1
|
Rodríguez-Ortiz ME, Díaz-Tocados JM, Torralbo AI, Valdés-Díaz K, Rivas-Domínguez A, Guerrero F, Reina-Alfonso I, Naves-Díaz M, Alonso-Montes C, Rodelo-Haad C, Rodríguez M, Muñoz-Castañeda JR, IMIBIC Nephrology Group. Impact of elevated sclerostin levels on bone resorption : unravelling structural changes and mineral metabolism disruption. Bone Joint Res 2025; 14:448-462. [PMID: 40355125 PMCID: PMC12068932 DOI: 10.1302/2046-3758.145.bjr-2024-0227.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Aims The physiological function of sclerostin remains unknown. Sclerostin is synthesized by osteocytes and operates by inhibiting the Wnt/β-catenin pathway. Similarly, it is well established that low levels of sclerostin lead to enhanced bone formation and reduced calciuria, and that high levels of sclerostin are associated with osteoporosis. Methods The impact of high levels of recombinant sclerostin on bone and mineral metabolism parameters was analyzed in this study. In male healthy rats, the effects of three elevated doses of sclerostin over a 14-day period were studied, involving bone histomorphometry, micro-CT (μCT), immunohistochemistry, and analysis of mineral metabolism parameters. Results Although there was increased bone formation, high doses of sclerostin led to a higher reduction in trabecular bone volume due to a significant increase in bone resorption through the direct activation of osteoclastogenesis. In vitro, sclerostin promoted the differentiation of bone marrow stem cells into osteoclasts. Bone resorption, as measured by tartrate-resistant acid phosphatase (TRAP) activity, was excessive in trabecular, cortical, and subchondral bone. Similarly, high doses of sclerostin increased the number of hypertrophic chondrocytes, consequently expanding the growth plate area. At the cortical level, positive TRAP staining could be observed, suggestive of osteocytic osteolysis and trabecularization of cortical bone. The increased bone resorption resulted in a substantial rise in the urinary excretion of phosphorus and calcium, accompanied by elevated levels of FGF23 and a significant decrease in parathyroid hormone (PTH). Conclusion These findings suggest that elevated levels of sclerostin promote bone resorption through the activation of osteoclasts and the generation of osteocytic osteolysis, resulting in increased calciuria, phosphaturia, and changes in mineral metabolism.
Collapse
Affiliation(s)
- María Encarnacion Rodríguez-Ortiz
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Córdoba, Spain
- Health Results-Oriented Cooperative Research Network RICORS2040 (Kidney Disease), Institute of Health Carlos III, Madrid, Spain
| | - Juan Miguel Díaz-Tocados
- Health Results-Oriented Cooperative Research Network RICORS2040 (Kidney Disease), Institute of Health Carlos III, Madrid, Spain
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida, Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ana Isabel Torralbo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofia, University of Cordoba, Córdoba, Spain
| | - Karen Valdés-Díaz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofia, University of Cordoba, Córdoba, Spain
| | - Antonio Rivas-Domínguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofia, University of Cordoba, Córdoba, Spain
| | - Fátima Guerrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofia, University of Cordoba, Córdoba, Spain
| | - Irene Reina-Alfonso
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofia, University of Cordoba, Córdoba, Spain
| | - Manuel Naves-Díaz
- Health Results-Oriented Cooperative Research Network RICORS2040 (Kidney Disease), Institute of Health Carlos III, Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Cristina Alonso-Montes
- Health Results-Oriented Cooperative Research Network RICORS2040 (Kidney Disease), Institute of Health Carlos III, Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Cristian Rodelo-Haad
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Córdoba, Spain
- Health Results-Oriented Cooperative Research Network RICORS2040 (Kidney Disease), Institute of Health Carlos III, Madrid, Spain
| | - Mariano Rodríguez
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Córdoba, Spain
- Health Results-Oriented Cooperative Research Network RICORS2040 (Kidney Disease), Institute of Health Carlos III, Madrid, Spain
| | - Juan Rafael Muñoz-Castañeda
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Córdoba, Spain
- Health Results-Oriented Cooperative Research Network RICORS2040 (Kidney Disease), Institute of Health Carlos III, Madrid, Spain
| | | |
Collapse
|
2
|
Yu D, Shen W, Dai J, Zhu H. Treatment of large bone defects in load-bearing bone: traditional and novel bone grafts. J Zhejiang Univ Sci B 2025; 26:421-447. [PMID: 40436640 PMCID: PMC12119185 DOI: 10.1631/jzus.b2300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/10/2024] [Indexed: 06/01/2025]
Abstract
