Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Bastian Schmack
- Department of Cardiac Surgery University Hospital Heidelberg Germany
| | | | - Matthias Karck
- Department of Cardiac Surgery University Hospital Heidelberg Germany
| | - Dierk Thomas
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Martin Borggrefe
- DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,First Department of Medicine University Medical Center Mannheim Germany
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine University Heart Center Freiburg Bad Krozingen Germany.,Medical Center University of Freiburg, and Faculty of Medicine University of Freiburg Germany
| | - Hugo A Katus
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Constanze Schmidt
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| |
Collapse
|
12
|
A lower X-gate in TASK channels traps inhibitors within the vestibule. Nature 2020; 582:443-447. [PMID: 32499642 DOI: 10.1038/s41586-020-2250-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022]
Abstract
TWIK-related acid-sensitive potassium (TASK) channels-members of the two pore domain potassium (K2P) channel family-are found in neurons1, cardiomyocytes2-4 and vascular smooth muscle cells5, where they are involved in the regulation of heart rate6, pulmonary artery tone5,7, sleep/wake cycles8 and responses to volatile anaesthetics8-11. K2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli12-15. Unlike other K2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation16. In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below; however, the K2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate-which we designate as an 'X-gate'-created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues (243VLRFMT248) that are essential for responses to volatile anaesthetics10, neurotransmitters13 and G-protein-coupled receptors13. Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders.
Collapse
|
13
|
Kusunoki M, Hayashi M, Shoji T, Uba T, Tanaka H, Sumi C, Matsuo Y, Hirota K. Propofol inhibits stromatoxin-1-sensitive voltage-dependent K + channels in pancreatic β-cells and enhances insulin secretion. PeerJ 2019; 7:e8157. [PMID: 31824770 PMCID: PMC6894434 DOI: 10.7717/peerj.8157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Proper glycemic control is an important goal of critical care medicine, including perioperative patient care that can influence patients’ prognosis. Insulin secretion from pancreatic β-cells is generally assumed to play a critical role in glycemic control in response to an elevated blood glucose concentration. Many animal and human studies have demonstrated that perioperative drugs, including volatile anesthetics, have an impact on glucose-stimulated insulin secretion (GSIS). However, the effects of the intravenous anesthetic propofol on glucose metabolism and insulin sensitivity are largely unknown at present. Methods The effect of propofol on insulin secretion under low glucose or high glucose was examined in mouse MIN6 cells, rat INS-1 cells, and mouse pancreatic β-cells/islets. Cellular oxygen or energy metabolism was measured by Extracellular Flux Analyzer. Expression of glucose transporter 2 (GLUT2), potassium channels, and insulin mRNA was assessed by qRT-PCR. Protein expression of voltage-dependent potassium channels (Kv2) was also assessed by immunoblot. Propofol’s effects on potassium channels including stromatoxin-1-sensitive Kv channels and cellular oxygen and energy metabolisms were also examined. Results We showed that propofol, at clinically relevant doses, facilitates insulin secretion under low glucose conditions and GSIS in MIN6, INS-1 cells, and pancreatic β-cells/islets. Propofol did not affect intracellular ATP or ADP concentrations and cellular oxygen or energy metabolism. The mRNA expression of GLUT2 and channels including the voltage-dependent calcium channels Cav1.2, Kir6.2, and SUR1 subunit of KATP, and Kv2 were not affected by glucose or propofol. Finally, we demonstrated that propofol specifically blocks Kv currents in β-cells, resulting in insulin secretion in the presence of glucose. Conclusions Our data support the hypothesis that glucose induces membrane depolarization at the distal site, leading to KATP channel closure, and that the closure of Kv channels by propofol depolarization in β-cells enhances Ca2+ entry, leading to insulin secretion. Because its activity is dependent on GSIS, propofol and its derivatives are potential compounds that enhance and initiate β-cell electrical activity.
Collapse
Affiliation(s)
- Munenori Kusunoki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Mikio Hayashi
- Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Tomohiro Shoji
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Takeo Uba
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Hiromasa Tanaka
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Chisato Sumi
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
14
|
Ketamine Action in the In Vitro Cortical Slice Is Mitigated by Potassium Channel Blockade. Anesthesiology 2019; 128:1167-1174. [PMID: 29509582 DOI: 10.1097/aln.0000000000002147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ketamine is a general anesthetic thought to act by antagonizing N-methyl-D-aspartate receptors. However, ketamine acts on multiple channels, many of which are potential targets-including hyperpolarization-activated cyclic nucleotide-gated and potassium channels. In this study we tested the hypothesis that potassium leak channels contribute to the anesthetic action of ketamine. METHODS Adult mouse cortical slices (400 µm) were exposed to no-magnesium artificial cerebrospinal fluid to generate seizure-like event activity. The reduction in seizure-like event frequency after exposure to ketamine (n = 14) was quantified as a signature of anesthetic effect. Pharmacologic manipulation of hyperpolarization-activated cyclic nucleotide-gated and potassium channels using ZD7288 (n = 11), cesium chloride (n = 10), barium chloride (n = 10), low-potassium (1.5 mM) artificial cerebrospinal fluid (n = 10), and urethane (n = 7) were investigated. RESULTS Ketamine reduced the frequency of seizure-like events (mean [SD], -62 [22]%, P < 0.0001). Selective hyperpolarization-activated cyclic nucleotide-gated channel block with ZD7288 did not significantly alter the potency of ketamine to inhibit seizure-like event activity. The inhibition of seizure-like event frequency by ketamine was fully antagonized by the potassium channel blockers cesium chloride and barium chloride (8 [26]% and 39 [58%] increase, respectively, P < 0.0001, compared to ketamine control) and was facilitated by the potassium leak channel opener urethane (-93 [8]%, P = 0.002 compared to ketamine control) and low potassium artificial cerebrospinal fluid (-86 [11]%, P = 0.004 compared to ketamine control). CONCLUSIONS The results of this study show that mechanisms additional to hyperpolarization-activated cyclic nucleotide-gated channel block are likely to explain the anesthetic action of ketamine and suggest facilitatory action at two-pore potassium leak channels.
