1
|
Milella MS, Geminiani M, Trezza A, Visibelli A, Braconi D, Santucci A. Alkaptonuria: From Molecular Insights to a Dedicated Digital Platform. Cells 2024; 13:1072. [PMID: 38920699 PMCID: PMC11201470 DOI: 10.3390/cells13121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Alkaptonuria (AKU) is a genetic disorder that affects connective tissues of several body compartments causing cartilage degeneration, tendon calcification, heart problems, and an invalidating, early-onset form of osteoarthritis. The molecular mechanisms underlying AKU involve homogentisic acid (HGA) accumulation in cells and tissues. HGA is highly reactive, able to modify several macromolecules, and activates different pathways, mostly involved in the onset and propagation of oxidative stress and inflammation, with consequences spreading from the microscopic to the macroscopic level leading to irreversible damage. Gaining a deeper understanding of AKU molecular mechanisms may provide novel possible therapeutical approaches to counteract disease progression. In this review, we first describe inflammation and oxidative stress in AKU and discuss similarities with other more common disorders. Then, we focus on HGA reactivity and AKU molecular mechanisms. We finally describe a multi-purpose digital platform, named ApreciseKUre, created to facilitate data collection, integration, and analysis of AKU-related data.
Collapse
Affiliation(s)
- Maria Serena Milella
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
| | - Michela Geminiani
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
- SienabioACTIVE-SbA, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alfonso Trezza
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
| | - Anna Visibelli
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
| | - Daniela Braconi
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
| | - Annalisa Santucci
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (M.S.M.); (A.T.); (A.V.); (D.B.); (A.S.)
- SienabioACTIVE-SbA, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- ARTES 4.0, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Suong DNA, Imamura K, Kato Y, Inoue H. Design of neural organoids engineered by mechanical forces. IBRO Neurosci Rep 2024; 16:190-195. [PMID: 38328799 PMCID: PMC10847990 DOI: 10.1016/j.ibneur.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Neural organoids consist of three-dimensional tissue derived from pluripotent stem cells that could recapitulate key features of the human brain. During the past decade, organoid technology has evolved in the field of human brain science by increasing the quality and applicability of its products. Among them, a novel approach involving the design of neural organoids engineered by mechanical forces has emerged. This review describes previous approaches for the generation of neural organoids, the engineering of neural organoids by mechanical forces, and future challenges for the application of mechanical forces in the design of neural organoids.
Collapse
Affiliation(s)
- Dang Ngoc Anh Suong
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiko Imamura
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical‑Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yoshikazu Kato
- Mixing Technology Laboratory, SATAKE MultiMix Corporation, Saitama, Japan
| | - Haruhisa Inoue
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical‑Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
3
|
Song J, Zeng X, Li C, Yin H, Mao S, Ren D. Alteration in cartilage matrix stiffness as an indicator and modulator of osteoarthritis. Biosci Rep 2024; 44:BSR20231730. [PMID: 38014522 PMCID: PMC10794814 DOI: 10.1042/bsr20231730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is characterized by cartilage degeneration and destruction, leading to joint ankylosis and disability. The major challenge in diagnosing OA at early stage is not only lack of clinical symptoms but also the insufficient histological and immunohistochemical signs. Alteration in cartilage stiffness during OA progression, especially at OA initiation, has been confirmed by growing evidences. Moreover, the stiffness of cartilage extracellular matrix (ECM), pericellular matrix (PCM) and chondrocytes during OA development are dynamically changed in unique and distinct fashions, revealing possibly inconsistent conclusions when detecting cartilage matrix stiffness at different locations and scales. In addition, it will be discussed regarding the mechanisms through which OA-related cartilage degenerations exhibit stiffened or softened matrix, highlighting some critical events that generally incurred to cartilage stiffness alteration, as well as some typical molecules that participated in constituting the mechanical properties of cartilage. Finally, in vitro culturing chondrocytes in various stiffness-tunable scaffolds provided a reliable method to explore the matrix stiffness-dependent modulation of chondrocyte metabolism, which offers valuable information on optimizing implant scaffolds to maximally promote cartilage repair and regeneration during OA. Overall, this review systematically and comprehensively elucidated the current progresses in the relationship between cartilage stiffness alteration and OA progression. We hope that deeper attention and understanding in this researching field will not only develop more innovative methods in OA early detection and diagnose but also provide promising ideas in OA therapy and prognosis.