Large bone defects in load-bearing bone can result from tumor resection, osteomyelitis, trauma, and other factors. Although bone has the intrinsic potential to self-repair and regenerate, the repair of large bone defects which exceed a certain critical size remains a substantial clinical challenge. Traditionally, repair methods involve using autologous or allogeneic bone tissue to replace the lost bone tissue at defect sites, and autogenous bone grafting remains the "gold standard" treatment. However, the application of traditional bone grafts is limited by drawbacks such as the quantity of extractable bone, donor-site morbidities, and the risk of rejection. In recent years, the clinical demand for alternatives to traditional bone grafts has promoted the development of novel bone-grafting substitutes. In addition to osteoconductivity and osteoinductivity, optimal mechanical properties have recently been the focus of efforts to improve the treatment success of novel bone-grafting alternatives in load-bearing bone defects, but most biomaterial synthetic scaffolds cannot provide sufficient mechanical strength. A fundamental challenge is to find an appropriate balance between mechanical and tissue-regeneration requirements. In this review, the use of traditional bone grafts in load-bearing bone defects, as well as their advantages and disadvantages, is summarized and reviewed. Furthermore, we highlight recent development strategies for novel bone grafts appropriate for load-bearing bone defects based on substance, structural, and functional bionics to provide ideas and directions for future research.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenyi Shen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiahui Dai
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
3
|
Wu X, Ai Y, He Y, Ma D, Li X, Huang X, Cheng R, Wang B. Localized sclerostin accumulation in osteocyte lacunar-canalicular system is associated with cortical bone microstructural alterations and bone fragility in db/db male mice. Front Cell Dev Biol 2025; 13:1562764. [PMID: 40352664 PMCID: PMC12062167 DOI: 10.3389/fcell.2025.1562764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Bone fragility in type 2 diabetes mellitus (T2DM) is often characterized by impaired bone quality, despite normal or increased bone mineral density. Serum sclerostin levels are elevated in diabetes, yet its role in bone fragility is not fully understood. Sclerostin (SOST) is a Wnt signaling inhibitor primarily secreted by osteocytes, regulating bone formation and homeostasis. Sclerostin inhibits Wnt signaling, suppressing osteoblast differentiation and activity, which limits bone formation. However, the localized effects of sclerostin within the osteocyte lacunar-canalicular system (LCS) and its contribution to bone fragility in T2DM remain unclear. In this study, we investigated the role of elevated sclerostin in bone fragility using the db/db mice. We found that db/db mice exhibited significant osteoporosis, increased bone fragility, and structural damage to the LCS. Sclerostin expression was elevated, and its accumulation within the cortical bone LCS correlated with increased expression of matrix-degrading enzymes, including Cathepsin K (CTSK) and matrix metalloproteinase 13 (MMP-13). Further in vitro experiments with recombinant sclerostin confirmed the upregulation of these enzymes, suggesting that sclerostin's local effects within the LCS contribute to matrix degradation. These preliminary findings indicate that localized sclerostin accumulation in LCS is associated with cortical bone microstructural alterations and fragility in db/db male mice. This study highlights the potential of targeting sclerostin's local effects within the LCS as a therapeutic strategy to prevent bone deterioration in diabetes.
Collapse
Affiliation(s)
- Xingfan Wu
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, China
| | - Yuanli Ai
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Liupanshui People’s Hospital, Liupanshui, Guizhou, China
| | - Yutao He
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Dan Ma
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xi Li
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua, China
| | - Rui Cheng
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Wang
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Hartz MC, Johannessen FB, Harsløf T, Langdahl BL. The Effectiveness and Safety of Romosozumab and Teriparatide in Postmenopausal Women With Osteoporosis. J Clin Endocrinol Metab 2025; 110:e1640-e1652. [PMID: 39011972 DOI: 10.1210/clinem/dgae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE The purpose of this observational study was to investigate the effectiveness and safety of romosozumab (ROMO) and teriparatide (TPTD) in a clinical setting. METHODS A total of 315 postmenopausal women were included based on the reimbursement criteria for ROMO and TPTD at the Department of Endocrinology at Aarhus University Hospital. Criteria for ROMO were bone mineral density (BMD) T-score < -2.5 (femoral neck [FN], total hip [TH], or lumbar spine [LS]) + a fragility fracture (hip, spine, pelvis, distal forearm, or proximal humerus) within 3 years. Criteria for TPTD: within 3 years, ≥ 2 vertebral fractures or 1 vertebral fracture + BMD T-score (FN, TH, or LS) < -3. Data were collected from medical records. The primary end point was percentage change from baseline in BMD (FN, TH, and LS) at month 12. BMD was measured by dual-energy x-ray absorptiometry (DXA). RESULTS At month 12, ROMO led to significantly (P < .001) larger increases than TPTD in BMD (FN: 4.8% vs 0.2%, TH: 5.7% vs 0.3%, and LS: 13.7% vs 9.3%). Discontinuation rate was lower with ROMO than with TPTD. Lower incidence of cardiovascular adverse events was observed with ROMO compared to TPTD. Treatment-naïve patients had nonsignificantly higher BMD increases compared to previously treated patients with both ROMO and TPTD. CONCLUSION Treatment with ROMO yields larger increases in BMD than TPTD after 12 months and a higher rate of completion. ROMO was associated with a higher adherence.