Collapse
|
15
|
Furukawa T, Nikaido Y, Shimoyama S, Ogata Y, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice. J Anesth 2019; 33:531-542. [PMID: 31332527 DOI: 10.1007/s00540-019-02663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The general anesthetics propofol and etomidate mainly exert their anesthetic actions via GABA A receptor (GABAA-R). The GABAA-R activity is influenced by phospholipase C-related inactive protein type-1 (PRIP-1), which is related to trafficking and subcellular localization of GABAA-R. PRIP-1 deficiency attenuates the behavioral reactions to propofol but not etomidate. However, the effect of these anesthetics and of PRIP-1 deficiency on brain activity of CNS are still unclear. In this study, we examined the effects of propofol and etomidate on the electroencephalogram (EEG). METHODS The cortical EEG activity was recorded in wild-type (WT) and PRIP-1 knockout (PRIP-1 KO) mice. All recorded EEG data were offline analyzed, and the power spectral density and 95% spectral edge frequency of EEG signals were compared between genotypes before and after injections of anesthetics. RESULTS PRIP-1 deficiency induced increases in EEG absolute powers, but did not markedly change the relative spectral powers during waking and sleep states in the absence of anesthesia. Propofol administration induced increases in low-frequency relative EEG activity and decreases in SEF95 values in WT but not in PRIP-1 KO mice. Following etomidate injection, low-frequency EEG power was increased in both genotype groups. At high frequency, the relative power in PRIP-1 KO mice was smaller than that in WT mice. CONCLUSIONS The lack of PRIP-1 disrupted the EEG power distribution, but did not affect the depth of anesthesia after etomidate administration. Our analyses suggest that PRIP-1 is differentially involved in anesthetic EEG activity with the regulation of GABAA-R activity.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshiki Ogata
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Hirata
- School of Dental Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, 5 Zaihu-cho, Hirosaki, Aomori, 036-8562, Japan. .,Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
16
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Palanca BJA, Avidan MS, Mashour GA. Human neural correlates of sevoflurane-induced unconsciousness. Br J Anaesth 2019; 119:573-582. [PMID: 29121298 DOI: 10.1093/bja/aex244] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
Sevoflurane, a volatile anaesthetic agent well-tolerated for inhalation induction, provides a useful opportunity to elucidate the processes whereby halogenated ethers disrupt consciousness and cognition. Multiple molecular targets of sevoflurane have been identified, complementing imaging and electrophysiologic markers for the mechanistically obscure progression from wakefulness to unconsciousness. Recent investigations have more precisely detailed scalp EEG activity during this transition, with practical clinical implications. The relative timing of scalp potentials in frontal and parietal EEG signals suggests that sevoflurane might perturb the propagation of neural information between underlying cortical regions. Spatially distributed brain activity during general anaesthesia has been further investigated with positron emission tomography (PET) and resting-state functional magnetic resonance imaging (fMRI). Combined EEG and PET investigations have identified changes in cerebral blood flow and metabolic activity in frontal, parietal, and thalamic regions during sevoflurane-induced loss of consciousness. More recent fMRI investigations have revealed that sevoflurane weakens the signal correlations among brain regions that share functionality and specialization during wakefulness. In particular, two such resting-state networks have shown progressive breakdown in intracortical and thalamocortical connectivity with increasing anaesthetic concentrations: the Default Mode Network (introspection and episodic memory) and the Ventral Attention Network (orienting of attention to salient feature of the external world). These data support the hypotheses that perturbations in temporally correlated activity across brain regions contribute to the transition between states of sevoflurane sedation and general anaesthesia.
Collapse
Affiliation(s)
- B J A Palanca
- Division of Biology and Biomedical Sciences.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - M S Avidan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.,Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G A Mashour
- Department of Anesthesiology, Center for Consciousness Science and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Jones SA, Walton RD, Morton M, Lancaster MK. K 2p 3.1 protein is expressed as a transmural gradient across the rat left ventricular free wall. J Cardiovasc Electrophysiol 2018; 30:383-391. [PMID: 30516300 PMCID: PMC6446730 DOI: 10.1111/jce.13805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022]
Abstract
Introduction K2p3.1, also known as TASK‐1, is a twin‐pore acid‐sensitive repolarizing K+ channel, responsible for a background potassium current that significantly contributes to setting the resting membrane potential of cardiac myocytes. Inhibition of IK2p3.1 alters cardiac repolarization and is proarrhythmogenic. In this study, we have examined the expression of K2p3.1 and function of this channel in tissue and myocytes from across the left ventricular free wall. Methods and Results Using fluorescence immunocytochemistry, the expression of K2p3.1 protein in myocytes from the subendocardial region was found to be twice (205% ± 13.5%) that found in myocytes from the subepicardial region of the left ventricle (100% ± 5.3%). The left ventricular free wall exhibited a marked transmural gradient of K2p3.1 protein expression. Western blot analysis confirmed significantly higher K2p3.1 protein expression in subendocardial tissue (156% ± 2.5%) than subepicardial tissue (100% ± 5.0%). However, there was no difference in K2p3.1 messenger RNA expression. Whole‐cell patch clamp identified IK2p3.1 current density to be significantly greater in myocytes isolated from the subendocardium (7.66 ± 0.53 pA/pF) compared with those from the subepicardium (3.47 ± 0.74 pA/pF). Conclusions This is the first study to identify a transmural gradient of K2p3.1 in the left ventricle. This gradient has implications for understanding ventricular arrhythmogenesis under conditions of ischemia but also in response to other modulatory factors, such as adrenergic stimulation and the presence of anesthetics that inhibits or activates this channel.
