1
|
Jessen S, Quesada JP, Di Credico A, Moreno-Justicia R, Wilson R, Jacobson G, Bangsbo J, Deshmukh AS, Hostrup M. Beta 2-Adrenergic Stimulation Induces Resistance Training-Like Adaptations in Human Skeletal Muscle: Potential Role of KLHL41. Scand J Med Sci Sports 2024; 34:e14736. [PMID: 39366923 DOI: 10.1111/sms.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Skeletal muscle mass plays a pivotal role in metabolic function, but conditions such as bed rest or injury often render resistance training impractical. The beta2-adrenergic receptor has been highlighted as a potential target to promote muscle hypertrophy and treat atrophic conditions. Here, we investigate the proteomic changes associated with beta2-adrenergic-mediated muscle hypertrophy, using resistance training as a hypertrophic comparator. We utilize MS-based proteomics to map skeletal muscle proteome remodeling in response to beta2-adrenergic stimulation or resistance training as well as cell model validation. We report that beta2-adrenergic stimulation mimics multiple features of resistance training in proteome-wide remodeling, comprising systematic upregulation of ribosomal subunits and concomitant downregulation of mitochondrial proteins. Approximately 20% of proteins were regulated in both conditions, comprising proteins involved in steroid metabolism (AKR1C1, AKR1C2, AKRC1C3), protein-folding (SERPINB1), and extracellular matrix organization (COL1A1, COL1A2). Among overall most significantly upregulated proteins were kelch-like family members (KLHL) 40 and 41. In follow-up experiments, we identify KLHL41 as having novel implications for beta2-adrenergic-mediated muscle hypertrophy. Treating C2C12 cells with beta2-agonist for 96 h increased myotube diameter by 48% (p < 0.001). This anabolic effect was abolished by prior knockdown of KLHL41. Using siRNA, KLHL41 abundance was decreased by 60%, and the anabolic response to beta2-agonist was diminished (+ 15%, i.e., greater in the presence of KLHL41, knock-down × treatment: p = 0.004). In conclusion, protein-wide remodeling induced by beta2-adrenergic stimulation mimics multiple features of resistance training, and thus the beta2-adrenergic receptor may be a target with therapeutic potential in the treatment of muscle wasting conditions without imposing mechanical load.
Collapse
Affiliation(s)
- Søren Jessen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Prats Quesada
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Roger Moreno-Justicia
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Wilson
- Central Science Laboratory, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Glenn Jacobson
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jens Bangsbo
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Bai Y, Harvey T, Bilyou C, Hu M, Fan CM. Skeletal Muscle Satellite Cells Co-Opt the Tenogenic Gene Scleraxis to Instruct Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.10.570982. [PMID: 38168349 PMCID: PMC10760055 DOI: 10.1101/2023.12.10.570982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Skeletal muscles connect bones and tendons for locomotion and posture. Understanding the regenerative processes of muscle, bone and tendon is of importance to basic research and clinical applications. Despite their interconnections, distinct transcription factors have been reported to orchestrate each tissue's developmental and regenerative processes. Here we show that Scx expression is not detectable in adult muscle stem cells (also known as satellite cells, SCs) during quiescence. Scx expression begins in activated SCs and continues throughout regenerative myogenesis after injury. By SC-specific Scx gene inactivation (ScxcKO), we show that Scx function is required for SC expansion/renewal and robust new myofiber formation after injury. We combined single-cell RNA-sequencing and CUT&RUN to identify direct Scx target genes during muscle regeneration. These target genes help explain the muscle regeneration defects of ScxcKO, and are not overlapping with Scx -target genes identified in tendon development. Together with a recent finding of a subpopulation of Scx -expressing connective tissue fibroblasts with myogenic potential during early embryogenesis, we propose that regenerative and developmental myogenesis co-opt the Scx gene via different mechanisms.