Collapse
Affiliation(s)
- Martin C Hartz
- Section for Bone Diseases, Department of Endocrinology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Fabian B Johannessen
- Section for Bone Diseases, Department of Endocrinology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Torben Harsløf
- Section for Bone Diseases, Department of Endocrinology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Bente L Langdahl
- Section for Bone Diseases, Department of Endocrinology, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
5
|
Cramer EE, Hermsen KC, Kock LM, Ito K, Hofmann S. Culture system for longitudinal monitoring of bone dynamics ex vivo. Biotechnol Bioeng 2025; 122:53-68. [PMID: 39295202 PMCID: PMC11632172 DOI: 10.1002/bit.28848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/19/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
To quantify and visualize both bone formation and resorption within osteochondral explants cultured ex vivo is challenging with the current analysis techniques. An approach that enables monitoring of bone remodeling dynamics is longitudinal microcomputed tomography (µCT), a non-destructive technique that relies on repeated µCT scanning and subsequent registration of consecutive scans. In this study, a two-compartment culture system suitable for osteochondral explants that allowed for µCT scanning during ex vivo culture was established. Explants were scanned repeatedly in a fixed orientation, which allowed assessment of bone remodeling due to adequate image registration. Using this method, bone formation was found to be restricted to the outer surfaces when cultured statically. To demonstrate that the culture system could capture differences in bone remodeling, explants were cultured statically and under dynamic compression as loading promotes osteogenesis. No quantitative differences between static and dynamic culture were revealed. Still, only in dynamic conditions, bone formation was visualized on trabecular surfaces located within the inner cores, suggesting enhanced bone formation towards the center of the explants upon mechanical loading. Taken together, the ex vivo culture system in combination with longitudinal µCT scanning and subsequent registration of images demonstrated potential for evaluating bone remodeling within explants.
Collapse
Affiliation(s)
- Esther E.A. Cramer
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute of Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| | - Kim C.J. Hermsen
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute of Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| | - Linda M. Kock
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- LifeTec Group BVEindhovenThe Netherlands
| | - Keita Ito
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute of Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| | - Sandra Hofmann
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute of Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
6
|
Zanner S, Goff E, Ghatan S, Wölfel EM, Ejersted C, Kuhn G, Müller R, Frost M. Microvascular Disease Associates with Larger Osteocyte Lacunae in Cortical Bone in Type 2 Diabetes Mellitus. JBMR Plus 2023; 7:e10832. [PMID: 38025042 PMCID: PMC10652180 DOI: 10.1002/jbm4.10832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Clinical studies indicate that microvascular disease (MVD) affects bone microstructure and decreases bone strength in type 2 diabetes mellitus (T2D). Osteocytes are housed in small voids within the bone matrix and lacunae and act as sensors of mechanical forces in bone. These cells regulate osteoclastic bone resorption and osteoblastic bone formation as well as osteocytic perilacunar remodeling. We hypothesized that MVD changes morphometric osteocyte lacunar parameters in individuals with T2D. We collected iliac crest bone biopsies from 35 individuals (10 female, 25 male) with T2D with MVD (15%) or without MVD (21%) with a median age of 67 years (interquartile range [IQR] 62-72 years). The participants were included based on c-peptide levels >700 pmol L-1, absence of anti-GAD65 antibodies, and glycated hemoglobin (HbA1c) levels between 40 and 82 mmol mol-1 or 5.8% and 9.7%, respectively. We assessed osteocyte lacunar morphometric parameters in trabecular and cortical bone regions using micro-computed tomography (micro-CT) at a nominal resolution of 1.2 μm voxel size. The cortical osteocyte lacunar volume (Lc.V) was 7.7% larger (p = 0.05) and more spherical (Lc.Sr, p < 0.01) in the T2D + MVD group. Using linear regression, we found that lacunar density (Lc.N/BV) in trabecular but not cortical bone was associated with HbA1c (p < 0.05, R 2 = 0.067) independently of MVD. Furthermore, Lc.V was larger and Lc.Sr higher in the center than in the periphery of the trabecular and cortical bone regions (p < 0.05). In conclusion, these data imply that MVD may impair skeletal integrity, possibly contributing to increased skeletal fragility in T2D complicated by MVD. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sebastian Zanner
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
- Clinical InstituteUniversity of Southern DenmarkOdenseDenmark
| | - Elliott Goff
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Samuel Ghatan
- Department of Internal MedicineErasmus MC University—Medical Center RotterdamRotterdamThe Netherlands
| | - Eva Maria Wölfel
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
| | | | - Gisela Kuhn
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Ralph Müller
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Morten Frost
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
- Clinical InstituteUniversity of Southern DenmarkOdenseDenmark
- Steno Diabetes Centre OdenseOUHOdenseDenmark
| |
Collapse
|
7
|