Collapse
Affiliation(s)
- Jing Song
- Qingdao University Affiliated Qingdao Women and Children’s Hospital, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Xuemin Zeng
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Chenzhi Li
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Hongyan Yin
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Sui Mao
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Dapeng Ren
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| |
Collapse
|
4
|
Guo H, Lan M, Zhang Q, Liu Y, Zhang Y, Zhang Q, Chen W. [Piezo1 Mediates the Regulation of Substrate Stiffness on Primary Cilia in Chondrocytes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:67-73. [PMID: 38322536 PMCID: PMC10839480 DOI: 10.12182/20240160502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/08/2024]
Abstract
Objective To investigate how substrate stiffness regulates the morphology of primary cilia in chondrocytes and to illustrate how Piezo1 mediates the morphology regulation of primary cilia by substrate stiffness. Methods Polydimethylsiloxane (PDMS) curing agent and the main agent (Dow Corning, Beijing, China) were mixed at the ratio of 1∶10 (stiff), 1∶50 (medium stiffness), and 1∶70 (soft), respectively, to prepare substrate films with the thickness of 1 mm at different levels of stiffness, including stiff substrate of (2.21±0.12) MPa, medium-stiffness substrate of (54.47±6.06) kPa, and soft substrate of (2.13±0.10) kPa. Chondrocytes were cultured with the substrates of three different levels of stiffness. Then, the cells were treated with Tubastatin A (Tub A) to inhibit histone deacetylase 6 (HDAC6), Piezo1 activator Yoda1, and inhibitor GsMTx4, respectively. The effects of HDAC6, Yoda1, and GsMTx4 on chondrocyte morphology and the length of primary cilia were analyzed through immunofluorescence staining. Results The stiff substrate increased the spread area of the chondrocytes. Immunofluorescence assays showed that the cytoskeleton and the nuclear area of the cells on the stiff substrate were significantly increased (P<0.05) and the primary cilia were significantly extended (P<0.05) compared with those on the medium-stiffness and soft substrates. However, the presence rate of primary cilia was not affected. The HDAC6 activity of chondrocytes increased with the decrease in substrate stiffness. When the activity of HDAC6 was inhibited, the cytoskeletal area, the nuclei area, and the primary cilium length were increased more significantly on the stiff substrate (P<0.05). Further testing showed that Piezo1 activator and inhibitor could regulate the activity of HDAC6 in chondrocytes, and that the length of primary cilia was significantly increased after treatment with the activator Yoda1 (P<0.05). On the other hand, the length of primary cilia was significantly shortened on the stiff substrate after treatment with the inhibitor GsMTx4 (P<0.05). Conclusion Both substrate stiffness and Piezo1 may affect the morphology of chondrocyte primary cilia by regulating HDAC6 activity.
