1
|
Hisatsune C, Shinkai-Ouchi F, Hata S, Ono Y. In situ detection of activation of CAPN3, a responsible gene product for LGMDR1, in mouse skeletal myotubes. J Biol Chem 2025:108536. [PMID: 40280419 DOI: 10.1016/j.jbc.2025.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
CAPN3/calpain-3/p94, a muscle-specific Ca2+-dependent cysteine protease, is responsible for limb-girdle muscular dystrophy R1 (LGMDR1), an autosomal recessive muscular dystrophy. However, the activation mechanism and physiological function of CAPN3 in skeletal muscles remain unknown. Here, we capture the in situ activation of CAPN3 in cultured mouse skeletal myotubes. Using our newly developed antibody, which specifically recognizes CAPN3 autolytic processing, we succeeded in differentiating wild-type CAPN3 from a protease-inactive CAPN3 mutant by immunostaining. We further demonstrated that CAPN3 predominantly localized at the M-bands of cultured skeletal myotubes at rest and translocated to the cytoplasm after activation by stimulation with ouabain, a cardiotonic steroid. This event requires a small but long-lasting cytoplasmic increase in Ca2+ levels, which is sufficient for the activation of CAPN3 but not of calpain-1/CAPN1. Activated CAPN3 digests the cytoskeletal proteins spectrin and talin. Thus, we successfully visualized the intracellular dynamics of endogenous CAPN3 in cultured skeletal muscles after activation by ouabain and demonstrated the subsequent processing of endogenous substrates in living cells. Our study will help understand the physiological functions of CAPN3 in skeletal muscles and the pathophysiological mechanisms of LGMDR1.
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Calpain project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Fumiko Shinkai-Ouchi
- Calpain project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shoji Hata
- Calpain project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yasuko Ono
- Calpain project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
2
|
Tabuchi A, Poole DC, Kano Y. Intracellular Ca 2+ After Eccentric Muscle Contractions: Key Role for Ryanodine Receptors. Exerc Sport Sci Rev 2025; 53:23-30. [PMID: 39262047 DOI: 10.1249/jes.0000000000000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Eccentric contractions (ECC) induce excessive intracellular calcium ion (Ca 2+ ) accumulation and muscle structural damage in localized regions of the muscle fibers. In this investigation, we present the novel hypothesis that the ryanodine receptor (RyR) plays a central role in evoking a Ca 2+ dynamics profile that is markedly distinguishable from other muscle adaptive responses.
Collapse
Affiliation(s)
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, KS
| | | |
Collapse
|
3
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
4
|
Tammineni ER, Figueroa L, Manno C, Varma D, Kraeva N, Ibarra CA, Klip A, Riazi S, Rios E. Muscle calcium stress cleaves junctophilin1, unleashing a gene regulatory program predicted to correct glucose dysregulation. eLife 2023; 12:e78874. [PMID: 36724092 PMCID: PMC9891728 DOI: 10.7554/elife.78874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
Calcium ion movements between cellular stores and the cytosol govern muscle contraction, the most energy-consuming function in mammals, which confers skeletal myofibers a pivotal role in glycemia regulation. Chronic myoplasmic calcium elevation ("calcium stress"), found in malignant hyperthermia-susceptible (MHS) patients and multiple myopathies, has been suggested to underlie the progression from hyperglycemia to insulin resistance. What drives such progression remains elusive. We find that muscle cells derived from MHS patients have increased content of an activated fragment of GSK3β - a specialized kinase that inhibits glycogen synthase, impairing glucose utilization and delineating a path to hyperglycemia. We also find decreased content of junctophilin1, an essential structural protein that colocalizes in the couplon with the voltage-sensing CaV1.1, the calcium channel RyR1 and calpain1, accompanied by an increase in a 44 kDa junctophilin1 fragment (JPh44) that moves into nuclei. We trace these changes to activated proteolysis by calpain1, secondary to increased myoplasmic calcium. We demonstrate that a JPh44-like construct induces transcriptional changes predictive of increased glucose utilization in myoblasts, including less transcription and translation of GSK3β and decreased transcription of proteins that reduce utilization of glucose. These effects reveal a stress-adaptive response, mediated by the novel regulator of transcription JPh44.
Collapse
Affiliation(s)
- Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Disha Varma
- Department of Internal Medicine, Division of Nephrology, Rush UniversityChicagoUnited States
| | - Natalia Kraeva
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Carlos A Ibarra
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sheila Riazi
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Eduardo Rios
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| |
Collapse
|
5
|
Ashida Y, Himori K, Tokuda N, Naito A, Yamauchi N, Takenaka-Ninagawa N, Aoki Y, Sakurai H, Yamada T. Dissociation of SH3 and cysteine rich domain 3 and junctophilin 1 from dihydropyridine receptor in dystrophin-deficient muscles. Am J Physiol Cell Physiol 2022; 323:C885-C895. [PMID: 35912995 DOI: 10.1152/ajpcell.00163.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The disruption of excitation-contraction (EC) coupling and subsequent reduction in Ca2+ release from the sarcoplasmic reticulum (SR) have been shown to account for muscle weakness seen in patients with Duchenne muscular dystrophy (DMD). Here, we examined the mechanisms underlying EC uncoupling in skeletal muscles from mdx52 and DMD-null/NSG mice, animal models for DMD, focusing on the SH3 and cysteine rich domain 3 (STAC3) and junctophilin 1 (JP1), which link the dihydropyridine receptor (DHPR) in the transverse tubule and the ryanodine receptor 1 in the SR. The isometric plantarflexion torque normalized to muscle weight of whole plantar flexor muscles was depressed in mdx52 and DMD-null/NSG mice compared to their control mice. This was accompanied by increased autolysis of calpain-1, decreased levels of STAC3 and JP1 content, and dissociation of STAC3 and JP1 from DHPR-α1s in gastrocnemius muscles. Moreover, in vitro mechanistic experiments demonstrated that STAC3 and JP1 underwent Ca2+-dependent proteolysis which was less pronounced in dystrophin-deficient muscles where calpastatin, the endogenous calpain inhibitor, was upregulated. Eccentric contractions further enhanced autolysis of calpain-1 and proteolysis of STAC3 and JP1 that were associated with severe torque depression in gastrocnemius muscles from DMD-null/NSG mice. These data suggest that Ca2+-dependent proteolysis of STAC3 and JP1 may be an essential factor causing muscle weakness due to EC coupling failure in dystrophin-deficient muscles.
Collapse
Affiliation(s)
- Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
6
|
Wette SG, Lamb GD, Murphy RM. Nuclei isolation methods fail to accurately assess the subcellular localization and behaviour of proteins in skeletal muscle. Acta Physiol (Oxf) 2021; 233:e13730. [PMID: 34492163 DOI: 10.1111/apha.13730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022]
Abstract
AIM Subcellular fractionation is often used to determine the subcellular localization of proteins, including whether a protein translocates to the nucleus in response to a given stimulus. Examining nuclear proteins in skeletal muscle is difficult because myonuclear proteins are challenging to isolate unless harsh treatments are used. This study aimed to determine the most effective method for isolating and preserving proteins in their native state in skeletal muscle. METHODS We compared the ability of detergents, commercially available kit-based and K+ -based physiological methodologies for isolating myonuclear proteins from resting samples of human muscle by determining the presence of marker proteins for each fraction by western blot analyses. RESULTS We found that following the initial pelleting of nuclei, treatment with 1% Triton-X 100, 1% CHAPS or 0.5% Na-deoxycholate under various ionic conditions resulted in the nuclear proteins being either resistant to isolation or the proteins present behaving aberrantly. The nuclear proteins in brain tissue were also resistant to 1% Triton-X 100 isolation. Here, we demonstrate aberrant behaviour and erroneous localization of proteins using the kit-based method. The aberrant behaviour was the activation of Ca2+ -dependent protease calpain-3, and the erroneous localization was the presence of calpain-3 and troponin I in the nuclear fraction. CONCLUSION Our findings indicate that it may not be possible to reliably determine the translocation of proteins between subcellular locations and the nucleus using subcellular fractionation techniques. This study highlights the importance of validating subcellular fractionation methodologies using several subcellular-specific markers and solutions that are physiologically relevant to the intracellular milieu.