Caron R, Londono I, Seoud L, Villemure I. Segmentation of trabecular bone microdamage in Xray microCT images using a two-step deep learning method. J Mech Behav Biomed Mater 2023; 137:105540. [PMID: 36327650 DOI: 10.1016/j.jmbbm.2022.105540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION One of the current approaches to improve our understanding of osteoporosis is to study the development of bone microdamage under mechanical loading. The current practice for evaluating bone microdamage is to quantify damage volume from images of bone samples stained with a contrast agent, often composed of toxic heavy metals and requiring long tissue preparation. This work aims to evaluate the potential of linear microcracks detection and segmentation in trabecular bone samples using well-known deep learning models, namely YOLOv4 and Unet, applied on microCT images. METHODS Six trabecular bovine bone cylinders underwent compression until ultimate stress and were subsequently imaged with a microCT at a resolution of 1.95 μm. Two of these samples (samples 1 and 2) were then stained using barium sulfate (BaSO4) and imaged again. The unstained samples (samples 3-6) were used to train two neural networks YOLOv4 to detect regions with microdamage further combined with Unet to segment the microdamage at the pixel level in the detected regions. Four different model versions of YOLOv4 were compared using the average Intersection over Union (IoU) and the mean average precision (mAP). The performance of Unet was also measured using two segmentation metrics, the Dice Score and the Intersection over Union (IoU). A qualitative comparison was finally done between the deep learning and the contrast agent approaches. RESULTS Among the four versions of YOLOv4, the YOLOv4p5 model resulted in the best performance with an average IoU of 45,32% and 51,12% and a mAP of 28.79% and 46.22%, respectively for samples 1 and 2. The segmentation performance of Unet provided better IoU and DICE score on sample 2 compared to sample 1. The poorer performance of the test on sample 1 could be explained by its poorer contrast to noise ratio (CNR). Indeed, sample 1 resulted in a CNR of 7,96, which was worse than the average CNR in the training samples, while sample 2 resulted in a CNR of 10,08. The qualitative comparison between the contrast agent and the deep learning segmentation showed that two different regions were segmented by the two techniques. Deep learning is segmenting the region inside the cracks while the contrast agent segments the region around it or even regions with no visible damage. CONCLUSION The combination of YOLOv4 for microdamage detection with Unet for damage segmentation showed a potential for the detection and segmentation of microdamage in trabecular bone. The accuracy of both neural networks achieved in this work is acceptable considering it is their first application in this specific field and the amount of data was limited. Even if the errors from both neural networks are accumulated, the two-steps approach is faster than the semantic segmentation of the whole volume.
Collapse
Affiliation(s)
- Rodrigue Caron
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada
| | - Irène Londono
- Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada
| | - Lama Seoud
- Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada; Institut de génie biomédical, Montréal, QC, Canada; Department of Computer Engineering and Software Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada; Institut de génie biomédical, Montréal, QC, Canada.
| |
Collapse
|
8
|
Solorzano E, Alejo AL, Ball HC, Magoline J, Khalil Y, Kelly M, Safadi FF. Osteopathy in Complex Lymphatic Anomalies. Int J Mol Sci 2022; 23:ijms23158258. [PMID: 35897834 PMCID: PMC9332568 DOI: 10.3390/ijms23158258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Complex Lymphatic Anomalies (CLA) are lymphatic malformations with idiopathic bone and soft tissue involvement. The extent of the abnormal lymphatic presentation and boney invasion varies between subtypes of CLA. The etiology of these diseases has proven to be extremely elusive due to their rarity and irregular progression. In this review, we compiled literature on each of the four primary CLA subtypes and discuss their clinical presentation, lymphatic invasion, osseous profile, and regulatory pathways associated with abnormal bone loss caused by the lymphatic invasion. We highlight key proliferation and differentiation pathways shared between lymphatics and bone and how these systems may interact with each other to stimulate lymphangiogenesis and cause bone loss.
Collapse
Affiliation(s)
- Ernesto Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Joseph Magoline
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Yusuf Khalil
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Michael Kelly
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Department of Pediatric Hematology Oncology and Blood, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44243, USA
- Correspondence: ; Tel.: +1-330-325-6619
| |
Collapse
|
9
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Postmenopausal osteoporosis reduces circulating estrogen levels, which leads to osteoclast resorption, bone loss, and fracture. This review addresses emerging evidence that osteoporosis is not simply a disease of bone loss but that mechanosensitive osteocytes that regulate both osteoclasts and osteoblasts are also impacted by estrogen deficiency. RECENT FINDINGS At the onset of estrogen deficiency, the osteocyte mechanical environment is altered, which coincides with temporal changes in bone tissue composition. The osteocyte microenvironment is also altered, apoptosis is more prevalent, and hypermineralization occurs. The mechanobiological responses of osteocytes are impaired under estrogen deficiency, which exacerbates osteocyte paracrine regulation of osteoclasts. Recent research reveals changes in osteocytes during estrogen deficiency that may play a critical role in the etiology of the disease. A paradigm change for osteoporosis therapy requires an advanced understanding of such changes to establish the efficacy of osteocyte-targeted therapies to inhibit resorption and secondary mineralization.