Collapse
Affiliation(s)
- Sandra A Jones
- Department of Biomedical Sciences, Department Faculty of Health Sciences, University of Hull, Hull, UK
| | - Richard D Walton
- Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Université de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Fondation Bordeaux Université, Bordeaux, France
| | | | - Matthew K Lancaster
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
19
|
O'Donohoe PB, Turner PJ, Huskens N, Buckler KJ, Pandit JJ. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia. Respir Physiol Neurobiol 2018; 260:17-27. [PMID: 30389452 PMCID: PMC6336315 DOI: 10.1016/j.resp.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/14/2018] [Accepted: 10/29/2018] [Indexed: 11/06/2022]
Abstract
The intravenous anaesthetic propofol acts directly on carotid body glomus cells to inhibit their response to hypoxia. Propofol acts via novel mechanisms, as we excluded action via its known target receptors (nicotinic, GABA-ergic, or K+ channel). Inhibition of the hypoxic response is clinically relevant in anaesthesia.
In humans the intravenous anaesthetic propofol depresses ventilatory responses to hypoxia and CO2. Animal studies suggest that this may in part be due to inhibition of synaptic transmission between chemoreceptor glomus cells of the carotid body and the afferent carotid sinus nerve. It is however unknown if propofol can also act directly on the glomus cell. Here we report that propofol can indeed inhibit intracellular Ca2+ responses to hypoxia and hypercapnia in isolated rat glomus cells. Neither this propofol effect, nor the glomus cell response to hypoxia in the absence of propofol, were influenced by GABA receptor activation (using GABA, muscimol and baclofen) or inhibition (using bicuculline and 5-aminovaleric acid). Suggesting that these effects of propofol are not mediated through GABA receptors. Propofol inhibited calcium responses to nicotine in glomus cells but the nicotinic antagonists vecuronium and methyllycaconitine did not inhibit calcium responses to hypoxia. TASK channel activity was not altered by propofol. The glomus cell Ca2+ response to depolarisation with 30 mM K+ was however modestly inhibited by propofol. In summary we conclude that propofol does have a direct effect upon hypoxia signalling in isolated type-1 cells and that this may be partially due to its ability to inhibit voltage gated Ca2+v channels. We also note that propofol has the capacity to supress glomus cell excitation via nicotinic receptors and may therefore also interfere with paracrine/autocrine cholinergic signalling in the intact organ. The effects of propofol on chemoreceptor function are however clearly complex and require further investigation.
Collapse
Affiliation(s)
- Peadar B O'Donohoe
- Department of Physiology, Anatomy & Genetics, Parks Road, University of Oxford, Oxford, OX1 3PT, UK; Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Philip J Turner
- Department of Physiology, Anatomy & Genetics, Parks Road, University of Oxford, Oxford, OX1 3PT, UK
| | - Nicky Huskens
- Department of Physiology, Anatomy & Genetics, Parks Road, University of Oxford, Oxford, OX1 3PT, UK
| | - Keith J Buckler
- Department of Physiology, Anatomy & Genetics, Parks Road, University of Oxford, Oxford, OX1 3PT, UK
| | - Jaideep J Pandit
- Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK.
| |
Collapse
|
20
|
Park SJ, Yu Y, Wagner B, Valinsky WC, Lomax AE, Beyak MJ. Increased TASK channel-mediated currents underlie high-fat diet induced vagal afferent dysfunction. Am J Physiol Gastrointest Liver Physiol 2018; 315:G592-G601. [PMID: 29746171 DOI: 10.1152/ajpgi.00335.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously demonstrated that satiety sensing vagal afferent neurons are less responsive to meal-related stimuli in obesity because of reduced electrical excitability. As leak K+ currents are key determinants of membrane excitability, we hypothesized that leak K+ currents are increased in vagal afferents during obesity. Diet-induced obesity was induced by feeding C57Bl/6J mice a high-fat diet (HFF) (60% energy from fat) for 8-10 wk. In vitro extracellular recordings were performed on jejunal afferent nerves. Whole cell patch-clamp recordings were performed on mouse nodose ganglion neurons. Leak K+ currents were isolated using ion substitution and pharmacological blockers. mRNA for TWIK-related acid-sensitive K+ (TASK) subunits was measured using quantitative real-time PCR. Intestinal afferent responses to nutrient (oleate) and non-nutrient (ATP) stimuli were significantly decreased in HFF mice. Voltage clamp experiments revealed the presence of a voltage-insensitive resting potassium conductance that was increased by external alkaline pH and halothane, known properties of TASK currents. In HFF neurons, leak K+ current was approximately doubled and was reduced by TASK1 and TASK3 inhibitors. The halothane sensitive current was similarly increased. Quantitative PCR revealed the presence of mRNA encoding TASK1 (KCNK3) and TASK3 (KCNK9) channels in nodose neurons. TASK3 transcript was significantly increased in HFF mice. The reduction in vagal afferent excitability in obesity is due in part to an increase of resting (leak) K+ conductance. TASK channels may account for the impairment of satiety signaling in diet-induced obesity and thus is a therapeutic target for obesity treatment. NEW & NOTEWORTHY This study characterized the electrophysiological properties and gene expression of the TWIK-related acid-sensitive K+ (TASK) channel in vagal afferent neurons. TASK conductance was increased and contributed to decreased excitability in diet-induced obesity. TASK channels may account for the impairment of satiety signaling in diet-induced obesity and thus is a promising therapeutic target.
Collapse
Affiliation(s)
- Sung Jin Park
- Gastrointestinal Disease Research Unit, Queen's University , Kingston, Ontario , Canada
| | - Yang Yu
- Gastrointestinal Disease Research Unit, Queen's University , Kingston, Ontario , Canada
| | - Brittany Wagner
- Gastrointestinal Disease Research Unit, Queen's University , Kingston, Ontario , Canada
| | - William C Valinsky
- Gastrointestinal Disease Research Unit, Queen's University , Kingston, Ontario , Canada
| | - Alan E Lomax
- Gastrointestinal Disease Research Unit, Queen's University , Kingston, Ontario , Canada
| | - Michael J Beyak
- Gastrointestinal Disease Research Unit, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
21
|
Regulatory Effect of General Anesthetics on Activity of Potassium Channels. Neurosci Bull 2018; 34:887-900. [PMID: 29948841 PMCID: PMC6129254 DOI: 10.1007/s12264-018-0239-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
General anesthesia is an unconscious state induced by anesthetics for surgery. The molecular targets and cellular mechanisms of general anesthetics in the mammalian nervous system have been investigated during past decades. In recent years, K+ channels have been identified as important targets of both volatile and intravenous anesthetics. This review covers achievements that have been made both on the regulatory effect of general anesthetics on the activity of K+ channels and their underlying mechanisms. Advances in research on the modulation of K+ channels by general anesthetics are summarized and categorized according to four large K+ channel families based on their amino-acid sequence homology. In addition, research achievements on the roles of K+ channels in general anesthesia in vivo, especially with regard to studies using mice with K+ channel knockout, are particularly emphasized.