Collapse
Affiliation(s)
- Stefan G. Wette
- Department of Biochemistry and Genetics La Trobe Institute for Molecular ScienceLa Trobe University Melbourne Victoria Australia
| | - Graham D. Lamb
- Department of Physiology, Anatomy and Microbiology School of Life Sciences La Trobe University Melbourne Victoria Australia
| | - Robyn M. Murphy
- Department of Biochemistry and Genetics La Trobe Institute for Molecular ScienceLa Trobe University Melbourne Victoria Australia
- Department of Physiology, Anatomy and Microbiology School of Life Sciences La Trobe University Melbourne Victoria Australia
| |
Collapse
|
7
|
Gritsyna YV, Ulanova AD, Popova SS, Bobylev AG, Zhalimov VK, Nemirovskaya TL, Shenkman BS, Vikhlyantsev IM. Inhibition of Histone Deacetylases 4 and 5 Reduces Titin Proteolysis and Prevents Reduction of TTN Gene Expression in Atrophied Rat Soleus Muscle after Seven-Day Hindlimb Unloading. DOKL BIOCHEM BIOPHYS 2020; 495:338-341. [PMID: 33368047 DOI: 10.1134/s1607672920060058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 11/23/2022]
Abstract
The effect of HDACs 4 and 5 on the level of atrophy, calpain-1 and titin content, and TTN gene expression in rat soleus after 7-day gravitational unloading (hindlimb suspension model) was studied. The development of atrophic changes induced by gravitational unloading in rat soleus was accompanied by an increase in the calpain-1 content, an increase in titin proteolysis, and a decrease in the mRNA content of the protein. Inhibition of HDACs 4 and 5 did not eliminate the development of unloading-induced atrophy but significantly prevented proteolysis of titin and the decrease in the TTN gene expression.
Collapse
Affiliation(s)
- Yu V Gritsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A D Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - S S Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A G Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - V K Zhalimov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - T L Nemirovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - B S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - I M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
8
|
Popova S, Ulanova A, Gritsyna Y, Salmov N, Rogachevsky V, Mikhailova G, Bobylev A, Bobyleva L, Yutskevich Y, Morenkov O, Zakharova N, Vikhlyantsev I. Predominant synthesis of giant myofibrillar proteins in striated muscles of the long-tailed ground squirrel Urocitellus undulatus during interbout arousal. Sci Rep 2020; 10:15185. [PMID: 32938992 PMCID: PMC7495002 DOI: 10.1038/s41598-020-72127-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular mechanisms underlying muscle-mass retention during hibernation have been extensively discussed in recent years. This work tested the assumption that protein synthesis hyperactivation during interbout arousal of the long-tailed ground squirrel Urocitellus undulatus should be accompanied by increased calpain-1 activity in striated muscles. Calpain-1 is known to be autolysed and activated in parallel. Western blotting detected increased amounts of autolysed calpain-1 fragments in the heart (1.54-fold, p < 0.05) and m. longissimus dorsi (1.8-fold, p < 0.01) of ground squirrels during interbout arousal. The total protein synthesis rate determined by SUnSET declined 3.67-fold in the heart (p < 0.01) and 2.96-fold in m. longissimus dorsi (p < 0.01) during interbout arousal. The synthesis rates of calpain-1 substrates nebulin and titin in muscles did not differ during interbout arousal from those in active summer animals. A recovery of the volume of m. longissimus dorsi muscle fibres, a trend towards a heart-muscle mass increase and a restoration of the normal titin content (reduced in the muscles during hibernation) were observed. The results indicate that hyperactivation of calpain-1 in striated muscles of long-tailed ground squirrels during interbout arousal is accompanied by predominant synthesis of giant sarcomeric cytoskeleton proteins. These changes may contribute to muscle mass retention during hibernation.
Collapse
Affiliation(s)
- Svetlana Popova
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anna Ulanova
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Yulia Gritsyna
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nikolay Salmov
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vadim Rogachevsky
- Laboratory of Signal Perception Mechanisms, Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Gulnara Mikhailova
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexander Bobylev
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Liya Bobyleva
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Yana Yutskevich
- Kuban State University, Krasnodar, Krasnodar Krai, 350040, Russia
| | - Oleg Morenkov
- Laboratory of Cell Culture and Tissue Engineering, Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezda Zakharova
- Laboratory of Natural and Artificial Hypobiosis Mechanisms, Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ivan Vikhlyantsev
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
9
|
Ulanova AD, Gritsyna YV, Bobylev AG, Yakupova EI, Zhalimov VK, Belova SP, Mochalova EP, Nemirovskaya TL, Shenkman BS, Vikhlyantsev IM. Inhibition of Histone Deacetylase 1 Prevents the Decrease in Titin (Connectin) Content and Development of Atrophy in Rat m. soleus after 3-Day Hindlimb Unloading. Bull Exp Biol Med 2020; 169:450-457. [PMID: 32889570 DOI: 10.1007/s10517-020-04907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 10/23/2022]
Abstract
We studied the effect of histone deacetylase 1 (HDAC1) inhibition on titin content and expression of TTN gene in rat m. soleus after 3-day gravitational unloading. Male Wistar rats weighing 210±10 g were randomly divided into 3 groups: control, 3-day hindlimb suspension, and 3-day hindlimb suspension and injection of HDAC1 inhibitor CI-994 (1 mg/kg/day). In hindlimb-suspended rats, the muscle weight/animal body weight ratio was reduced by 13.8% (p<0.05) in comparison with the control, which attested to the development of atrophic changes in the soleus muscle. This was associated with a decrease in the content of NT-isoform of intact titin-1 by 28.6% (p˂0.05) and an increase in TTN gene expression by 1.81 times (p˂0.05) in the soleus muscle. Inhibition of HDAC1 by CI-994 during 3-day hindlimb suspension prevented the decrease in titin content and development of atrophy in rat soleus muscle. No significant differences in the TTN gene expression from the control were found. These results can be used when finding the ways of preventing or reducing the negative changes in the muscle caused by gravitational unloading.
Collapse
Affiliation(s)
- A D Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - Yu V Gritsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - A G Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - E I Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - V K Zhalimov
- Institute of Cell Biophysics, Russian Academy of Sciences - a Separate Division of Federal Research Center Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - S P Belova
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - E P Mochalova
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - T L Nemirovskaya
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - B S Shenkman
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - I M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med 2020; 41:994-1008. [PMID: 32679598 DOI: 10.1055/a-1199-7662] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calpains are cysteine proteases expressed in skeletal muscle fibers and other cells. Although calpain was first reported to act as a kinase activating factor in skeletal muscle, the consensus is now that calpains play a canonical role in protein turnover. However, recent evidence reveals new and exciting roles for calpains in skeletal muscle. This review will discuss the functions of calpains in skeletal muscle remodeling in response to both exercise and inactivity-induced muscle atrophy. Calpains participate in protein turnover and muscle remodeling by selectively cleaving target proteins and creating fragmented proteins that can be further degraded by other proteolytic systems. Nonetheless, an often overlooked function of calpains is that calpain-mediated cleavage of proteins can result in fragmented proteins that are biologically active and have the potential to actively influence cell signaling. In this manner, calpains function beyond their roles in protein turnover and influence downstream signaling effects. This review will highlight both the canonical and noncanonical roles that calpains play in skeletal muscle remodeling including sarcomere transformation, membrane repair, triad junction formation, regulation of excitation-contraction coupling, protein turnover, cell signaling, and mitochondrial function. We conclude with a discussion of key unanswered questions regarding the roles that calpains play in skeletal muscle.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Applied Physiology and Kinesiology, University of Florida, Gainesville, United States
| | - Scott K Powers
- Applied Physiology, University of Florida, Gainesville, United States
| |
Collapse
|
11
|
Hebisz R, Hebisz P, Borkowski J, Zatoń M. Effects of concomitant high-intensity interval training and sprint interval training on exercise capacity and response to exercise- induced muscle damage in mountain bike cyclists with different training backgrounds. ISOKINET EXERC SCI 2019. [DOI: 10.3233/ies-183170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Gritsyna YV, Ulanova AD, Salmov NN, Bobylev AG, Zhalimov VK, Vikhlyantsev IM. Differences in Titin and Nebulin Gene Expression in Skeletal Muscles of Rats Chronically Alcoholized by Different Methods. Mol Biol 2019. [DOI: 10.1134/s0026893319010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
McCartney CSE, Ye Q, Campbell RL, Davies PL. Insertion sequence 1 from calpain-3 is functional in calpain-2 as an internal propeptide. J Biol Chem 2018; 293:17716-17730. [PMID: 30254072 DOI: 10.1074/jbc.ra118.004803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
Calpains are intracellular, calcium-activated cysteine proteases. Calpain-3 is abundant in skeletal muscle, where its mutation-induced loss of function causes limb-girdle muscular dystrophy type 2A. Unlike the small subunit-containing calpain-1 and -2, the calpain-3 isoform homodimerizes through pairing of its C-terminal penta-EF-hand domain. It also has two unique insertion sequences (ISs) not found in the other calpains: IS1 within calpain-3's protease core and IS2 just prior to the penta-EF-hand domain. Production of either native or recombinant full-length calpain-3 to characterize the function of these ISs is challenging. Therefore, here we used recombinant rat calpain-2 as a stable surrogate and inserted IS1 into its equivalent position in the protease core. As it does in calpain-3, IS1 occupied the catalytic cleft and restricted the enzyme's access to substrate and inhibitors. Following activation by Ca2+, IS1 was rapidly cleaved by intramolecular autolysis, permitting the enzyme to freely accept substrate and inhibitors. The surrogate remained functional until extensive intermolecular autoproteolysis inactivated the enzyme, as is typical of calpain-2. Although the small-molecule inhibitors E-64 and leupeptin limited intermolecular autolysis of the surrogate, they did not block the initial intramolecular cleavage of IS1, establishing its role as a propeptide. Surprisingly, the large-molecule calpain inhibitor, calpastatin, completely blocked enzyme activity, even with IS1 intact. We suggest that calpastatin is large enough to oust IS1 from the catalytic cleft and take its place. We propose an explanation for why calpastatin can inhibit calpain-2 bearing the IS1 insertion but cannot inhibit WT calpain-3.