Collapse
Affiliation(s)
- Laoise M McNamara
- Mechanobiology and Medical Device Research Group, Biomedical Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
11
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|
12
|
Ito N, Prideaux M, Wijenayaka AR, Yang D, Ormsby RT, Bonewald LF, Atkins GJ. Sclerostin Directly Stimulates Osteocyte Synthesis of Fibroblast Growth Factor-23. Calcif Tissue Int 2021; 109:66-76. [PMID: 33616712 DOI: 10.1007/s00223-021-00823-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Osteocyte produced fibroblast growth factor 23 (FGF23) is the key regulator of serum phosphate (Pi) homeostasis. The interplay between parathyroid hormone (PTH), FGF23 and other proteins that regulate FGF23 production and serum Pi levels is complex and incompletely characterised. Evidence suggests that the protein product of the SOST gene, sclerostin (SCL), also a PTH target and also produced by osteocytes, plays a role in FGF23 expression, however the mechanism for this effect is unclear. Part of the problem of understanding the interplay of these mediators is the complex multi-organ system that achieves Pi homeostasis in vivo. In the current study, we sought to address this using a cell line model of the osteocyte, IDG-SW3, known to express FGF23 at both the mRNA and protein levels. In cultures of differentiated IDG-SW3 cells, both PTH1-34 and recombinant human (rh) SCL remarkably induced Fgf23 mRNA expression dose-dependently within 3 h. Both rhPTH1-34 and rhSCL also strongly induced C-terminal FGF23 protein secretion. Secreted intact FGF23 levels remained unchanged, consistent with constitutive post-translational cleavage of FGF23 in this cell model. Both rhPTH1-34 and rhSCL treatments significantly suppressed mRNA levels of Phex, Dmp1 and Enpp1 mRNA, encoding putative negative regulators of FGF23 levels, and induced Galnt3 mRNA expression, encoding N-acetylgalactosaminyl-transferase 3 (GalNAc-T3), which protects FGF23 from furin-like proprotein convertase-mediated cleavage. The effect of both rhPTH1-34 and rhSCL was antagonised by pre-treatment with the NF-κβ signalling inhibitors, BAY11 and TPCK. RhSCL also stimulated FGF23 mRNA expression in ex vivo cultures of human bone. These findings provide evidence for the direct regulation of FGF23 expression by sclerostin. Locally expressed sclerostin via the induction of FGF23 in osteocytes thus has the potential to contribute to the regulation of Pi homeostasis.
Collapse
Affiliation(s)
- Nobuaki Ito
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Matthew Prideaux
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
- School of Medicine, Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Asiri R Wijenayaka
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Dongqing Yang
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renee T Ormsby
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
- Brigham and Women's Hospital, Boston, MA, USA
| | - Lynda F Bonewald
- School of Medicine, Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
13
|
Osumi R, Wang Z, Ishihara Y, Odagaki N, Iimura T, Kamioka H. Changes in the intra- and peri-cellular sclerostin distribution in lacuno-canalicular system induced by mechanical unloading. J Bone Miner Metab 2021; 39:148-159. [PMID: 32844318 DOI: 10.1007/s00774-020-01135-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Mechanical stimuli regulate Sclerostin (Scl), a negative regulator of bone formation, expression in osteocytes. However, the detailed Scl distribution in osteocytes in response to mechanical unloading remains unclear. MATERIALS AND METHODS Twelve-week-old male rats were used. The sciatic and femoral nerves on the right side were excised as mechanical unloading treatment. A sham operation was performed on the left side. One week after neurotrauma, the bone density of the femora was evaluated by peripheral quantitative computed tomography, and immunofluorescence was performed in coronal sections of the femoral diaphysis. The mean fluorescence intensity and fluorescent profile of Scl from the marrow to the periosteal side were analyzed to estimate the Scl expression and determine to which side (marrow or periosteal) the Scl prefers to distribute in response to mechanical unloading. The most sensitive region indicated by the immunofluorescence results was further investigated by transmission electron microscopy (TEM) with immunogold staining to show the Scl expression changes in different subcellular structures. RESULTS In femur distal metaphysis, neurotrauma-induced mechanical unloading significantly decreased the bone density, made the distribution of Scl closer to the marrow on the anterior and medial side, and increased the Scl expression only on the lateral side. TEM findings showed that only the expression of Scl in canaliculi was increased by mechanical unloading. CONCLUSIONS Our results showed that even short-term mechanical unloading is enough to decrease bone density, and mechanical unloading not only regulated the Scl expression but also changed the Scl distribution in both the osteocyte network and subcellular structures.