Collapse
|
22
|
Abstract
Propofol is primarily a hypnotic, and is widely used for induction and maintenance of anesthesia, as well as for sedation in various medical procedures. The exact mechanisms of its action are not well understood, although its neural mechanisms have been explored in in vivo and in vitro experiments. Accumulating evidence indicates that one of the major targets of propofol is the cerebral cortex. The principal effect of propofol is considered to be the potentiation of GABAA receptor-mediated inhibitory synaptic currents, but propofol has additional roles in modulating ion channels, including voltage-gated Na+ channels and several K+ channels. We focus on the pharmacological actions of propofol on cerebrocortical neurons, particularly at the cellular and synaptic levels.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry.,RIKEN Center for Life Science Technologies
| | - Yoshiyuki Oi
- Department of Anesthesiology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
23
|
Olschewski A, Veale EL, Nagy BM, Nagaraj C, Kwapiszewska G, Antigny F, Lambert M, Humbert M, Czirják G, Enyedi P, Mathie A. TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. Eur Respir J 2017; 50:50/5/1700754. [PMID: 29122916 DOI: 10.1183/13993003.00754-2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022]
Abstract
TWIK-related acid-sensitive potassium channel 1 (TASK-1 encoded by KCNK3) belongs to the family of two-pore domain potassium channels. This gene subfamily is constitutively active at physiological resting membrane potentials in excitable cells, including smooth muscle cells, and has been particularly linked to the human pulmonary circulation. TASK-1 channels are sensitive to a wide array of physiological and pharmacological mediators that affect their activity such as unsaturated fatty acids, extracellular pH, hypoxia, anaesthetics and intracellular signalling pathways. Recent studies show that modulation of TASK-1 channels, either directly or indirectly by targeting their regulatory mechanisms, has the potential to control pulmonary arterial tone in humans. Furthermore, mutations in KCNK3 have been identified as a rare cause of both familial and idiopathic pulmonary arterial hypertension. This review summarises our current state of knowledge of the functional role of TASK-1 channels in the pulmonary circulation in health and disease, with special emphasis on current advancements in the field.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria .,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
| | - Bence M Nagy
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Gábor Czirják
- Dept of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Dept of Physiology, Semmelweis University, Budapest, Hungary
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
| |
Collapse
|
24
|
Yuki K, Eckenhoff RG. Mechanisms of the Immunological Effects of Volatile Anesthetics: A Review. Anesth Analg 2017; 123:326-35. [PMID: 27308954 DOI: 10.1213/ane.0000000000001403] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Volatile anesthetics (VAs) have been in clinical use for a very long time. Their mechanism of action is yet to be fully delineated, but multiple ion channels have been reported as targets for VAs (canonical VA targets). It is increasingly recognized that VAs also manifest effects outside the central nervous system, including on immune cells. However, the literature related to how VAs affect the behavior of immune cells is very limited, but it is of interest that some canonical VA targets are reportedly expressed in immune cells. Here, we review the current literature and describe canonical VA targets expressed in leukocytes and their known roles. In addition, we introduce adhesion molecules called β2 integrins as noncanonical VA targets in leukocytes. Finally, we propose a model for how VAs affect the function of neutrophils, macrophages, and natural killer cells via concerted effects on multiple targets as examples.
Collapse
Affiliation(s)
- Koichi Yuki
- From the *Department of Anesthesiology, Perioperative and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, Massachusetts; †Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts; and ‡Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
25
|
Murtaza G, Mermer P, Pfeil U, Kummer W. Avertin®, but Not Volatile Anesthetics Addressing the Two-Pore Domain K+ Channel, TASK-1, Slows Down Cilia-Driven Particle Transport in the Mouse Trachea. PLoS One 2016; 11:e0167919. [PMID: 27930725 PMCID: PMC5145217 DOI: 10.1371/journal.pone.0167919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
RATIONALE Volatile anesthetics inhibit mucociliary clearance in the airways. The two-pore domain K+ channel, TASK-1, represents one of their molecular targets in that they increase its open probability. Here, we determine whether particle transport speed (PTS) at the mucosal surface of the mouse trachea, an important factor of the cilia-driven mechanism in mucociliary clearance, is regulated by TASK-1. METHODOLOGY/RESULTS RT-PCR analysis revealed expression of TASK-1 mRNA in the manually dissected and laser-assisted microdissected tracheal epithelium of the mouse. Effects of anesthetics (isoflurane and Avertin®) and TASK-1 inhibitors (anandamide and A293) on ciliary activity were investigated by assessment of PTS at the mucosal surface of the explanted and opened murine trachea. Neither TASK-1 inhibitors nor isoflurane had any impact on basal and ATP-stimulated PTS. Avertin® reduced basal PTS, and ATP-stimulated PTS decreased in its presence in wild-type (WT) mice. Avertin®-induced decrease in basal PTS persisted in WT mice in the presence of TASK-1 inhibitors, and in two different strains of TASK-1 knockout mice. CONCLUSIONS/SIGNIFICANCE Our findings indicate that TASK-1 is expressed by the tracheal epithelium but is not critically involved in the regulation of tracheal PTS in mice. Avertin® reduces PTS independent of TASK-1.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Institute of Anatomy and Cell Biology, Justus-Liebig-University and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
- * E-mail:
| | - Petra Mermer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
| | - Uwe Pfeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
| |
Collapse
|
26
|
Kaneko K, Koyanagi Y, Oi Y, Kobayashi M. Propofol-induced spike firing suppression is more pronounced in pyramidal neurons than in fast-spiking neurons in the rat insular cortex. Neuroscience 2016; 339:548-560. [DOI: 10.1016/j.neuroscience.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/15/2016] [Accepted: 10/04/2016] [Indexed: 11/15/2022]
|
27
|
The role of K₂p channels in anaesthesia and sleep. Pflugers Arch 2014; 467:907-16. [PMID: 25482669 PMCID: PMC4428837 DOI: 10.1007/s00424-014-1654-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Tandem two-pore potassium channels (K2Ps) have widespread expression in the central nervous system and periphery where they contribute to background membrane conductance. Some general anaesthetics promote the opening of some of these channels, enhancing potassium currents and thus producing a reduction in neuronal excitability that contributes to the transition to unconsciousness. Similarly, these channels may be recruited during the normal sleep-wake cycle as downstream effectors of wake-promoting neurotransmitters such as noradrenaline, histamine and acetylcholine. These transmitters promote K2P channel closure and thus an increase in neuronal excitability. Our understanding of the roles of these channels in sleep and anaesthesia has been largely informed by the study of mouse K2P knockout lines and what is currently predicted by in vitro electrophysiology and channel structure and gating.