Collapse
Affiliation(s)
- Christian-Scott E McCartney
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Qilu Ye
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L Campbell
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Peter L Davies
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
14
|
Takagi R, Ogasawara R, Takegaki J, Tamura Y, Tsutaki A, Nakazato K, Ishii N. Past injurious exercise attenuates activation of primary calcium-dependent injury pathways in skeletal muscle during subsequent exercise. Physiol Rep 2018; 6:e13660. [PMID: 29595913 PMCID: PMC5875535 DOI: 10.14814/phy2.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 11/24/2022] Open
Abstract
Past contraction‐induced skeletal muscle injury reduces the degree of subsequent injury; this phenomenon is called the “repeated bout effect (RBE).” This study addresses the mechanisms underlying the RBE, focusing on primary calcium‐dependent injury pathways. Wistar rats were subdivided into single injury (SI) and repeated injury (RI) groups. At age 10 weeks, the right gastrocnemius muscle in each rat in the RI group was subjected to strenuous eccentric contractions (ECs). Subsequently, mild ECs were imposed on the same muscle of each rat at 14 weeks of age in both groups. One day after the exercise, the RI group showed a lower strength deficit than did the SI group, and neither group manifested any increase in membrane permeability. The concentration of protein carbonyls and activation of total calpain increased after ECs given at the age of 14 weeks. Nonetheless, these increases were lower in the RI group than in the SI group. Furthermore, calcium‐dependent autolysis of calpain‐1 and calpain‐3 in the RI group was diminished as compared with that in the SI group. Although peak ankle joint torque and total force generation during ECs at the age of 14 weeks were similar between the two groups, phosphorylation of JNK (Thr183/Tyr185), an indicator of mechanical stress applied to a muscle, was lower in the RI group than in the SI group. These findings suggest that activation of the primary calcium‐dependent injury pathways is attenuated by past injurious exercise, and mechanical stress applied to muscle fibers during ECs may decrease in the RBE.
Collapse
Affiliation(s)
- Ryo Takagi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Aichi, Japan
| | - Junya Takegaki
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Arata Tsutaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Naokata Ishii
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Gritsyna YV, Salmov NN, Bobylev AG, Ulanova AD, Kukushkin NI, Podlubnaya ZA, Vikhlyantsev IM. Increased Autolysis ofμ-Calpain in Skeletal Muscles of Chronic Alcohol-Fed Rats. Alcohol Clin Exp Res 2017; 41:1686-1694. [DOI: 10.1111/acer.13476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/04/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Yulia V. Gritsyna
- Laboratory of Structure and Functions of Muscle Proteins; Institute of Theoretical and Experimental Biophysics; Russian Academy of Sciences; Pushchino Russia
| | - Nikolay N. Salmov
- Laboratory of Structure and Functions of Muscle Proteins; Institute of Theoretical and Experimental Biophysics; Russian Academy of Sciences; Pushchino Russia
| | - Alexander G. Bobylev
- Laboratory of Structure and Functions of Muscle Proteins; Institute of Theoretical and Experimental Biophysics; Russian Academy of Sciences; Pushchino Russia
- Pushchino State Institute of Natural Science; Pushchino Russia
| | - Anna D. Ulanova
- Laboratory of Structure and Functions of Muscle Proteins; Institute of Theoretical and Experimental Biophysics; Russian Academy of Sciences; Pushchino Russia
- Pushchino State Institute of Natural Science; Pushchino Russia
| | - Nikolay I. Kukushkin
- Laboratory of Cell Cultures and Cell Engineering; Institute of Cell Biophysics; Russian Academy of Sciences; Pushchino Russia
| | - Zoya A. Podlubnaya
- Laboratory of Structure and Functions of Muscle Proteins; Institute of Theoretical and Experimental Biophysics; Russian Academy of Sciences; Pushchino Russia
- Pushchino State Institute of Natural Science; Pushchino Russia
| | - Ivan M. Vikhlyantsev
- Laboratory of Structure and Functions of Muscle Proteins; Institute of Theoretical and Experimental Biophysics; Russian Academy of Sciences; Pushchino Russia
- Pushchino State Institute of Natural Science; Pushchino Russia
| |
Collapse
|
16
|
Gritsyna YV, Salmov NN, Bobylev AG, Fadeeva IS, Fesenko NI, Sadikova DG, Kukushkin NI, Podlubnaya ZA, Vikhlyantsev IM. Chronic Alcohol Intoxication Is Not Accompanied by an Increase in Calpain Proteolytic Activity in Cardiac Muscle of Rats. BIOCHEMISTRY (MOSCOW) 2017; 82:168-175. [PMID: 28320300 DOI: 10.1134/s0006297917020080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzymatic activity of Ca2+-dependent calpain proteases as well as the content and gene expression of μ-calpain (activated by micromolar calcium ion concentrations), calpastatin (inhibitor of calpains), and titin (substrate for calpains) were investigated in cardiac muscles of rats subjected to chronic alcoholization for 3 and 6 months. There was no increase in the "heart weight/body weight" parameter indicating development of heart hypertrophy in the alcoholized rats, while a decreasing trend was observed for this parameter in the rats after 6-month modeling of alcoholic cardiomyopathy, which indicated development of atrophic changes in the myocardium. Fluorometric measurements conducted using the Calpain Activity Assay Kit did not reveal any changes in total calpain activity in protein extracts of cardiac muscles of the rats alcoholized for 3 and 6 months. Western blot analysis did not show reliable changes in the contents of μ-calpain and calpastatin, and SDS-PAGE did not reveal any decrease in the titin content in the myocardium of rats after the chronic alcohol intoxication. Autolysis of μ-calpain was also not verified, which could indicate that proteolytic activity of this enzyme in myocardium of chronically alcoholized rats is not enhanced. Using Pro-Q Diamond staining, changes in phosphorylation level of titin were not detected in cardiac muscle of rats after chronic alcoholization during three and six months. A decrease in µ-calpain and calpastatin mRNA content (~1.3-fold, p ≤ 0.01 and ~1.9-fold, p ≤ 0.01, respectively) in the myocardium of rats alcoholized for 3 months and decrease in calpastatin mRNA (~1.4-fold, p ≤ 0.01) in animals alcoholized for 6 months was demonstrated using real-time PCR. These results indicate negative effect of chronic alcohol intoxication on expression of the abovementioned genes.
Collapse
Affiliation(s)
- Yu V Gritsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kanzaki K, Watanabe D, Kuratani M, Yamada T, Matsunaga S, Wada M. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle. J Appl Physiol (1985) 2017; 122:396-405. [DOI: 10.1152/japplphysiol.00270.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca2+-regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca2+-ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca2+-regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca2+-ATPase, undergo calpain-dependent proteolysis.
Collapse
Affiliation(s)
- Keita Kanzaki
- Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Mai Kuratani
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Takashi Yamada
- School of Health Sciences, Sapporo Medical University, Hokkaido, Japan; and
| | | | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Pompeani N, Rybalka E, Latchman H, Murphy RM, Croft K, Hayes A. Skeletal muscle atrophy in sedentary Zucker obese rats is not caused by calpain-mediated muscle damage or lipid peroxidation induced by oxidative stress. J Negat Results Biomed 2014; 13:19. [PMID: 25547587 PMCID: PMC4296544 DOI: 10.1186/s12952-014-0019-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal muscle undergoes significant atrophy in Type 2 diabetic patients and animal models. We aimed to determine if atrophy of Zucker rat skeletal muscle was due to the activation of intracellular damage pathways induced by excess reactive oxygen species production (specifically those associated with the peroxidation of lipid membranes) and calpain activity. 14 week old obese Zucker rats and littermate lean controls were injected with 1% Evan’s Blue Dye. Animals were anaesthetised and extensor digitorum longus and soleus muscles were dissected, snap frozen and analysed for ROS-mediated F2-isoprostane production and calpain activation/autolysis. Contralateral muscles were histologically analysed for markers of muscle membrane permeability and atrophy. Results Muscle mass was lower in extensor digitorum longus and soleus of obese compared with lean animals, concomitant with reduced fibre area. Muscles from obese rats had a higher proportional area of Evan’s Blue Dye fluorescence, albeit this was localised to the interstitium/external sarcolemma. There were no differences in F2-isoprostane production when expressed relative to arachidonic acid content, which was lower in the obese EDL and soleus muscles. There were no differences in the activation of either μ-calpain or calpain-3. Conclusions This study highlights that atrophy of Zucker rat skeletal muscle is not related to sarcolemmal damage, sustained hyperactivation of the calpain proteases or excessive lipid peroxidation. As such, establishing the correct pathways involved in atrophy is highly important so as to develop more specific treatment options that target the underlying cause. This study has eliminated two of the potential pathways theorised to be responsible.