Collapse
|
3
|
Thareja SK, Anfinson M, Cavanaugh M, Kim MS, Lamberton P, Radandt J, Brown R, Liang HL, Stamm K, Afzal MZ, Strande J, Frommelt MA, Lough JW, Fitts RH, Mitchell ME, Tomita-Mitchell A. Altered contractility, Ca 2+ transients, and cell morphology seen in a patient-specific iPSC-CM model of Ebstein's anomaly with left ventricular noncompaction. Am J Physiol Heart Circ Physiol 2023; 325:H149-H162. [PMID: 37204873 PMCID: PMC10312315 DOI: 10.1152/ajpheart.00658.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Patients with two congenital heart diseases (CHDs), Ebstein's anomaly (EA) and left ventricular noncompaction (LVNC), suffer higher morbidity than either CHD alone. The genetic etiology and pathogenesis of combined EA/LVNC remain largely unknown. We investigated a familial EA/LVNC case associated with a variant (p.R237C) in the gene encoding Kelch-like protein 26 (KLHL26) by differentiating induced pluripotent stem cells (iPSCs) generated from affected and unaffected family members into cardiomyocytes (iPSC-CMs) and assessing iPSC-CM morphology, function, gene expression, and protein abundance. Compared with unaffected iPSC-CMs, CMs containing the KLHL26 (p.R237C) variant exhibited aberrant morphology including distended endo(sarco)plasmic reticulum (ER/SR) and dysmorphic mitochondria and aberrant function that included decreased contractions per minute, altered calcium transients, and increased proliferation. Pathway enrichment analyses based on RNASeq data indicated that the "structural constituent of muscle" pathway was suppressed, whereas the "ER lumen" pathway was activated. Taken together, these findings suggest that iPSC-CMs containing this KLHL26 (p.R237C) variant develop dysregulated ER/SR, calcium signaling, contractility, and proliferation.NEW & NOTEWORTHY We demonstrate here that iPSCs derived from patients with Ebstein's anomaly and left ventricular noncompaction, when differentiated into cardiomyocytes, display significant structural and functional changes that offer insight into disease pathogenesis, including altered ER/SR and mitochondrial morphology, contractility, and calcium signaling.
Collapse
Affiliation(s)
- Suma K Thareja
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Melissa Anfinson
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Matthew Cavanaugh
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Min-Su Kim
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Peter Lamberton
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Jackson Radandt
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Ryan Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Huan-Ling Liang
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Karl Stamm
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Muhammad Zeeshan Afzal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jennifer Strande
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michele A Frommelt
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Wisconsin, Milwaukee, Wisconsin, United States
- Herma Heart Institute, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - John W Lough
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Michael E Mitchell
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Herma Heart Institute, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - Aoy Tomita-Mitchell
- Division of Congenital Heart Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Herma Heart Institute, Children's Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Emam M, Caballero-Solares A, Xue X, Umasuthan N, Milligan B, Taylor RG, Balder R, Rise ML. Gill and Liver Transcript Expression Changes Associated With Gill Damage in Atlantic Salmon ( Salmo salar). Front Immunol 2022; 13:806484. [PMID: 35418993 PMCID: PMC8996064 DOI: 10.3389/fimmu.2022.806484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., neb and klhl41b) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of snaclec 1-like and upregulation of igkv3) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., chtop), apoptosis (e.g., bnip3l), blood coagulation (e.g., f2 and serpind1b), transcription regulation (i.e., pparg), and stress-responses (e.g., cyp3a27) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were pgam2, des, neb, tnnt2, and myom1. The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of hsp70, cyp3a27, pparg, chtop, and serpind1b were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., serpind1b and f2) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | | | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
5
|