Collapse
Affiliation(s)
- Ryuta Osumi
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama, Okayama, 700-8558, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Naoya Odagaki
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama, Okayama, 700-8558, Japan.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Novel therapies for damaged and diseased bone are being developed in a preclinical testing process consisting of in vitro cell experiments followed by in vivo animal studies. The in vitro results are often not representative of the results observed in vivo. This could be caused by the complexity of the natural bone environment that is missing in vitro. Ex vivo bone explant cultures provide a model in which cells are preserved in their native three-dimensional environment. Herein, it is aimed to review the current status of bone explant culture models in relation to their potential in complementing the preclinical evaluation process with specific attention paid to the incorporation of mechanical loading within ex vivo culture systems. RECENT FINDINGS Bone explant cultures are often performed with physiologically less relevant bone, immature bone, and explants derived from rodents, which complicates translatability into clinical practice. Mature bone explants encounter difficulties with maintaining viability, especially in static culture. The integration of mechanical stimuli was able to extend the lifespan of explants and to induce new bone formation. Bone explant cultures provide unique platforms for bone research and mechanical loading was demonstrated to be an important component in achieving osteogenesis ex vivo. However, more research is needed to establish a representative, reliable, and reproducible bone explant culture system that includes both components of bone remodeling, i.e., formation and resorption, in order to bridge the gap between in vitro and in vivo research in preclinical testing.
Collapse
Affiliation(s)
- E E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
15
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
16
|
Hongo H, Hasegawa T, Saito M, Tsuboi K, Yamamoto T, Sasaki M, Abe M, Henrique Luiz de Freitas P, Yurimoto H, Udagawa N, Li M, Amizuka N. Osteocytic Osteolysis in PTH-treated Wild-type and Rankl-/- Mice Examined by Transmission Electron Microscopy, Atomic Force Microscopy, and Isotope Microscopy. J Histochem Cytochem 2020; 68:651-668. [PMID: 32942927 DOI: 10.1369/0022155420961375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To demonstrate the ultrastructure of osteocytic osteolysis and clarify whether osteocytic osteolysis occurs independently of osteoclastic activities, we examined osteocytes and their lacunae in the femora and tibiae of 11-week-old male wild-type and Rankl-/- mice after injection of human parathyroid hormone (PTH) [1-34] (80 µg/kg/dose). Serum calcium concentration rose temporarily 1 hr after PTH administration in wild-type and Rankl-/- mice, when renal arteries and veins were ligated. After 6 hr, enlargement of osteocytic lacunae was evident in the cortical bones of wild-type and Rankl-/- mice, but not so in their metaphyses. Von Kossa staining and transmission electron microscopy showed broadly demineralized bone matrix peripheral to enlarged osteocytic lacunae, which contained fragmented collagen fibrils and islets of mineralized matrices. Nano-indentation by atomic force microscopy revealed the reduced elastic modulus of the PTH-treated osteocytic perilacunar matrix, despite the microscopic verification of mineralized matrix in that region. In addition, 44Ca deposition was detected by isotope microscopy and calcein labeling in the eroded osteocytic lacunae of wild-type and Rankl-/- mice. Taken together, our findings suggest that osteocytes can erode the bone matrix around them and deposit minerals on their lacunar walls independently of osteoclastic activity, at least in the murine cortical bone. (J Histochem Cytochem 68: -XXX, 2020).
Collapse
Affiliation(s)
- Hiromi Hongo
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Masami Saito
- Bruker Japan K.K., Nano Surfaces & Metrology Division, Tokyo, Japan
| | - Kanako Tsuboi
- Dental Surgery, Haibara General Hospital, Makinohara, Japan
| | - Tomomaya Yamamoto
- Department of Dentistry, Japan Ground Self Defense Force Camp Asaka, Tokyo, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Hisayoshi Yurimoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption. Int J Mol Sci 2020; 21:ijms21145169. [PMID: 32708317 PMCID: PMC7404053 DOI: 10.3390/ijms21145169] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
The process of bone remodeling is the result of the regulated balance between bone cell populations, namely bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte, the mechanosensory cell type. Osteoclasts derived from the hematopoietic stem cell lineage are the principal cells involved in bone resorption. In osteolytic diseases such as rheumatoid arthritis, periodontitis, and osteoporosis, the balance is lost and changes in favor of bone resorption. Therefore, it is vital to elucidate the mechanisms of osteoclast formation and bone resorption. It has been reported that osteocytes express Receptor activator of nuclear factor κΒ ligand (RANKL), an essential factor for osteoclast formation. RANKL secreted by osteocytes is the most important factor for physiologically supported osteoclast formation in the developing skeleton and in pathological bone resorption such as experimental periodontal bone loss. TNF-α directly enhances RANKL expression in osteocytes and promotes osteoclast formation. Moreover, TNF-α enhances sclerostin expression in osteocytes, which also increases osteoclast formation. These findings suggest that osteocyte-related cytokines act directly to enhance osteoclast formation and bone resorption. In this review, we outline the most recent knowledge concerning bone resorption-related cytokines and discuss the osteocyte as the master regulator of bone resorption and effector in osteoclast formation.