Collapse
Affiliation(s)
- Nancy Pompeani
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia.
| | - Emma Rybalka
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia.
| | - Heidy Latchman
- Department of Zoology, La Trobe University, Melbourne, Australia.
| | - Robyn M Murphy
- Department of Zoology, La Trobe University, Melbourne, Australia.
| | - Kevin Croft
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| | - Alan Hayes
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia.
| |
Collapse
|
19
|
Reilly BD, Cramp RL, Franklin CE. Activity, abundance and expression of Ca2+-activated proteases in skeletal muscle of the aestivating frog, Cyclorana alboguttata. J Comp Physiol B 2014; 185:243-55. [DOI: 10.1007/s00360-014-0880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 11/18/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|
20
|
Redox state and mitochondrial respiratory chain function in skeletal muscle of LGMD2A patients. PLoS One 2014; 9:e102549. [PMID: 25079074 PMCID: PMC4117472 DOI: 10.1371/journal.pone.0102549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 11/30/2022] Open
Abstract
Background Calpain-3 deficiency causes oxidative and nitrosative stress-induced damage in skeletal muscle of LGMD2A patients, but mitochondrial respiratory chain function and anti-oxidant levels have not been systematically assessed in this clinical population previously. Methods We identified 14 patients with phenotypes consistent with LGMD2A and performed CAPN3 gene sequencing, CAPN3 expression/autolysis measurements, and insilico predictions of pathogenicity. Oxidative damage, anti-oxidant capacity, and mitochondrial enzyme activities were determined in a subset of muscle biopsies. Results Twenty-one disease-causing variants were detected along the entire CAPN3 gene, five of which were novel (c.338 T>C, c.500 T>C, c.1525-1 G>T, c.2115+4 T>G, c.2366 T>A). Protein- and mRNA-based tests confirmed insilico predictions and the clinical diagnosis in 75% of patients. Reductions in antioxidant defense mechanisms (SOD-1 and NRF-2, but not SOD-2), coupled with increased lipid peroxidation and protein ubiquitination, were observed in calpain-3 deficient muscle, indicating a redox imbalance primarily affecting non-mitochondrial compartments. Although ATP synthase levels were significantly lower in LGMD2A patients, citrate synthase, cytochrome c oxidase, and complex I+III activities were not different from controls. Conclusions Despite significant oxidative damage and redox imbalance in cytosolic/myofibrillar compartments, mitochondrial respiratory chain function is largely maintained in skeletal muscle of LGMD2A patients.
Collapse
|
21
|
Macaluso F, Isaacs AW, Di Felice V, Myburgh KH. Acute change of titin at mid-sarcomere remains despite 8 wk of plyometric training. J Appl Physiol (1985) 2014; 116:1512-9. [DOI: 10.1152/japplphysiol.00420.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate skeletal muscle changes induced by an acute bout of plyometric exercise (PlyEx) both before and after PlyEx training, to understand if titin is affected differently after PlyEx training. Healthy untrained individuals ( N = 11) completed the 1stPlyEx (10 × 10 squat-jumps, 1-min rest). Thereafter, six subjects completed 8 wk of PlyEx, while five controls abstained from any jumping activity. Seven days after the last training session, all subjects completed the 2ndPlyEx. Blood samples were collected before and 6 h and 1, 2, 3, and 4 days after each acute bout of PlyEx, and muscle biopsies 4 days before and 3 days after each acute bout of PlyEx. The 1stPlyEx induced an increase in circulating myoglobin concentration. Muscle sample analysis revealed Z-disk streaming, a stretch or a fragmentation of titin (immunogold), and increased calpain-3 autolysis. After training, 2ndPlyEx did not induce Z-disk streaming or calpain-3 activation. The previously observed post-1stPlyEx positional change of the titin COOH terminus was still present pre-2ndPlyEx, in all trained and all control subjects. Only two controls presented with Z-disk streaming after 2ndPlyEx, while calpain-3 activation was absent in all controls. Eccentric explosive exercise induced a stretch or fragmentation of titin, which presented as a positional change of the COOH terminus. Calpain-3 activation does not occur when titin is already stretched before explosive jumping. Enzymatic digestion results in titin fragmentation, but since an increase in calpain-3 autolysis was visible only after the 1stPlyEx acute bout, fragmentation cannot explain the prolonged positional change.
Collapse
Affiliation(s)
- F. Macaluso
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa; and
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università di Palermo, Palermo, Italy
| | - A. W. Isaacs
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa; and
| | - V. Di Felice
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università di Palermo, Palermo, Italy
| | - K. H. Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa; and
| |
Collapse
|
22
|
Kanzaki K, Kuratani M, Matsunaga S, Yanaka N, Wada M. Three calpain isoforms are autolyzed in rat fast-twitch muscle after eccentric contractions. J Muscle Res Cell Motil 2014; 35:179-89. [PMID: 24557809 DOI: 10.1007/s10974-014-9378-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
The present study investigated changes in autolysis of three calpain isoforms in skeletal muscles undergoing eccentric contractions (ECC), leading to prolonged force deficits. Rat extensor digitorum longus and tibialis anterior muscles were exposed to 200-repeated ECC in situ, excised immediately after or 3 or 6 days after cessation of ECC, and used for measures of force output and for biochemical analyses. Full restoration of tetanic force in ECC-treated muscles was not attained until 6 days of recovery. Maximal calpain activity determined by a fluorogenic substrate was unaltered immediately after ECC, but increased to 313 and 450 % after 3 and 6 days, respectively. Increases in the amount of autolyzed calpain-3 were apparent immediately and developed progressively with recovery time, whereas elevations of autolyzed μ- and m-calpain occurred after 3 and 6 days, respectively. The protein content was augmented only in m-calpain. It is suggested that the three calpain isoforms may be involved in the dismantling, repair, remodeling and/or regeneration processes in ECC-treated muscles.
Collapse
Affiliation(s)
- Keita Kanzaki
- Faculty of Food Culture, Kurashiki Sakuyo University, 3515 Nagao-Tamashima, Kurashiki-shi, Okayama, 710-0292, Japan
| | | | | | | | | |
Collapse
|
23
|
Lomonosova YN, Shenkman BS, Nemirovskaya TL. Signaling effects of substrate stimulation of nNOS in rat soleus after eccentric exercise. DOKL BIOCHEM BIOPHYS 2013; 452:271-5. [PMID: 24150590 DOI: 10.1134/s1607672913050177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Indexed: 11/22/2022]
Affiliation(s)
- Y N Lomonosova
- Faculty of Basic Problems, Moscow State University, Moscow, 117191, Russia
| | | | | |
Collapse
|
24
|
Murphy RM, Xu H, Latchman H, Larkins NT, Gooley PR, Stapleton DI. Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle. Am J Physiol Cell Physiol 2012; 303:C1146-55. [DOI: 10.1152/ajpcell.00252.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To understand how glycogen affects skeletal muscle physiology, we examined enzymes essential for muscle glycogen synthesis and degradation using single fibers from quiescent and stimulated rat skeletal muscle. Presenting a shift in paradigm, we show these proteins are differentially associated with glycogen granules. Protein diffusibility and/or abundance of glycogenin, glycogen branching enzyme (GBE), debranching enzyme (GDE), phosphorylase (GP), and synthase (GS) were examined in fibers isolated from rat fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscle. GDE and GP proteins were more abundant (∼10- to 100-fold) in fibers from EDL compared with SOL muscle. GS and glycogenin proteins were similar between muscles while GBE had an approximately fourfold greater abundance in SOL muscle. Mechanically skinned fibers exposed to physiological buffer for 10 min showed ∼70% total pools of GBE and GP were diffusible (nonbound), whereas GDE and GS were considerably less diffusible. Intense in vitro stimulation, sufficient to elicit a ∼50% decrease in intracellular glycogen, increased diffusibility of GDE, GP, and GS (∼15–60%) and decreased GBE diffusibility (∼20%). Amylase treatment, which breaks α-1,4 linkages of glycogen, indicated differential diffusibilities and hence glycogen associations of GDE and GS. Membrane solubilization (1% Triton-X-100) allowed a small additional amount of GDE and GS to diffuse from fibers, suggesting the majority of nonglycogen-associated GDE/GS is associated with myofibrillar/contractile network of muscle rather than membranes. Given differences in enzymes required for glycogen metabolism, the current findings suggest glycogen particles have fiber-type-dependent structures. The greater catabolic potential of glycogen breakdown in fast-twitch fibers may account for different contraction induced rates of glycogen utilization.