Ehrlich KC, Baribault C, Ehrlich M. Epigenetics of Muscle- and Brain-Specific Expression of KLHL Family Genes. Int J Mol Sci 2020; 21:E8394. [PMID: 33182325 PMCID: PMC7672584 DOI: 10.3390/ijms21218394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
KLHL and the related KBTBD genes encode components of the Cullin-E3 ubiquitin ligase complex and typically target tissue-specific proteins for degradation, thereby affecting differentiation, homeostasis, metabolism, cell signaling, and the oxidative stress response. Despite their importance in cell function and disease (especially, KLHL40, KLHL41, KBTBD13, KEAP1, and ENC1), previous studies of epigenetic factors that affect transcription were predominantly limited to promoter DNA methylation. Using diverse tissue and cell culture whole-genome profiles, we examined 17 KLHL or KBTBD genes preferentially expressed in skeletal muscle or brain to identify tissue-specific enhancer and promoter chromatin, open chromatin (DNaseI hypersensitivity), and DNA hypomethylation. Sixteen of the 17 genes displayed muscle- or brain-specific enhancer chromatin in their gene bodies, and most exhibited specific intergenic enhancer chromatin as well. Seven genes were embedded in super-enhancers (particularly strong, tissue-specific clusters of enhancers). The enhancer chromatin regions typically displayed foci of DNA hypomethylation at peaks of open chromatin. In addition, we found evidence for an intragenic enhancer in one gene upregulating expression of its neighboring gene, specifically for KLHL40/HHATL and KLHL38/FBXO32 gene pairs. Many KLHL/KBTBD genes had tissue-specific promoter chromatin at their 5' ends, but surprisingly, two (KBTBD11 and KLHL31) had constitutively unmethylated promoter chromatin in their 3' exons that overlaps a retrotransposed KLHL gene. Our findings demonstrate the importance of expanding epigenetic analyses beyond the 5' ends of genes in studies of normal and abnormal gene regulation.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Biomedical Informatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Carl Baribault
- Center for Research and Scientific Computing (CRSC), Tulane University Information Technology, Tulane University, New Orleans, LA 70112, USA;
| | - Melanie Ehrlich
- Center for Biomedical Informatics and Genomics, Tulane Cancer Center, Hayward Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Samudrala SSK, North LM, Stamm KD, Earing MG, Frommelt MA, Willes R, Tripathi S, Dsouza NR, Zimmermann MT, Mahnke DK, Liang HL, Lund M, Lin C, Geddes GC, Mitchell ME, Tomita‐Mitchell A. Novel KLHL26 variant associated with a familial case of Ebstein's anomaly and left ventricular noncompaction. Mol Genet Genomic Med 2020; 8:e1152. [PMID: 31985165 PMCID: PMC7196453 DOI: 10.1002/mgg3.1152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/11/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Ebstein's anomaly (EA) is a rare congenital heart disease of the tricuspid valve and right ventricle. Patients with EA often manifest with left ventricular noncompaction (LVNC), a cardiomyopathy. Despite implication of cardiac sarcomere genes in some cases, very little is understood regarding the genetic etiology of EA/LVNC. Our study describes a multigenerational family with at least 10 of 17 members affected by EA/LVNC. METHODS We performed echocardiography on all family members and conducted exome sequencing of six individuals. After identifying candidate variants using two different bioinformatic strategies, we confirmed segregation with phenotype using Sanger sequencing. We investigated structural implications of candidate variants using protein prediction models. RESULTS Exome sequencing analysis of four affected and two unaffected members identified a novel, rare, and damaging coding variant in the Kelch-like family member 26 (KLHL26) gene located on chromosome 19 at position 237 of the protein (GRCh37). This variant region was confirmed by Sanger sequencing in the remaining family members. KLHL26 (c.709C > T p.R237C) segregates only with EA/LVNC-affected individuals (FBAT p < .05). Investigating structural implications of the candidate variant using protein prediction models suggested that the KLHL26 variant disrupts electrostatic interactions when binding to part of the ubiquitin proteasome, specifically Cullin3 (CUL3), a component of E3 ubiquitin ligase. CONCLUSION In this familial case of EA/LVNC, we have identified a candidate gene variant, KLHL26 (p.R237C), which may have an important role in ubiquitin-mediated protein degradation during cardiac development.