Collapse
|
28
|
The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Pflugers Arch 2014; 467:1055-67. [PMID: 25404566 DOI: 10.1007/s00424-014-1637-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The current kinetics of two-pore domain potassium (K2P) channels resemble those of the steady-state K(+) currents being active during the plateau phase of cardiac action potentials. Recent studies support that K2P channels contribute to these cardiac currents and thereby influence action potential duration in the heart. Ten of the 15 K2P channels present in the human genome are sensitive to variations of the extracellular and/or intracellular pH value. This review focuses on a set of K2P channels which are inhibited by extracellular protons, including the subgroup of tandem of P domains in a weak inward-rectifying K(+) (TWIK)-related acid-sensitive potassium (TASK) and TWIK-related alkaline-activated K(+) (TALK) channels. The role of TWIK-1 in the heart is also discussed since, after successful expression, an extracellular pH dependence, similar to that of TASK-1, was described as a hallmark of TWIK-1. The expression profile in cardiac tissue of different species and the functional data in the heart are summarized. The distinct role of the different acid-sensitive K2P channels in cardiac electrophysiology, inherited forms of arrhythmias and pharmacology, and their role as drug targets is currently emerging and is the subject of this review.
Collapse
|
29
|
Raz A, Grady SM, Krause BM, Uhlrich DJ, Manning KA, Banks MI. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex. Front Syst Neurosci 2014; 8:191. [PMID: 25339873 PMCID: PMC4188029 DOI: 10.3389/fnsys.2014.00191] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022] Open
Abstract
The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up “core” thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of consciousness.
Collapse
Affiliation(s)
- Aeyal Raz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Anesthesiology, Rabin Medical Center, Petah-Tikva, Israel, Affiliated with Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Sean M Grady
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Bryan M Krause
- Neuroscience Training Program, University of Wisconsin Madison, WI, USA
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin Madison, WI, USA
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin Madison, WI, USA
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Neuroscience, University of Wisconsin Madison, WI, USA
| |
Collapse
|
30
|
Pandit JJ. Monitoring (un)consciousness: the implications of a new definition of ‘anaesthesia’. Anaesthesia 2014; 69:801-7. [DOI: 10.1111/anae.12668] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. J. Pandit
- Nuffield Department of Anaesthetics Oxford University Hospitals Oxford UK
- St John's College Oxford UK
| |
Collapse
|
31
|
Pandit JJ. Volatile anaesthetic depression of the carotid body chemoreflex-mediated ventilatory response to hypoxia: directions for future research. SCIENTIFICA 2014; 2014:394270. [PMID: 24808974 PMCID: PMC3997855 DOI: 10.1155/2014/394270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
In assessing whether volatile anaesthetics directly depress the carotid body response to hypoxia it is necessary to combine in meta-analysis studies of when it is "functionally isolated" (e.g., recordings are made from its afferent nerve). Key articles were retrieved (full papers in English) and subjected to quantitative analysis to yield an aggregate estimate of effect. Results from articles that did not use such methodology were assessed separately from this quantitative approach, to see what could be learned also from a nonquantitative overview. Just 7 articles met the inclusion criteria for hypoxia and just 6 articles for hypercapnia. Within these articles, the anaesthetic (mean dose 0.75, standard deviation (SD) 0.40 minimum alveolar concentration, MAC) statistically significantly depressed carotid body hypoxic response by 24% (P = 0.041), but a similar dose (mean 0.81 (0.42) MAC) did not affect the hypercapnic response. The articles not included in the quantitative analysis (31 articles), assessed qualitatively, also indicated that anaesthetics depress carotid body function. This conclusion helps direct future research on the anaesthetic effects on putative cellular/molecular processes that underlie the transduction of hypoxia in the carotid body.