Collapse
|
18
|
Bone, a Secondary Growth Site of Breast and Prostate Carcinomas: Role of Osteocytes. Cancers (Basel) 2020; 12:cancers12071812. [PMID: 32640686 PMCID: PMC7408809 DOI: 10.3390/cancers12071812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is the primarily preferred site for breast and prostate cancer to metastasize. Bone metastases are responsible for most deaths related to breast and prostate cancer. The bone's particular microenvironment makes it conducive for the growth of cancer cells. Studies on bone metastasis have focused on the interaction between cancer cells and the bone microenvironment. Osteocytes, the most common cell type of bone tissue, have received little attention in bone metastasis, although they are master signal sensors, integrators, and skeleton transducers. They play an important role in regulating bone mass by acting on both osteoblasts and osteoclasts, through the release of proteins such as sclerostin, Dickkopf-1 (DKK-1), and fibroblast growth factor 23 (FGF23). Osteocytes have been extensively re-evaluated, in light of their multiple functions: with different experimental approaches, it has been shown that, indeed, osteocytes are actively involved in the colonization of bone tissue by cancer cells. The present review focuses on recent research on the role that osteocytes play in bone metastasis of breast and prostate cancers. Moreover, the studies here summarized open up perspectives for new therapeutic approaches focused on modulating the activity of osteocytes to improve the condition of the bone metastatic patients. A better understanding of the complex interactions between cancer cells and bone-resident cells is indispensable for identifying potential therapeutic targets to stop tumor progression and prevent bone metastases.
Collapse
|
19
|
De Maré A, D’Haese PC, Verhulst A. The Role of Sclerostin in Bone and Ectopic Calcification. Int J Mol Sci 2020; 21:ijms21093199. [PMID: 32366042 PMCID: PMC7246472 DOI: 10.3390/ijms21093199] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sclerostin, a 22-kDa glycoprotein that is mainly secreted by the osteocytes, is a soluble inhibitor of canonical Wnt signaling. Therefore, when present at increased concentrations, it leads to an increased bone resorption and decreased bone formation. Serum sclerostin levels are known to be increased in the elderly and in patients with chronic kidney disease. In these patient populations, there is a high incidence of ectopic cardiovascular calcification. These calcifications are strongly associated with cardiovascular morbidity and mortality. Although data are still controversial, it is likely that there is a link between ectopic calcification and serum sclerostin levels. The main question, however, remains whether sclerostin exerts either a protective or deleterious role in the ectopic calcification process.
Collapse
|
20
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
21
|
Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int J Mol Sci 2020; 21:E912. [PMID: 32019244 PMCID: PMC7037207 DOI: 10.3390/ijms21030912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
As the population of western societies on average ages, the number of people affected by bone remodeling-associated diseases such as osteoporosis continues to increase. The development of new therapeutics is hampered by the high failure rates of drug candidates during clinical testing, which is in part due to the poor predictive character of animal models during preclinical drug testing. Co-culture models of osteoblasts and osteoclasts offer an alternative to animal testing and are considered to have the potential to improve drug development processes in the future. However, a robust, scalable, and reproducible 3D model combining osteoblasts and osteoclasts for preclinical drug testing purposes has not been developed to date. Here we review various types of osteoblast-osteoclast co-culture models and outline the remaining obstacles that must be overcome for their successful translation.
Collapse
Affiliation(s)
- Alexander Sieberath
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Osteocytes are responsible for mechanosensing and mechanotransduction in bone and play a crucial role in bone homeostasis. They are embedded in a calcified collagenous matrix and connected with each other through the lacuno-canalicular network. Due to this specific native environment, it is a challenge to isolate primary osteocytes without losing their specific characteristics in vitro. This review summarizes the commonly used and recently established models to study the function of osteocytes in vitro. RECENT FINDINGS Osteocytes are mostly studied in monolayer culture, but recently, 3D models of osteocyte-like cells and primary osteocytes in vitro have been established as well. These models mimic the native environment of osteocytes and show superior osteocyte morphology and behavior, enabling the development of human disease models. Osteocyte-like cell lines as well as primary osteocytes isolated from bone are widely used to study the role of osteocytes in bone homeostasis. Both cells lines and primary cells are cultured in 2D-monolayer and 3D-models. The use of these models and their advantages and shortcomings are discussed in this review.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Department of Internal Medicine, Division of Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
23
|
Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. J Mol Endocrinol 2019; 62:R167-R185. [PMID: 30532996 DOI: 10.1530/jme-18-0176] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
The discovery that two rare autosomal recessive high bone mass conditions were caused by the loss of sclerostin expression prompted studies into its role in bone homeostasis. In this article, we aim to bring together the wealth of information relating to sclerostin in bone though discussion of rare human disorders in which sclerostin is reduced or absent, sclerostin manipulation via genetic approaches and treatment with antibodies that neutralise sclerostin in animal models and in human. Together, these findings demonstrate the importance of sclerostin as a regulator of bone homeostasis and provide valuable insights into its biological mechanism of action. We summarise the current state of knowledge in the field, including the current understanding of the direct effects of sclerostin on the canonical WNT signalling pathway and the actions of sclerostin as an inhibitor of bone formation. We review the effects of sclerostin, and its inhibition, on bone at the cellular and tissue level and discuss new findings that suggest that sclerostin may also regulate adipose tissue. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of sclerostin.