Collapse
Affiliation(s)
- Huaqing Guo
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Minhua Lan
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiang Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanli Liu
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanjun Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- ( 030009) Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030009, China
| | - Quanyou Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- ( 030009) Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030009, China
| | - Weiyi Chen
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
5
|
Zhang Y, Tawiah GK, Zhang Y, Wang X, Wei X, Chen W, Qiao X, Zhang Q. HDAC6 inhibition regulates substrate stiffness-mediated inflammation signaling in chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1987-1998. [PMID: 37644773 PMCID: PMC10753363 DOI: 10.3724/abbs.2023144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis (OA) is a chronic disease and is difficult to cure. Chondrocytes are highly mechanosensitive. Therefore, mechanical therapies have received attention as a therapeutic direction for OA. The stiffness, as a critical cue of the extracellular matrix (ECM), affects cell growth, development, and death. In this study, we use polydimethylsiloxane (PDMS) to create substrates with varying stiffness for chondrocyte growth, interleukin-1β (IL-1β) treatment to mimic the inflammatory environment, and Tubastatin A (Tub A) to inhibit histone deacetylase 6 (HDAC6). Our results show that stiff substrates can be anti-inflammatory and provide a better matrix environment than soft substrates. Inhibition of HDAC6 improves the inflammatory environment caused by IL-1β and coordinates with inflammation to spread the chondrocyte area and primary cilia elongation. Without IL-1β and Tub A treatments, the length of the primary cilia rather than frequency is stiffness-dependent, and their length on stiff substrates are greater than that on soft substrates. In conclusion, we demonstrate that stiff substrates, inflammation, and inhibition of HDAC6 enhance the mechanosensitivity of primary cilia and mediate substrate stiffness to suppress inflammation and protect the matrix.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Histology and EmbryologyShanxi Medical UniversityJinzhong030604China
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Godfred K Tawiah
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Yanjun Zhang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
- Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China
| | - Xiaohu Wang
- Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China
| | - Xiaochun Wei
- Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China
| | - Weiyi Chen
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaohong Qiao
- Department of Histology and EmbryologyShanxi Medical UniversityJinzhong030604China
- Department of OrthopaedicsLvliang Hospital Affiliated to Shanxi Medical UniversityLvliang033099China
| | - Quanyou Zhang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
- Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
6
|
Zhou C, Yang Y, Duan M, Chen C, Pi C, Zhang D, Liu X, Xie J. Biomimetic Fibers Based on Equidistant Micropillar Arrays Determines Chondrocyte Fate via Mechanoadaptability. Adv Healthc Mater 2023; 12:e2301685. [PMID: 37596884 DOI: 10.1002/adhm.202301685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Indexed: 08/20/2023]
Abstract
It is recognized that the changes in the physical properties of extracellular matrix (ECM) result in fine-tuned cell responses including cell morphology, proliferation and differentiation. In this study, a novel patterned equidistant micropillar substrate based on polydimethylsiloxane (PDMS) is designed to mimic the collagen fiber-like network of the cartilage matrix. By changing the component of the curing agent to an oligomeric base, micropillar substrates with the same topology but different stiffnesses are obtained and it is found that chondrocytes seeded onto the soft micropillar substrate maintain their phenotype by gathering type II collagen and aggrecan more effectively than those seeded onto the stiff micropillar substrate. Moreover, chondrocytes sense and respond to micropillar substrates with different stiffnesses by altering the ECM-cytoskeleton-focal adhesion axis. Further, it is found that the soft substrate-preserved chondrocyte phenotype is dependent on the activation of Wnt/β-catenin signaling. Finally, it is indicated that the changes in osteoid-like region formation and cartilage phenotype loss in the stiffened sclerotic area of osteoarthritis cartilage to validate the changes triggered by micropillar substrates with different stiffnesses. This study provides the cell behavior changes that are more similar to those of real chondrocytes at tissue level during the transition from a normal state to a state of osteoarthritis.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610064, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
7
|