Collapse
Affiliation(s)
- J. J. Pandit
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
32
|
Barber AF, Liang Q, Covarrubias M. Novel activation of voltage-gated K(+) channels by sevoflurane. J Biol Chem 2012; 287:40425-32. [PMID: 23038249 DOI: 10.1074/jbc.m112.405787] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Halogenated inhaled anesthetics modulate voltage-gated ion channels by unknown mechanisms. RESULTS Biophysical analyses revealed novel activation of K(v) channels by the inhaled anesthetic sevoflurane. CONCLUSION K(v) channel activation by sevoflurane results from the positive allosteric modulation of activation gating. SIGNIFICANCE The unique activation of K(v) channels by sevoflurane demonstrates novel anesthetic specificity and offers new insights into allosteric modulation of channel gating. Voltage-gated ion channels are modulated by halogenated inhaled general anesthetics, but the underlying molecular mechanisms are not understood. Alkanols and halogenated inhaled anesthetics such as halothane and isoflurane inhibit the archetypical voltage-gated Kv3 channel homolog K-Shaw2 by stabilizing the resting/closed states. By contrast, sevoflurane, a more heavily fluorinated ether commonly used in general anesthesia, specifically activates K-Shaw2 currents at relevant concentrations (0.05-1 mM) in a rapid and reversible manner. The concentration dependence of this modulation is consistent with the presence of high and low affinity interactions (K(D) = 0.06 and 4 mM, respectively). Sevoflurane (<1 mM) induces a negative shift in the conductance-voltage relation and increases the maximum conductance. Furthermore, suggesting possible roles in general anesthesia, mammalian Kv1.2 and Kv1.5 channels display similar changes. Quantitative description of the observations by an economical allosteric model indicates that sevoflurane binding favors activation gating and eliminates an unstable inactivated state outside the activation pathway. This study casts light on the mechanism of the novel sevoflurane-dependent activation of Kv channels, which helps explain how closely related inhaled anesthetics achieve specific actions and suggests strategies to develop novel Kv channel activators.
Collapse
Affiliation(s)
- Annika F Barber
- Department of Neuroscience, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
33
|
Gabriel L, Lvov A, Orthodoxou D, Rittenhouse AR, Kobertz WR, Melikian HE. The acid-sensitive, anesthetic-activated potassium leak channel, KCNK3, is regulated by 14-3-3β-dependent, protein kinase C (PKC)-mediated endocytic trafficking. J Biol Chem 2012; 287:32354-66. [PMID: 22846993 DOI: 10.1074/jbc.m112.391458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The acid-sensitive neuronal potassium leak channel, KCNK3, is vital for setting the resting membrane potential and is the primary target for volatile anesthetics. Recent reports demonstrate that KCNK3 activity is down-regulated by PKC; however, the mechanisms responsible for PKC-induced KCNK3 down-regulation are undefined. Here, we report that endocytic trafficking dynamically regulates KCNK3 activity. Phorbol esters and Group I metabotropic glutamate receptor (mGluR) activation acutely decreased both native and recombinant KCNK3 currents with concomitant KCNK3 surface losses in cerebellar granule neurons and cell lines. PKC-mediated KCNK3 internalization required the presence of both 14-3-3β and a novel potassium channel endocytic motif, because depleting either 14-3-3β protein levels or ablating the endocytic motif completely abrogated PKC-regulated KCNK3 trafficking. These results demonstrate that neuronal potassium leak channels are not static membrane residents but are subject to 14-3-3β-dependent regulated trafficking, providing a straightforward mechanism to modulate neuronal excitability and synaptic plasticity by Group I mGluRs.
Collapse
Affiliation(s)
- Luke Gabriel
- Graduate Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | | | | | | | | | | |
Collapse
|
34
|
Staudacher K, Staudacher I, Ficker E, Seyler C, Gierten J, Kisselbach J, Rahm AK, Trappe K, Schweizer PA, Becker R, Katus HA, Thomas D. Carvedilol targets human K2P 3.1 (TASK1) K+ leak channels. Br J Pharmacol 2011; 163:1099-110. [PMID: 21410455 PMCID: PMC3130955 DOI: 10.1111/j.1476-5381.2011.01319.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/20/2011] [Accepted: 02/05/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Human K(2P) 3.1 (TASK1) channels represent potential targets for pharmacological management of atrial fibrillation. K(2P) channels control excitability by stabilizing membrane potential and by expediting repolarization. In the heart, inhibition of K(2P) currents by class III antiarrhythmic drugs results in action potential prolongation and suppression of electrical automaticity. Carvedilol exerts antiarrhythmic activity and suppresses atrial fibrillation following cardiac surgery or cardioversion. The objective of this study was to investigate acute effects of carvedilol on human K(2P) 3.1 (hK(2P) 3.1) channels. EXPERIMENTAL APPROACH Two-electrode voltage clamp and whole-cell patch clamp electrophysiology was used to record hK(2P) 3.1 currents from Xenopus oocytes, Chinese hamster ovary (CHO) cells and human pulmonary artery smooth muscle cells (hPASMC). KEY RESULTS Carvedilol concentration-dependently inhibited hK(2P) 3.1 currents in Xenopus oocytes (IC(50) = 3.8 µM) and in mammalian CHO cells (IC(50) = 0.83 µM). In addition, carvedilol sensitivity of native I(K2P3.1) was demonstrated in hPASMC. Channels were blocked in open and closed states in frequency-dependent fashion, resulting in resting membrane potential depolarization by 7.7 mV. Carvedilol shifted the current-voltage (I-V) relationship by -6.9 mV towards hyperpolarized potentials. Open rectification, characteristic of K(2P) currents, was not affected. CONCLUSIONS AND IMPLICATIONS The antiarrhythmic drug carvedilol targets hK(2P) 3.1 background channels. We propose that cardiac hK(2P) 3.1 current blockade may suppress electrical automaticity, prolong atrial refractoriness and contribute to the class III antiarrhythmic action in patients treated with the drug.