Collapse
Affiliation(s)
- Sai Suma K. Samudrala
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Lauren M. North
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWIUSA
| | - Karl D. Stamm
- Department of SurgeryDivision of Cardiothoracic SurgeryMedical College of WisconsinMilwaukeeWIUSA
| | - Michael G. Earing
- Department of PediatricsChildren’s Hospital of WisconsinMilwaukeeWIUSA
- Herma Heart InstituteChildren’s Hospital of WisconsinMilwaukeeWIUSA
| | - Michele A. Frommelt
- Department of PediatricsChildren’s Hospital of WisconsinMilwaukeeWIUSA
- Herma Heart InstituteChildren’s Hospital of WisconsinMilwaukeeWIUSA
| | - Richard Willes
- Department of PediatricsChildren’s Hospital of WisconsinMilwaukeeWIUSA
| | - Swarnendu Tripathi
- Bioinformatics Research and Developmental LabGenomic Sciences and Precision Medicine CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Nikita R. Dsouza
- Bioinformatics Research and Developmental LabGenomic Sciences and Precision Medicine CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Michael T. Zimmermann
- Bioinformatics Research and Developmental LabGenomic Sciences and Precision Medicine CenterMedical College of WisconsinMilwaukeeWIUSA
- Clinical and Translational Science InstituteMedical College of WisconsinMilwaukeeWIUSA
| | - Donna K. Mahnke
- Department of SurgeryDivision of Cardiothoracic SurgeryMedical College of WisconsinMilwaukeeWIUSA
| | - Huan Ling Liang
- Department of SurgeryDivision of Cardiothoracic SurgeryMedical College of WisconsinMilwaukeeWIUSA
| | - Michael Lund
- Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWIUSA
| | - Chien‐Wei Lin
- Division of BiostatisticsMedical College of WisconsinMilwaukeeWIUSA
| | | | - Michael E. Mitchell
- Department of SurgeryDivision of Cardiothoracic SurgeryMedical College of WisconsinMilwaukeeWIUSA
- Herma Heart InstituteChildren’s Hospital of WisconsinMilwaukeeWIUSA
| | - Aoy Tomita‐Mitchell
- Department of SurgeryDivision of Cardiothoracic SurgeryMedical College of WisconsinMilwaukeeWIUSA
- Herma Heart InstituteChildren’s Hospital of WisconsinMilwaukeeWIUSA
- Department of Biomedical EngineeringMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
7
|
Li F, Kolb J, Crudele J, Tonino P, Hourani Z, Smith JE, Chamberlain JS, Granzier H. Expressing a Z-disk nebulin fragment in nebulin-deficient mouse muscle: effects on muscle structure and function. Skelet Muscle 2020; 10:2. [PMID: 31992366 PMCID: PMC6986074 DOI: 10.1186/s13395-019-0219-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nebulin is a critical thin filament-binding protein that spans from the Z-disk of the skeletal muscle sarcomere to near the pointed end of the thin filament. Its massive size and actin-binding property allows it to provide the thin filaments with structural and regulatory support. When this protein is lost, nemaline myopathy occurs. Nemaline myopathy causes severe muscle weakness as well as structural defects on a sarcomeric level. There is no known cure for this disease. METHODS We studied whether sarcomeric structure and function can be improved by introducing nebulin's Z-disk region into a nebulin-deficient mouse model (Neb cKO) through adeno-associated viral (AAV) vector therapy. Following this treatment, the structural and functional characteristics of both vehicle-treated and AAV-treated Neb cKO and control muscles were studied. RESULTS Intramuscular injection of this AAV construct resulted in a successful expression of the Z-disk fragment within the target muscles. This expression was significantly higher in Neb cKO mice than control mice. Analysis of protein expression revealed that the nebulin fragment was localized exclusively to the Z-disks and that Neb cKO expressed the nebulin fragment at levels comparable to the level of full-length nebulin in control mice. Additionally, the Z-disk fragment displaced full-length nebulin in control mice, resulting in nemaline rod body formation and a worsening of muscle function. Neb cKO mice experienced a slight functional benefit from the AAV treatment, with a small increase in force and fatigue resistance. Disease progression was also slowed as indicated by improved muscle structure and myosin isoform expression. CONCLUSIONS This study reveals that nebulin fragments are well-received by nebulin-deficient mouse muscles and that limited functional benefits are achievable.
Collapse
Affiliation(s)
- Frank Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Julie Crudele
- Department of Neurology, University of Washington, Seattle, WA, 98109-8055, USA
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA.