Collapse
Affiliation(s)
- Robyn M. Murphy
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia
| | - Hongyang Xu
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia
| | - Heidy Latchman
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia
| | - Noni T. Larkins
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia
| | - Paul R. Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia; and
| | - David I. Stapleton
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Murphy RM, Dutka TL, Horvath D, Bell JR, Delbridge LM, Lamb GD. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J Physiol 2012; 591:719-29. [PMID: 23148318 DOI: 10.1113/jphysiol.2012.243279] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Excessive increases in intracellular [Ca(2+)] in skeletal muscle fibres cause failure of excitation-contraction coupling by disrupting communication between the dihydropyridine receptors in the transverse tubular system and the Ca(2+) release channels (RyRs) in the sarcoplasmic reticulum (SR), but the exact mechanism is unknown. Previous work suggested a possible role of Ca(2+)-dependent proteolysis in this uncoupling process but found no proteolysis of the dihydropyridine receptors, RyRs or triadin. Junctophilin-1 (JP1; ∼90 kDa) stabilizes close apposition of the transverse tubular system and SR membranes in adult skeletal muscle; its C-terminal end is embedded in the SR and its N-terminal associates with the transverse tubular system membrane. Exposure of skeletal muscle homogenates to precisely set [Ca(2+)] revealed that JP1 undergoes Ca(2+)-dependent proteolysis over the physiological [Ca(2+)] range in tandem with autolytic activation of endogenous μ-calpain. Cleavage of JP1 occurs close to the C-terminal, yielding a ∼75 kDa diffusible fragment and a fixed ∼15 kDa fragment. Depolarization-induced force responses in rat skinned fibres were abolished following 1 min exposure to 40 μm Ca(2+), with accompanying loss of full-length JP1. Supraphysiological stimulation of rat skeletal muscle in vitro by repeated tetanic stimulation in 30 mm caffeine also produced marked proteolysis of JP1 (and not RyR1). In dystrophic mdx mice, JP1 proteolysis is seen in limb muscles at 4 and not at 10 weeks of age. Junctophilin-2 in cardiac and skeletal muscle also undergoes Ca(2+)-dependent proteolysis, and junctophilin-2 levels are reduced following cardiac ischaemia-reperfusion. Junctophilin proteolysis may contribute to skeletal muscle weakness and cardiac dysfunction in a range of circumstances.
Collapse
Affiliation(s)
- R M Murphy
- Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Kano Y, Sonobe T, Inagaki T, Sudo M, Poole DC. Mechanisms of exercise-induced muscle damage and fatigue: Intracellular calcium accumulation. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. PLoS Genet 2011; 7:e1002396. [PMID: 22144912 PMCID: PMC3228830 DOI: 10.1371/journal.pgen.1002396] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/10/2011] [Indexed: 01/09/2023] Open
Abstract
Autosomal recessive mutations in the cytolinker protein plectin account for the multisystem disorders epidermolysis bullosa simplex (EBS) associated with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and congenital myasthenia (EBS-CMS). In contrast, a dominant missense mutation leads to the disease EBS-Ogna, manifesting exclusively as skin fragility. We have exploited this trait to study the molecular basis of hemidesmosome failure in EBS-Ogna and to reveal the contribution of plectin to hemidesmosome homeostasis. We generated EBS-Ogna knock-in mice mimicking the human phenotype and show that blistering reflects insufficient protein levels of the hemidesmosome-associated plectin isoform 1a. We found that plectin 1a, in contrast to plectin 1c, the major isoform expressed in epidermal keratinocytes, is proteolytically degraded, supporting the notion that degradation of hemidesmosome-anchored plectin is spatially controlled. Using recombinant proteins, we show that the mutation renders plectin's 190-nm-long coiled-coil rod domain more vulnerable to cleavage by calpains and other proteases activated in the epidermis but not in skeletal muscle. Accordingly, treatment of cultured EBS-Ogna keratinocytes as well as of EBS-Ogna mouse skin with calpain inhibitors resulted in increased plectin 1a protein expression levels. Moreover, we report that plectin's rod domain forms dimeric structures that can further associate laterally into remarkably stable (paracrystalline) polymers. We propose focal self-association of plectin molecules as a novel mechanism contributing to hemidesmosome homeostasis and stabilization. Hemidesmosomes are specialized protein complexes that promote anchorage of the basal keratinocyte cell layer of the epidermis to the underlying dermis. They provide tissue integrity and resistance to mechanical forces. When hemidesmosomes do not function properly, skin blistering ensues in response to mechanical trauma. Plectin is an essential component of hemidesmosomes. Humans carrying recessive mutations in the plectin gene most frequently develop multisystem disorders, where in addition to skin other tissues are also affected. However, there is a unique dominant plectin mutation, which leads to the disease epidermolysis bullosa simplex Ogna (EBS-Ogna), affecting skin exclusively. Because of that, EBS-Ogna is an exceptional system to study the contribution of plectin to hemidesmosome function. We have generated an EBS-Ogna mouse model that mimics the human disease. Using this model, we have learned that selective degradation of hemidesmosome-associated plectin isoform 1a by proteases activated specifically in keratinocytes results in reduced numbers and dysfunction of hemidesmosomes. In contrast, plectin-1c, another plectin isoform expressed in keratinocytes, is not degraded. Moreover, we find that plectin dimers can oligomerize via their long coiled-coil rod domain, a process likely to be instrumental in maintenance of hemidesmosome integrity. These findings highlight the importance of plectin-1a for hemidesmosome function.
Collapse
|
28
|
Murphy RM, Vissing K, Latchman H, Lamboley C, McKenna MJ, Overgaard K, Lamb GD. Activation of skeletal muscle calpain-3 by eccentric exercise in humans does not result in its translocation to the nucleus or cytosol. J Appl Physiol (1985) 2011; 111:1448-58. [DOI: 10.1152/japplphysiol.00441.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The skeletal muscle-specific calpain-3 protease is likely involved in muscle repair, although the mechanism is not known. Physiological activation of calpain-3 occurs 24 h following eccentric exercise in humans. Functional consequences of calpain-3 activation are not known; however, calpain-3 has been suggested to be involved in nuclear signaling via NF-κB. To test this and help identify how/where calpain-3 acts, we investigated whether calpain-3 autolysis (hence, activation) following eccentric exercise results in translocation from its normal myofibrillar location to the nucleus or the cytosol. In resting human skeletal muscle, the majority (87%) of calpain-3 was present in myofibrillar fractions, with only a small proportion (<10%) in an autolyzed state. Enriched nuclear fractions contained ∼8% of the total calpain-3, which was present in a predominantly (>80%) autolyzed state. Using freshly dissected human muscle fibers to identify freely diffusible proteins, we showed that only ∼5% of the total calpain-3 pool was cytosolic. At 3 and 24 h following eccentric step exercise, there was an ∼70% increase in autolysis in whole muscle samples ( n = 11, P < 0.05, by 1-way ANOVA with repeated measures and Newman-Keuls post hoc analysis). This exercise-induced autolysis was attributed to myofibrillar-bound calpain-3, since neither the amount of calpain-3 nor the proportion autolyzed was significantly changed in enriched nuclear or cytosolic fractions following the exercise intervention. We present a model for calpain-3 localization at rest and following activation in human skeletal muscle and suggest that the functional importance of calpain-3 remains predominantly tightly associated with its localization within the myofibrillar compartment.