Zhang Y, Tawiah GK, Wu X, Zhang Y, Wang X, Wei X, Qiao X, Zhang Q. Primary cilium-mediated mechanotransduction in cartilage chondrocytes. Exp Biol Med (Maywood) 2023; 248:1279-1287. [PMID: 37897221 PMCID: PMC10625344 DOI: 10.1177/15353702231199079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent joint disorders associated with the degradation of articular cartilage and an abnormal mechanical microenvironment. Mechanical stimuli, including compression, shear stress, stretching strain, osmotic challenge, and the physical properties of the matrix microenvironment, play pivotal roles in the tissue homeostasis of articular cartilage. The primary cilium, as a mechanosensory and chemosensory organelle, is important for detecting and transmitting both mechanical and biochemical signals in chondrocytes within the matrix microenvironment. Growing evidence indicates that primary cilia are critical for chondrocytes signaling transduction and the matrix homeostasis of articular cartilage. Furthermore, the ability of primary cilium to regulate cellular signaling is dynamic and dependent on the cellular matrix microenvironment. In the current review, we aim to elucidate the key mechanisms by which primary cilia mediate chondrocytes sensing and responding to the matrix mechanical microenvironment. This might have potential therapeutic applications in injuries and OA-associated degeneration of articular cartilage.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Histology and Embryology, Shanxi Medical University, Jinzhong 030604, Shanxi, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Godfred K Tawiah
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanjun Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaohu Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaohong Qiao
- Department of Histology and Embryology, Shanxi Medical University, Jinzhong 030604, Shanxi, China
- Department of Orthopaedics, Lvliang Hospital Affiliated to Shanxi Medical University, Lvliang 033099, Shanxi, China
| | - Quanyou Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| |
Collapse
|
8
|
Pettenuzzo S, Arduino A, Belluzzi E, Pozzuoli A, Fontanella CG, Ruggieri P, Salomoni V, Majorana C, Berardo A. Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines 2023; 11:1942. [PMID: 37509581 PMCID: PMC10377681 DOI: 10.3390/biomedicines11071942] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties. For these purposes, this review was aimed at collecting the available literature focused on experimental chondrocyte and chondron biomechanics with direct connection to their biochemical functions and activities, in order to point out important information regarding the planning of an experimental test or a comparison with the available results. In particular, this review highlighted (i) the most common experimental techniques used, (ii) the results and models adopted by different authors, (iii) a critical perspective on features that could affect the results and finally (iv) the quantification of structural and mechanical changes due to a degenerative pathology such as osteoarthritis.
Collapse
Affiliation(s)
- Sofia Pettenuzzo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alessandro Arduino
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | | | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Valentina Salomoni
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Management and Engineering (DTG), Stradella S. Nicola 3, 36100 Vicenza, Italy
| | - Carmelo Majorana
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alice Berardo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
9
|
Vágó J, Takács R, Kovács P, Hajdú T, van der Veen DR, Matta C. Combining biomechanical stimulation and chronobiology: a novel approach for augmented chondrogenesis? Front Bioeng Biotechnol 2023; 11:1232465. [PMID: 37456723 PMCID: PMC10349586 DOI: 10.3389/fbioe.2023.1232465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The unique structure and composition of articular cartilage is critical for its physiological function. However, this architecture may get disrupted by degeneration or trauma. Due to the low intrinsic regeneration properties of the tissue, the healing response is generally poor. Low-grade inflammation in patients with osteoarthritis advances cartilage degradation, resulting in pain, immobility, and reduced quality of life. Generating neocartilage using advanced tissue engineering approaches may address these limitations. The biocompatible microenvironment that is suitable for cartilage regeneration may not only rely on cells and scaffolds, but also on the spatial and temporal features of biomechanics. Cell-autonomous biological clocks that generate circadian rhythms in chondrocytes are generally accepted to be indispensable for normal cartilage homeostasis. While the molecular details of the circadian clockwork are increasingly well understood at the cellular level, the mechanisms that enable clock entrainment by biomechanical signals, which are highly relevant in cartilage, are still largely unknown. This narrative review outlines the role of the biomechanical microenvironment to advance cartilage tissue engineering via entraining the molecular circadian clockwork, and highlights how application of this concept may enhance the development and successful translation of biomechanically relevant tissue engineering interventions.
Collapse
Affiliation(s)
- Judit Vágó
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Daan R. van der Veen
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Csaba Matta
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|