Collapse
Affiliation(s)
- K Staudacher
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - I Staudacher
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - E Ficker
- Rammelkamp Center, MetroHealth Campus, Case Western Reserve UniversityCleveland, OH, USA
| | - C Seyler
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - J Gierten
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - J Kisselbach
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - A-K Rahm
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - K Trappe
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - PA Schweizer
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - R Becker
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - HA Katus
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| | - D Thomas
- Department of Cardiology, Medical University Hospital HeidelbergHeidelberg, Germany
| |
Collapse
|
35
|
Bournival V, Desjardins R, Campbell S, Roberge C, Doueik A, Gendron L, Payet MD, Gallo-Payet N, Day R, Praud JP. Presence of task-1 channel in the laryngeal mucosa in the newborn lamb. Exp Lung Res 2011; 37:205-11. [PMID: 21309733 DOI: 10.3109/01902148.2010.536610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nearly 40 potassium channels have been described in respiratory epithelial cells. Of these are found several members of the 4-transmembrane domain, 2-pore K(+) channel family (K2P family), namely Twik-1 and -2, Trek-1 and -2, Task-2, -3, and -4, Thik-1, and KCNK7. The aim of this study was to verify whether the Twik-related acid-sensitive K(+) channel, subtype 1 (Task-1) (also known as KCNK3), is present in the laryngeal mucosa in the newborn lamb. Through the use of immunohistochemistry and nested polymerase chain reaction (PCR) amplification, results indicate that Task-1 protein and mRNA are present in the laryngeal mucosa, in both the ciliated, pseudostratified columnar (respiratory) epithelium and the nonkeratinized, stratified squamous epithelium. The complete ovine Task-1 protein sequence showed high homology levels with previously reported mouse, bovine, and human Task-1 sequences. This includes a complete homology for the C-terminal amino acid sequence, which is mandatory for protein trafficking to the cell membrane. These results represent the first demonstration that Task-1, a pH-sensitive channel responsible for setting membrane potential, is present in the laryngeal mucosa of a newborn mammal.
Collapse
Affiliation(s)
- Véronique Bournival
- Neonatal Respiratory Research Unit, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Decher N, Wemhöner K, Rinné S, Netter MF, Zuzarte M, Aller MI, Kaufmann SG, Li XT, Meuth SG, Daut J, Sachse FB, Maier SK. Knock-Out of the Potassium Channel TASK-1 Leads to a Prolonged QT Interval and a Disturbed QRS Complex. Cell Physiol Biochem 2011; 28:77-86. [DOI: 10.1159/000331715] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2011] [Indexed: 01/13/2023] Open
|
37
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 670] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
38
|
Sear JW. Development of pharmacophoric maps for cardiovascular depression by intravenous anaesthetic agents: comparison with maps for immobilizing activity. Br J Anaesth 2010; 104:684-90. [PMID: 20430765 DOI: 10.1093/bja/aeq100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The molecular basis of the cardiovascular effects of i.v. anaesthetics was investigated using comparative molecular field analysis (CoMFA). METHODS The cardiovascular effects, measured as changes in mean arterial pressure (MAP), compared with awake values of continuous infusions of 13 structurally diverse i.v. anaesthetics were compared at EC(50) plasma concentrations, and by determination of plasma-free drug concentrations associated with a 20% decrease in MAP (dMAP(20)). Data were obtained both from the literature and from unpublished data of the author. The results were fitted to a CoMFA activity model using field-fit minimization techniques to maximize similarities in molecular bulk and electrostatic potential to the lead compound, eltanolone. RESULTS The final model for cardiovascular depression based on free drug concentrations associated with dMAP(20) explained 95.8% of the variance in observed activities, with a cross-validated q(2) of 0.824 (n=12). A second model based on change in MAP at EC(50) plasma concentrations explained 98.3% of the variance in arterial pressure, but performed poorly at cross-validation (q(2) 0.526). The comparative model for immobilizing potency had an r(2) value of 0.987 and q(2) 0.823. Comparison of pharmacophoric maps showed several key electrostatic and steric regions common to both models when isocontours were constructed linking lattice grid points, making the greatest 40% contributions (87.57% for electrostatic fields and 86.16% for steric fields). CONCLUSIONS Comparison of activity models for cardiovascular depression and immobilizing potency for i.v. anaesthetics shows significant commonality, suggesting that it may not be possible to separate those molecular features associated with each of these effects.
Collapse
Affiliation(s)
- J W Sear
- Nuffield Department of Anaesthetics, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK.
| |
Collapse
|
39
|
Eckle VS, Hucklenbruch C, Todorovic SM. [What do we know about anesthetic mechanisms?: hypnosis, unresponsiveness to surgical incision and amnesia]. Anaesthesist 2010; 58:1144-9. [PMID: 19760252 DOI: 10.1007/s00101-009-1618-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite the increase of molecular knowledge in anesthesia research over the past decades there is still ongoing discussion about the mechanisms of anesthesia. This article focuses on presenting anesthetic sensitive ligand and voltage gated ion channels. The impact on anesthetic modulated ion channels is summarized for clinically commonly used anesthetics isoflurane, propofol and ketamine. Furthermore, the anesthetic features hypnosis, unresponsiveness to surgical incision and amnesia and their putative relevant anatomical sites in the central nervous system are briefly introduced.
Collapse
Affiliation(s)
- V-S Eckle
- Department of Anesthesiology, University of Virginia, 22909, Charlottesville, VA, USA.
| | | | | |
Collapse
|
40
|
Vemparala S, Domene C, Klein ML. Computational studies on the interactions of inhalational anesthetics with proteins. Acc Chem Res 2010; 43:103-10. [PMID: 19788306 DOI: 10.1021/ar900149j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the widespread clinical use of anesthetics since the 19th century, a clear understanding of the mechanism of anesthetic action has yet to emerge. On the basis of early experiments by Meyer, Overton, and subsequent researchers, the cell's lipid membrane was generally concluded to be the primary site of action of anesthetics. However, later experiments with lipid-free globular proteins, such as luciferase and apoferritin, shifted the focus of anesthetic action to proteins. Recent experimental studies, such as photoaffinity labeling and mutagenesis on membrane proteins, have suggested specific binding sites for anesthetic molecules, further strengthening the proteocentric view of anesthetic mechanism. With the increased availability of high-resolution crystal structures of ion channels and other integral membrane proteins, as well as the availability of powerful computers, the structure-function relationship of anesthetic-protein interactions can now be investigated in atomic detail. In this Account, we review recent experiments and related computer simulation studies involving interactions of inhalational anesthetics and proteins, with a particular focus on membrane proteins. Globular proteins have long been used as models for understanding the role of protein-anesthetic interactions and are accordingly examined in this Account. Using selected examples of membrane proteins, such as nicotinic acetyl choline receptor (nAChR) and potassium channels, we address the issues of anesthetic binding pockets in proteins, the role of conformation in anesthetic effects, and the modulation of local as well as global dynamics of proteins by inhaled anesthetics. In the case of nicotinic receptors, inhalational anesthetic halothane binds to the hydrophobic cavity close to the M2-M3 loop. This binding modulates the dynamics of the M2-M3 loop, which is implicated in allosterically transmitting the effects to the channel gate, thus altering the function of the protein. In potassium channels, anesthetic molecules preferentially potentiate the open conformation by quenching the motion of the aromatic residues implicated in the gating of the channel. These simulations suggest that low-affinity drugs (such as inhalational anesthetics) modulate the protein function by influencing local as well as global dynamics of proteins. Because of intrinsic experimental limitations, computational approaches represent an important avenue for exploring the mode of action of anesthetics. Molecular dynamics simulations-a computational technique frequently used in the general study of proteins-offer particular insight in the study of the interaction of inhalational anesthetics with membrane proteins.