Collapse
Affiliation(s)
| | | | | | - Cedric Lamboley
- Department of Zoology, La Trobe University,
- School of Sport and Exercise Science, Institute of Sport, Exercise, and Active Living, Victoria University, Melbourne, Victoria, Australia; and
| | - Michael J. McKenna
- School of Sport and Exercise Science, Institute of Sport, Exercise, and Active Living, Victoria University, Melbourne, Victoria, Australia; and
| | | | | |
Collapse
|
29
|
Nemova NN, Lysenko LA, Kantserova NP. Proteases of the calpain family: Structure and functions. Russ J Dev Biol 2010. [DOI: 10.1134/s1062360410050073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Abstract
1. Skeletal muscle fibres contain ubiquitous (mu-calpain and m-calpain) and muscle-specific (calpain-3) Ca(2+)-dependent proteases. The physiological roles of the calpains are not well understood, although ubiquitous calpains have been associated with apoptosis and myogenesis and calpain-3 is likely involved in sarcomeric remodelling. A defect in the expression of calpain-3 results in limb-girdle muscular dystrophy Type 2A. 2. At resting [Ca(2+)](i), calpains are present predominantly in their full-length, unautolysed/unactivated forms. Once activated, mu-calpain and calpain-3 appear in their autolysed forms and this measurement can be used to determine when in vivo activation occurs. Endogenously expressed mu-calpain and calpain-3 are activated within a physiological [Ca(2+)] range in a Ca(2+)- and time-dependent manner. 3. In skeletal muscle, mu-calpain is a freely diffusible protein that binds rapidly when [Ca(2+)](i) is increased. Calpain-3 is tightly bound in skeletal muscle fibres at the N2A line of the large elastic protein titin. 4. Overall, neither mu-calpain nor calpain-3 are activated immediately following sprint, endurance or eccentric exercise, despite the frequent episodes of high cytoplasmic [Ca(2+)] that would occur during these types of muscle contractions. Importantly, however, a substantial proportion of calpain-3, but not mu-calpain, is activated 24 h after a single bout of eccentric exercise. 5. In vitro studies have shown that calpain-3 becomes activated if exposed for a prolonged period of time (> 1 h) to resting cytoplasmic [Ca(2+)] that are approximately two- to fourfold higher than normal. This suggests that the small but sustained increase in [Ca(2+)](i) that likely occurs after eccentric contractions is both high and long enough to result in calpain-3 activation and supports the role for calpain-3 in sarcomeric remodelling.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Lomonosova YN, Zheleznyakova AV, Bugrova AE, Zhiryakova AV, Kalamkarov GR, Nemirovskaya TL. Protective effect of nitric oxide on cytoskeletal proteins in rat soleus under eccentric exercise. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909030191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Lamb GD. Mechanisms of excitation-contraction uncoupling relevant to activity-induced muscle fatigueThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process. Appl Physiol Nutr Metab 2009; 34:368-72. [DOI: 10.1139/h09-032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
If the free [Ca2+] in the cytoplasm of a skeletal muscle fiber is raised substantially for a period of seconds to minutes or to high levels just briefly, it leads to disruption of the normal excitation-contraction (E-C) coupling process and a consequent long-lasting decrease in force production. It appears that the disruption to the coupling occurs at the triad junction, where the voltage-sensor molecules (dihydropyridine receptors) normally interact with and open the Ca2+ release channels (ryanodine receptors) in the adjacent sarcoplasmic reticulum (SR). This disruption results in inadequate release of SR Ca2+ upon stimulation. Such E-C uncoupling may underlie the long-duration low-frequency fatigue that can occur after various types of exercise, as well as possibly being a contributing factor to the muscle weakness in certain muscle diseases. The process or processes causing the disruption of the coupling between the voltage sensors and the release channels is not known with certainty, but might be associated with structural changes at the triad junction, possibly caused by activation of the Ca2+-dependent protease, µ-calpain.
Collapse
Affiliation(s)
- Graham D. Lamb
- Department of Zoology, La Trobe University, Melbourne, Victoria, 3086, Australia (e-mail: )
| |
Collapse
|
33
|
Goodman CA, Horvath D, Stathis C, Mori T, Croft K, Murphy RM, Hayes A. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J Appl Physiol (1985) 2009; 107:144-54. [PMID: 19423840 DOI: 10.1152/japplphysiol.00040.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.
Collapse
Affiliation(s)
- Craig A Goodman
- School of Human Movement, Recreation and Performance, Victoria University, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Verburg E, Murphy RM, Richard I, Lamb GD. Involvement of calpains in Ca2+-induced disruption of excitation-contraction coupling in mammalian skeletal muscle fibers. Am J Physiol Cell Physiol 2009; 296:C1115-22. [DOI: 10.1152/ajpcell.00008.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle fibers, the coupling between excitation of the surface membrane and the release of Ca2+ from the sarcoplasmic reticulum is irreversibly disrupted if cytoplasmic Ca2+ concentration ([Ca2+]) is raised to micromolar levels for a prolonged period. This excitation-contraction (EC) uncoupling may contribute to muscle weakness after some types of exercise and in certain muscle diseases and has been linked to structural alteration of the triad junctions, but its molecular basis is unclear. Both μ-calpain, a ubiquitous Ca2+-activated protease, and muscle-specific calpain-3 become autolytically activated at micromolar Ca2+ and have been suggested to be responsible for the uncoupling. This study used controlled Ca2+ exposure in mechanically skinned fibers from extensor digitorum longus muscle to show that EC uncoupling still occurs in muscle fibers of calpain-3-deficient mice, with a Ca2+ dependence indistinguishable from that in normal mice and rats. Western blotting of muscle fibers that had been partially EC uncoupled by exposure to an intermediate Ca2+ level (∼5 μM Ca2+ for 3 min, no ATP) showed the presence of autolytic activation of a proportion of the μ-calpain present, but with little or no activation of calpain-3. Homogenates of normal and calpain-3-deficient muscles exposed to micromolar Ca2+ displayed similar levels of diffusible proteolytic activity, as gauged by the rate of decline of passive force in stretched, skinned muscle fibers. Exogenously added μ-calpain, preactivated by elevated [Ca2+] and applied in the presence of 1 μM Ca2+, disrupted EC coupling in a manner similar to raised [Ca2+]. We conclude that calpain-3 is not responsible for Ca2+-induced disruption of EC coupling, but that μ-calpain is a plausible candidate.
Collapse
|
35
|
Rose AJ, Richter EA. Regulatory mechanisms of skeletal muscle protein turnover during exercise. J Appl Physiol (1985) 2009; 106:1702-11. [DOI: 10.1152/japplphysiol.91375.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding, fasting, and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regard to protein turnover, there are now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated by suppressed mRNA translation initiation and elongation steps involving, but not limited to, changes in eukaryotic initiation factor 4E binding protein 1 and eukaryotic elongation factor 2 phosphorylation (eEF2), respectively. Evidence is provided that upstream signaling to translation factors is mediated by signaling downstream of changes in intracellular Ca2+ and energy turnover. In particular, a signaling cascade involving Ca2+/calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work with available and new techniques will undoubtedly reveal the functional significance and signaling mechanisms behind changes in skeletal muscle protein turnover during exercise.
Collapse
|
36
|
Murphy RM, Lamb GD. Endogenous calpain-3 activation is primarily governed by small increases in resting cytoplasmic [Ca2+] and is not dependent on stretch. J Biol Chem 2009; 284:7811-9. [PMID: 19144634 PMCID: PMC2658075 DOI: 10.1074/jbc.m808655200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Indexed: 11/06/2022] Open
Abstract
Proteolytically active calpain-3/p94 is clearly vital for normal muscle function, since its absence leads to limb girdle muscular dystrophy 2A, but its function and regulatory control are poorly understood. Here we use single muscle fibers, individually skinned by microdissection, to investigate the diffusibility and autolytic activation of calpain-3 in situ. Virtually all calpain-3 present in mature muscle fibers is tightly bound in the vicinity of the titin N2A line and triad junctions and remains so irrespective of fiber stretching or raised [Ca(2+)]. Most calpain-3 is evidently bound within the contractile filament lattice, because (i) its slow diffusional loss is slowed further by locking myosin and actin into rigor and (ii) detergent dispersion of membranes causes rapid washout of most ryanodine receptors and sarcoplasmic reticulum Ca(2+) pumps with little accompanying washout of calpain-3. Calpain-3 autolyzes (becoming proteolytically active) in a tightly calcium-dependent manner. It remains in its nonactivated full-length form if [Ca(2+)] is maintained at < or = 50 nm, the normal resting level, even with brief increases to 2-20 mum during repeated tetanic contractions, but it becomes active (though still bound) if [Ca(2+)] is kept slightly elevated at 200 nm ( approximately 20% autolysis in 1 h). Calpain-3 did not spontaneously autolyze even when free in solution with 200 nm Ca(2+) for up to 60 min. These findings explain why calpain-3 remains quiescent with normal exercise but is activated following eccentric (stretching) contractions, when resting [Ca(2+)] is elevated, and how a protease such as calpain-3 can be very Ca(2+)-sensitive yet highly specific in its actions.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Zoology, La Trobe University, Melbourne, 3086 Victoria, Australia.