Collapse
Affiliation(s)
| | | | - Hua Zhu Ke
- Bone Therapeutic Area, UCB Pharma, Slough, United Kingdom
| |
Collapse
|
24
|
Solomon LB, Kitchen D, Anderson PH, Yang D, Starczak Y, Kogawa M, Perilli E, Smitham PJ, Rickman MS, Thewlis D, Atkins GJ. Time dependent loss of trabecular bone in human tibial plateau fractures. J Orthop Res 2018; 36:2865-2875. [PMID: 29786151 DOI: 10.1002/jor.24057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 05/15/2018] [Indexed: 02/04/2023]
Abstract
We investigated if time between injury and surgery affects cancellous bone properties in patients suffering tibial plateau fractures (TPF), in terms of structural integrity and gene expression controlling bone loss. A cohort of 29 TPF, operated 1-17 days post-injury, had biopsies from the fracture and an equivalent contralateral limb site, at surgery. Samples were assessed using micro-computed tomography and real-time RT-PCR analysis for the expression of genes known to be involved in bone remodeling and fracture healing. Significant decreases in the injured vs control side were observed for bone volume fraction (BV/TV, -13.5 ± 6.0%, p = 0.011), trabecular number (Tb.N, -10.5 ± 5.9%, p = 0.041) and trabecular thickness (Tb.Th, -4.6 ± 2.5%, p = 0.033). Changes in these parameters were more evident in patients operated 5-17 days post-injury, compared to those operated in the first 4 days post-injury. A significant negative association was found between Tb.Th (r = -0.54, p < 0.01) and BV/TV (r = -0.39, p < 0.05) in relation to time post-injury in the injured limb. Both BV/TV and Tb.Th were negatively associated with expression of key molecular markers of bone resorption, CTSK, ACP5, and the ratio of RANKL:OPG mRNA. These structure/gene expression relationships did not exist in the contralateral tibial plateau of these patients. This study demonstrated that there is a significant early time-dependent bone loss in the proximal tibia after TPF. This bone loss was significantly associated with altered expression of genes typically involved in the process of osteoclastic bone resorption but possibly also bone resorption by osteocytes. The mechanism of early bone loss in such fractures should be a subject of further investigation. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2865-2875, 2018.
Collapse
Affiliation(s)
- Lucian B Solomon
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia.,Orthopaedic and Trauma Service, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - David Kitchen
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia.,Orthopaedic and Trauma Service, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Dongqing Yang
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yolandi Starczak
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Masakazu Kogawa
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Egon Perilli
- The Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Peter J Smitham
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia.,Orthopaedic and Trauma Service, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Mark S Rickman
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia.,Orthopaedic and Trauma Service, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Dominic Thewlis
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
25
|
Tsourdi E, Jähn K, Rauner M, Busse B, Bonewald LF. Physiological and pathological osteocytic osteolysis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:292-303. [PMID: 30179206 PMCID: PMC6146198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Osteocytes, the most abundant bone cell in the adult skeleton, can function as mechanosensors directing osteoblast and osteoclast function in order to maintain optimal load bearing bone in addition to functioning as endocrine cells regulating phosphate metabolism. A controversial function, previously overlooked or denied, has been osteocytes as regulators of calcium metabolism. Early histologists upon observing enlarged osteocyte lacunae in bone sections proposed that mature osteocytes could remove their perilacunar matrix, a term called "osteocytic osteolysis". New insights into this process have occurred during the last decade using novel technology thereby providing a means to identify molecular mechanisms responsible for osteocytic osteolysis. As release of calcium from a mineralized matrix requires a more acidic pH and specialized enzymes, it was proposed that osteocytes may utilize similar molecular mechanisms as osteoclasts to remove mineral. The idea that a cell descended from mesenchymal progenitors (the osteocyte) could function similarly to a cell descended from hematopoietic progenitors (the osteoclast) was challenged as being improbable. Here we review the molecular mechanisms behind this osteocyte function, the role of osteocytic osteolysis in health and disease, and the capacity of the osteocyte to reverse the osteolytic process by replacing the removed matrix, a revived osteoblast function.
Collapse
Affiliation(s)
- Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany,Corresponding author: Elena Tsourdi, M.D., Division of Endocrinology, Diabetes and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstrasse 74, 01307 Dresden, Germany E-mail:
| | - Katharina Jähn
- Department for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Björn Busse
- Department for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lynda F. Bonewald
- Indiana Center for Musculoskeletal Health, VanNuys Medical Science Building, Indianapolis, USA
| |
Collapse
|