Collapse
Affiliation(s)
- Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai 600 113, India
| | - Carmen Domene
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ U.K
| | - Michael L. Klein
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
41
|
Olschewski A. Targeting TASK-1 channels as a therapeutic approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:459-73. [PMID: 20204749 DOI: 10.1007/978-1-60761-500-2_30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The voltage-independent background two-pore domain K(+) channel TASK-1 sets the resting membrane potential in excitable cells and renders these cells sensitive to a variety of vasoactive factors. There is clear evidence for TASK-1 in human pulmonary artery smooth muscle cells and TASK-1 channels are likely to regulate the pulmonary vascular tone through their regulation by hypoxia, pH, inhaled anesthetics, and G protein-coupled pathways. Furthermore, TASK-1 is a strong candidate to play a role in hypoxic pulmonary vasoconstriction. On the other hand, consistent with the activation of TASK-1 channels by volatile anesthetics, TASK-1 contributes to the anesthetic-induced pulmonary vasodilation. TASK-1 channels are unique among K(+) channels because they are regulated by both, increases and decreases from physiological pH, thus contributing to their protective effect on the pulmonary arteries. Moreover, TASK-1 may also have a critical role in mediating the vasoactive response of G protein-coupled pathways in resistance arteries which can offer promising therapeutic solutions to target diseases of the pulmonary circulation.
Collapse
Affiliation(s)
- Andrea Olschewski
- University Clinic of Anesthesia and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 29, A-8036, Graz, Austria.
| |
Collapse
|
42
|
Buckler KJ. Two-pore domain k(+) channels and their role in chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:15-30. [PMID: 20204721 DOI: 10.1007/978-1-60761-500-2_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of tandem P-domain K(+)- channels (K(2)P) generate background K(+)-currents similar to those found in enteroreceptors that sense a diverse range of physiological stimuli including blood pH, carbon dioxide, oxygen, potassium and glucose. This review presents an overview of the properties of both cloned K(2)P tandem-P-domain K-channels and the endogenous chemosensitive background K-currents found in central chemoreceptors, peripheral chemoreceptors, the adrenal gland and the hypothalamus. Although the identity of many of these endogenous channels has yet to be confirmed they show striking similarities to a number of K(2)P channels especially those of the TASK subgroup. Moreover these channels seem often (albeit not exclusively) to be involved in pH and nutrient/metabolic sensing.
Collapse
Affiliation(s)
- Keith J Buckler
- Department of Physiology Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
43
|
Pandit J, Buckler K. Differential effects of halothane and sevoflurane on hypoxia-induced intracellular calcium transients of neonatal rat carotid body type I cells † †This work was presented in part at the 82nd Annual Meeting of the International Anesthetic Research Society, San Francisco, CA, USA, March 29–April 1, 2008. Br J Anaesth 2009; 103:701-10. [DOI: 10.1093/bja/aep223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Ying SW, Werner DF, Homanics GE, Harrison NL, Goldstein PA. Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms. Neuropharmacology 2008; 56:438-47. [PMID: 18948126 DOI: 10.1016/j.neuropharm.2008.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 11/29/2022]
Abstract
GABAergic neurons in the reticular thalamic nucleus (RTN) synapse onto thalamocortical neurons in the ventrobasal (VB) thalamus, and this reticulo-thalamocortical pathway is considered an anatomic target for general anesthetic-induced unconsciousness. A mutant mouse was engineered to harbor two amino acid substitutions (S270H, L277A) in the GABA(A) receptor (GABA(A)-R) alpha1 subunit; this mutation abolished sensitivity to the volatile anesthetic isoflurane in recombinant GABA(A)-Rs, and reduced in vivo sensitivity to isoflurane in the loss-of-righting-reflex assay. We examined the effects of the double mutation on GABA(A)-R-mediated synaptic currents and isoflurane sensitivity by recording from thalamic neurons in brain slices. The double mutation accelerated the decay, and decreased the (1/2) width of, evoked inhibitory postsynaptic currents (eIPSCs) in VB neurons and attenuated isoflurane-induced prolongation of the eIPSC. The hypnotic zolpidem, a selective modulator of GABA(A)-Rs containing the alpha1 subunit, prolonged eIPSC duration regardless of genotype, indicating that mutant mice incorporate alpha1 subunit-containing GABA(A)-Rs into synapses. In RTN neurons, which lack the alpha1 subunit, eIPSC duration was longer than in VB, regardless of genotype. Isoflurane reduced the efficacy of GABAergic transmission from RTN to VB, independent of genotype, suggesting a presynaptic action in RTN neurons. Consistent with this observation, isoflurane inhibited both tonic action potential and rebound burst firing in the presence of GABA(A)-R blockade. The suppressed excitability in RTN neurons is likely mediated by isoflurane-enhanced Ba(2+)-sensitive, but 4-aminopyridine-insenstive, potassium conductances. We conclude that isoflurane enhances inhibition of thalamic neurons in VB via GABA(A)-R-dependent, but in RTN via GABA(A)-R-independent, mechanisms.
Collapse
Affiliation(s)
- Shui-Wang Ying
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Cornell Medical College, 1300 York Avenue, Room A-1050, New York, NY 10065, United States
| | | | | | | | | |
Collapse
|