| | | |
Collapse
|
37
|
Dissociation between force and maximal Na+, K+-ATPase activity in rat fast-twitch skeletal muscle with fatiguing in vitro stimulation. Eur J Appl Physiol 2008; 105:575-83. [DOI: 10.1007/s00421-008-0937-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2008] [Indexed: 02/01/2023]
|
38
|
Abstract
Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
Collapse
|
39
|
Murphy RM, Goodman CA, McKenna MJ, Bennie J, Leikis M, Lamb GD. Calpain-3 is autolyzed and hence activated in human skeletal muscle 24 h following a single bout of eccentric exercise. J Appl Physiol (1985) 2007; 103:926-31. [PMID: 17585039 DOI: 10.1152/japplphysiol.01422.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function and normal regulation of calpain-3, a muscle-specific Ca(2+)-dependent protease, is uncertain, although its absence leads to limb-girdle muscular dystrophy type 2A. This study examined the effect of eccentric exercise on calpain-3 autolytic activation, because such exercise is known to damage sarcomeric structures and to trigger adaptive changes that help prevent such damage on subsequent exercise. Six healthy human subjects performed a 30-min bout of one-legged, eccentric, knee extensor exercise. Torque measurements, vastus lateralis muscle biopsies, and venous blood samples were taken before and up to 7 days following the exercise. Peak isometric muscle torque was depressed immediately and at 3 h postexercise and recovered by 24 h, and serum creatine kinase concentration peaked at 24 h postexercise. The amount of autolyzed calpain-3 was unchanged immediately and 3 h after exercise, but increased markedly (from approximately 16% to approximately 35% of total) 24 h after the exercise, and returned to preexercise levels within 7 days. In contrast, the eccentric exercise produced little autolytic activation of the ubiquitous Ca(2+)-activated protease, mu-calpain. Eccentric exercise is the first physiological circumstance shown to result in calpain-3 activation in vivo.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Zoology, La Trobe University, Victoria 3086, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
Gailly P, De Backer F, Van Schoor M, Gillis JM. In situ measurements of calpain activity in isolated muscle fibres from normal and dystrophin-lacking mdx mice. J Physiol 2007; 582:1261-75. [PMID: 17510188 PMCID: PMC2075236 DOI: 10.1113/jphysiol.2007.132191] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calpains are Ca(2+)-activated proteases that are thought to be involved in muscle degenerative diseases such as Duchenne muscular dystrophy. Status and activity of calpains in adult muscle fibres are poorly documented. We report here in situ measurements of calpain activity in collagenase-isolated fibres from C57 mice and form two models of dystrophy: dystrophin-deficient mdx and calpain-3 knocked-out mice. Calpain activity was measured using a permeant, fluorogenic substrate and its Ca(2+) dependence was studied. A 30-fold change of activity was observed between the lowest and the highest steady-state Ca(2+) availability. Fast transient changes of [Ca(2+)](i) induced by electrical stimulation or KCl-dependent depolarization were ineffective in activating calpain. Slow [Ca(2+)] transients, as elicited during depletion of Ca(2+) stores, Ca(2+) store repletion and hypo-osmotic swelling were able to activate calpain. On return to resting conditions, calpain activity recovered its basal rate within 10 min. In resting intact muscle, mu-calpain was predominantly in the 80 kDa native form, with a small fraction in the 78 kDa autolysed form. The latter is thought to be responsible for the activity measured in our conditions. Calpain activity in mdx fibres showed an average 1.5-fold increase compared to activity in C57 fibres. This activity was reduced by a 10-fold lowering of [Ca(2+)](o). Calpain-3-deficient fibres showed about the same increase, thus calpain-3 did not contribute to the activity measured here and calpain activation is not specific to dystrophin deficiency. In fibres from transgenic mice over-expressing calpastatin, a 40-50% reduction of calpain activity was observed, as with synthetic drugs (Z-Leu-Leu-CHO and SNT198438). We provide novel information on the physiological factors that control calpain activity in situ, particularly the effect of intracellular Ca(2+) transients that occur in excitation-contraction coupling, Ca(2+) store depletion and refilling, and activation of mechanosensitive Ca(2+) channels.
Collapse
Affiliation(s)
- P Gailly
- Laboratory of Cell Physiology, Catholic University of Louvain, 1200 Brussels, Belgium
| | | | | | | |
Collapse
|
41
|
Smith IJ, Dodd SL. Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle. Exp Physiol 2007; 92:561-73. [PMID: 17272355 DOI: 10.1113/expphysiol.2006.035790] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the calpain proteases in skeletal muscle atrophy is poorly understood. One goal of these experiments was to clarify whether calpains act upstream of the ubiquitin-proteasome pathway (UPP). Calpain activation may also inhibit the anabolic signalling of Akt, since a molecular chaperone previously shown to mediate Akt activity, heat shock protein 90 (HSP 90), is a calpain substrate. Thus, an additional objective was to determine whether calpain activation affects the Akt signalling pathway. Ex vivo experiments were conducted using isolated rat diaphragm muscle. Calpain activation increased total protein degradation by 65%. Proteasome inhibition prevented this large rise in proteolysis, demonstrating that the proteasome was necessary for calpain-activated protein degradation. In addition, calpain activation increased proteasome-dependent proteolysis by 144%, further supporting the idea of sequential proteolytic pathways. Calpain reduced Akt and mammalian target of rapamycin (mTOR) phosphorylation by 35 and 50%, respectively, and activated glycogen synthase kinase-3 beta (GSK-3beta) by 40%. Additionally, calpain activation reduced HSP 90beta and mTOR protein content by 33 and 50%, respectively. These data suggest that calpains play a dual role in protein metabolism by concomitantly activating proteasome-dependent proteolysis and inhibiting the Akt pathway of protein synthesis.
Collapse
Affiliation(s)
- Ira J Smith
- Muscle Physiology Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
42
|
Murphy KT, Aughey RJ, Petersen AC, Clark SA, Goodman C, Hawley JA, Cameron-Smith D, Snow RJ, McKenna MJ. Effects of endurance training status and sex differences on Na+,K+-pump mRNA expression, content and maximal activity in human skeletal muscle. Acta Physiol (Oxf) 2007; 189:259-69. [PMID: 17305706 DOI: 10.1111/j.1748-1716.2006.01635.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM This study investigated the effects of endurance training status and sex differences on skeletal muscle Na+,K+-pump mRNA expression, content and activity. METHODS Forty-five endurance-trained males (ETM), 11 recreationally active males (RAM), and nine recreationally active females (RAF) underwent a vastus lateralis muscle biopsy. Muscle was analysed for Na+,K+-pump alpha1, alpha2, alpha3, beta1, beta2 and beta3 isoform mRNA expression (real-time reverse transcription-polymerase chain reaction), content ([3H]-ouabain-binding site) and maximal activity (3-O-methylfluorescein phosphatase, 3-O-MFPase). RESULTS ETM demonstrated lower alpha1, alpha3, beta2 and beta3 mRNA expression by 74%, 62%, 70% and 82%, respectively, than RAM (P<0.04). In contrast, [3H]-ouabain binding and 3-O-MFPase activity were each higher in ETM than in RAM, by 16% (P<0.03). RAM demonstrated a 230% and 364% higher alpha3 and beta3 mRNA expression than RAF, respectively (P<0.05), but no significant sex differences were found for alpha1, alpha2, beta1 or beta2 mRNA, [3H]-ouabain binding or 3-O-MFPase activity. No significant correlation was found between years of endurance training and either [3H]-ouabain binding or 3-O-MFPase activity. Significant but weak correlations were found between the number of training hours per week and 3-O-MFPase activity (r=0.31, P<0.02) and between incremental exercise VO2(peak)) and both [3H]-ouabain binding (r=0.33, P<0.01) and 3-O-MFPase activity (r=0.28, P<0.03). CONCLUSIONS Isoform-specific differences in Na+,K+-pump mRNA expression were found with both training status and sex differences, but only training status influenced Na+,K+-pump content and maximal activity in human skeletal muscle.
Collapse
Affiliation(s)
- K T Murphy
- Muscle, Ions and Exercise Group, School of Human Movement, Recreation and Performance, Centre for Ageing, Rehabilitation, Exercise and Sport Science (CARES), Victoria University, Melbourne, Vic., Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Norton L, Parr T, Bardsley RG, Ye H, Tsintzas K. Characterization of GLUT4 and calpain expression in healthy human skeletal muscle during fasting and refeeding. Acta Physiol (Oxf) 2007; 189:233-40. [PMID: 17305703 DOI: 10.1111/j.1748-1716.2006.01639.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Calpain-10 and calpain-3 and the diabetes ankyrin repeat protein (DARP) have all been linked to insulin resistance and type 2 diabetes. We set out to measure the expression of these genes in human skeletal muscle and relate them to functional measurements of insulin action during fasting (which induces insulin resistance) and refeeding (which reverses it). METHODS Ten healthy male volunteers underwent 48 h of starvation followed by 24 h of high carbohydrate refeeding. On three occasions, before and after starvation and after refeeding, subjects underwent a 16 min insulin tolerance test to quantify insulin sensitivity. Muscle biopsies were obtained before and after fasting and after refeeding for the analysis of calpain-10 and calpain-3, GLUT4 and DARP expression by Western blotting and real-time PCR. RESULTS Fasting led to a marked reduction in whole body insulin sensitivity by approx. 45% (P<0.01) and skeletal muscle GLUT4 gene expression by approx. 40% (P<0.05). However, fasting had no effect on calpain-10 and calpain-3 mRNA or protein levels, or DARP mRNA expression. Refeeding only partly restored insulin sensitivity and GLUT4 gene expression to their pre-fast values, but did not effect the expression of calpain-10, calpain-3 or DARP. CONCLUSIONS These findings demonstrate that in healthy non-diabetic humans induction of insulin resistance by fasting and its reversal by refeeding with a high CHO diet is mirrored by changes in skeletal muscle GLUT4 but not calpain-10 and calpain-3 expression.
Collapse
Affiliation(s)
- L Norton
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Nottingham University Medical School, Queens Medical Centre, Nottingham, UK
| | | | | | | | | |
Collapse
|
44
|
Vermaelen M, Sirvent P, Raynaud F, Astier C, Mercier J, Lacampagne A, Cazorla O. Differential localization of autolyzed calpains 1 and 2 in slow and fast skeletal muscles in the early phase of atrophy. Am J Physiol Cell Physiol 2006; 292:C1723-31. [PMID: 17182728 DOI: 10.1152/ajpcell.00398.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calpains have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. However, limited data are available about the specific involvement of each calpain in the early stages of muscle atrophy. The aims of this study were to determine whether calpains 1 and 2 are autolyzed after a short period of muscle disuse, and, if so, where in the myofibers the autolyzed products are localized. In the rat soleus muscle, 5 days of immobilization increased autolyzed calpain 1 in the particulate and not the soluble fraction. Conversely, autolyzed calpain 2 was not found in the particulate fraction, whereas it was increased in the soluble fraction after immobilization. In the less atrophied plantaris muscle, no difference was noted between the control and immobilized groups whatever the fraction or calpain. Other proteolytic pathways were also investigated. The ubiquitin-proteasome pathway was activated in both skeletal muscles, and caspase 3 was activated only in the soleus muscle. Taken together, our data suggest that calpains 1 and 2 are involved in atrophy development in slow type muscle exclusively and that they have different regulation and protein targets. Moreover, the activation of proteolytic pathways appears to differ in slow and fast muscles, and the proteolytic mechanisms involved in fast-type muscle atrophy remain unclear.
Collapse
Affiliation(s)
- Marianne Vermaelen
- INSERM, ERI 25, Hôpitol Arnaud de Villneuve, 34295 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Bartoli M, Bourg N, Stockholm D, Raynaud F, Delevacque A, Han Y, Borel P, Seddik K, Armande N, Richard I. A mouse model for monitoring calpain activity under physiological and pathological conditions. J Biol Chem 2006; 281:39672-80. [PMID: 17056592 DOI: 10.1074/jbc.m608803200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are Ca(2+)-dependent cysteine proteases known to be important for the regulation of cell functions and which aberrant activation causes cell death in a number of degenerative disorders. To provide a tool for monitoring the status of calpain activity in vivo under physiological and pathological conditions, we created a mouse model that expresses ubiquitously a fluorescent reporter consisting of eCFP and eYFP separated by a linker cleavable by the ubiquitous calpains. We named this mouse CAFI for calpain activity monitored by FRET imaging. Our validation studies demonstrated that the level of calpain activity correlates with a decrease in FRET (fluorescence resonance energy transfer) between the two fluorescent proteins. Using this model, we observed a small level of activity after denervation and fasting, a high level of activity during muscle regeneration and ischemia, and local activity in damaged myofibers after exercise. Finally, we crossed the CAFI mouse with the alpha-sarcoglycan-deficient model, demonstrating an increase of calpain activity at the steady state. Altogether, our results present evidence that CAFI mice could be a valuable tool in which to follow calpain activity at physiological levels and in disease states.
Collapse
Affiliation(s)
- Marc Bartoli
- Généthon/CNRS-UMR8115, 1 rue de l'Internationale 91000 Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Calpain 3 is a 94-kDa calcium-dependent cysteine protease mainly expressed in skeletal muscle. In this tissue, it localizes at several regions of the sarcomere through binding to the giant protein, titin. Loss-of-function mutations in the calpain 3 gene have been associated with limb-girdle muscular dystrophy type 2A (LGMD2A), a common form of muscular dystrophy found world wide. Recently, significant progress has been made in understanding the mode of regulation and the possible function of calpain 3 in muscle. It is now well accepted that it has an unusual zymogenic activation and that cytoskeletal proteins are one class of its substrates. Through the absence of cleavage of these substrates, calpain 3 deficiency leads to abnormal sarcomeres, impairment of muscle contractile capacity, and death of the muscle fibers. These data indicate a role for calpain 3 as a chef d'orchestre in sarcomere remodeling and suggest a new category of LGMD2 pathological mechanisms.
Collapse
|
47
|
Murphy RM, Verburg E, Lamb GD. Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle. J Physiol 2006; 576:595-612. [PMID: 16857710 PMCID: PMC1890353 DOI: 10.1113/jphysiol.2006.114090] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle fibres contain ubiquitous and muscle-specific calcium-dependent proteases known as calpains. During normal activity, intracellular [Ca(2+)] in muscle fibres increases to high levels ( approximately 2-20 microm), and it is not apparent how this can be reconciled with the activation properties of the calpains. Calpains evidently do not cause widespread proteolytic damage within muscle fibres under normal circumstances, but do have a role in necrosis in dystrophic muscle fibres. In this study, we examined the in situ localization and regulation of calpains in muscle fibres in order to identify how they are attuned to normal function. The sarcolemma of individual muscle fibres of the rat was removed by microdissection (fibre 'skinning') in order to determine the compartmentalization and diffusibility of the two most Ca(2+)-sensitive calpains, mu-calpain and calpain-3, and to permit precise manipulation of cytoplasmic [Ca(2+)] under physiological in situ conditions. Passive force production in stretched fibres, which indicates the patency of the important elastic structural protein titin, was used as a sensitive assay of the amount of diffusible proteolytic activity in individual fibre segments and in muscle homogenates at set [Ca(2+)]. All calpain-3 is bound tightly within a fibre, whereas most mu-calpain ( approximately 0.2 microm) is initially freely diffusible in the cytoplasm at resting [Ca(2+)] but binds within seconds at high [Ca(2+)]. [Ca(2+)] has to be raised to >/= 2 microm for >/= 1 min to initiate detectable autolysis of mu-calpain and to activate appreciable proteolytic activity. If the [Ca(2+)] is raised sufficiently for long enough to initiate substantial autolysis of mu-calpain, the Ca(2+) sensitivity of the proteolytic activity is greatly increased, and it remains active even at 300 nm Ca(2+), with activity only ceasing if the [Ca(2+)] is decreased to approximately 50 nm Ca(2+), close to the normal resting [Ca(2+)]. These findings on the Ca(2+)- and time-dependent binding, autolytic and proteolytic properties of mu-calpain under physiological conditions demonstrate how it is precisely attuned to avoid uncontrolled proteolytic activity under normal circumstances, and indicate why it could lead to substantial proteolytic damage if resting or localized [Ca(2+)] is elevated, as is likely to occur after eccentric contraction and in dystrophic muscle.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Zoology, La Trobe University, Bundoora campus, Melbourne, Victoria 3086, Australia
| | | | | |
Collapse
|
48
|
Verburg E, Dutka TL, Lamb GD. Long-lasting muscle fatigue: partial disruption of excitation-contraction coupling by elevated cytosolic Ca2+ concentration during contractions. Am J Physiol Cell Physiol 2006; 290:C1199-208. [PMID: 16306125 DOI: 10.1152/ajpcell.00469.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The repeated elevation of cytosolic Ca2+ concentration ([Ca2+]i) above resting levels during contractile activity has been associated with long-lasting muscle fatigue. The mechanism underlying this fatigue appears to involve elevated [Ca2+]i levels that induce disruption of the excitation-contraction (E-C) coupling process at the triad junction. Unclear, however, are which aspects of the activity-related [Ca2+]i changes are responsible for the deleterious effects, in particular whether they depend primarily on the peak [Ca2+]i reached locally at particular sites or on the temporal summation of the increased [Ca2+] in the cytoplasm as a whole. In this study, we used mechanically skinned fibers from rat extensor digitorum longus muscle, in which the normal E-C coupling process remains intact. The [Ca2+]i was raised either by applying a set elevated [Ca2+] throughout the fiber or by using action potential stimulation to induce the release of sarcoplasmic reticulum Ca2+ by the normal E-C coupling system with or without augmentation by caffeine or buffering with BAPTA. Herein we show that elevating [Ca2+]i in the physiological range of 2–20 μM irreversibly disrupts E-C coupling in a concentration-dependent manner but requires exposure for a relatively long time (1–3 min) to cause substantial uncoupling. The effectiveness of Ca2+ released via the endogenous system in disrupting E-C coupling indicates that the relatively high [Ca2+]i attained close to the release site at the triad junction is a more important factor than the increase in bulk [Ca2+]i. Our results suggest that during prolonged vigorous activity, the many repeated episodes of relatively high triadic [Ca2+] can disrupt E-C coupling and lead to long-lasting fatigue.
Collapse
Affiliation(s)
- Esther Verburg
- Department of Zoology, La Trobe University, Bundoora Campus, Melbourne, Victoria 3086, Australia.
| | | | | |
Collapse
|