- Medical Research Building, RM 325, 1656 E Mabel St, Tucson, AZ, 85721, USA.
| |
Collapse
|
8
|
Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res 2019; 148:104404. [DOI: 10.1016/j.phrs.2019.104404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
|
9
|
Narahara S, Sakai E, Kadowaki T, Yamaguchi Y, Narahara H, Okamoto K, Asahina I, Tsukuba T. KBTBD11, a novel BTB-Kelch protein, is a negative regulator of osteoclastogenesis through controlling Cullin3-mediated ubiquitination of NFATc1. Sci Rep 2019; 9:3523. [PMID: 30837587 PMCID: PMC6401029 DOI: 10.1038/s41598-019-40240-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Kelch repeat and BTB domain-containing protein 11 (KBTBD11) is a member of the KBTBD subfamily of proteins that possess a BTB domain and Kelch repeats. Despite the presence of the Kbtbd11 gene in mammalian genomes, there are few reports about KBTBD11 at present. In this study, we identified the novel protein KBTBD11 as a negative regulator of osteoclast differentiation. We found that expression of KBTBD11 increased during osteoclastogenesis. Small-interfering-RNA-mediated knockdown of KBTBD11 enhanced osteoclast formation, and markedly increased the expression of several osteoclast marker genes compared with control cells. Conversely, KBTBD11 overexpression impaired osteoclast differentiation, and decreased the expression of osteoclast marker genes. Among six major signaling pathways regulating osteoclast differentiation, KBTBD11 predominantly influenced the nuclear factor of activated T cell cytoplasmic-1 (NFATc1) pathway. Mechanistically, KBTBD11 was found to interact with an E3 ubiquitin ligase, Cullin3. Further experiments involving immunoprecipitation and treatment with MG132, a proteasome inhibitor, showed that the KBTBD11–Cullin3 promotes ubiquitination and degradation of NFATc1 by the proteasome. Considering that NFATc1 is an essential factor for osteoclast differentiation, the KBTBD11 and Cullin3 probably regulate the levels of NFATc1 through the ubiquitin-proteasome degradation system. Thus, KBTBD11 negatively modulates osteoclast differentiation by controlling Cullin3-mediated ubiquitination of NFATc1.
Collapse
Affiliation(s)
- Shun Narahara
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan.,Department of Regenerative Oral Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Tomoko Kadowaki
- Department of Frontier Life Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Haruna Narahara
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan.,Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan.
| |
Collapse
|
10
|
The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skelet Muscle 2018; 8:37. [PMID: 30526691 PMCID: PMC6286576 DOI: 10.1186/s13395-018-0183-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023] Open
Abstract
Background Members of the ZFP36 family of RNA-binding proteins regulate gene expression post-transcriptionally by binding to AU-rich elements in the 3’UTR of mRNA and stimulating mRNA degradation. The proteins within this family target different transcripts in different tissues. In particular, ZFP36 targets myogenic transcripts and may have a role in adult muscle stem cell quiescence. Our study examined the requirement of ZFP36L1 and ZFP36L2 in adult muscle cell fate regulation. Methods We generated single and double conditional knockout mice in which Zfp36l1 and/or Zfp36l2 were deleted in Pax7-expressing cells. Immunostained muscle sections were used to analyse resting skeletal muscle, and a cardiotoxin-induced injury model was used to determine the regenerative capacity of muscle. Results We show that ZFP36L1 and ZFP36L2 proteins are expressed in satellite cells. Mice lacking the two proteins in Pax7-expressing cells have reduced body weight and have reduced skeletal muscle mass. Furthermore, the number of satellite cells is reduced in adult skeletal muscle and the capacity of this muscle to regenerate following muscle injury is diminished. Conclusion ZFP36L1 and ZFP36L2 act redundantly in myogenesis. These findings add further intricacy to the regulation of the cell fate of Pax7-expressing cells in skeletal muscle by RNA-binding proteins. Electronic supplementary material The online version of this article (10.1186/s13395-018-0183-9) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
A novel long non-coding RNA, lncKBTBD10, involved in bovine skeletal muscle myogenesis. In Vitro Cell Dev Biol Anim 2018; 55:25-35. [PMID: 30465303 DOI: 10.1007/s11626-018-0306-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
Abstract
Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in regulating skeletal muscle myogenesis, a highly coordinated multistep biological process. However, most studies of lncRNAs have focused on humans, mouse, and other model animals. In this study, we identified a novel lncRNA, named lncKBTBD10, located in the nucleus and involved in the proliferation and differentiation of bovine skeletal muscle satellite cells. Prediction of coding potential and in vitro translation system illustrated that lncKBTBD10 has no encoding capability. With the process of myogenic differentiation, the expression of lncKBTBD10 gradually increased. To elucidate the functions of lncKBTBD10 during myogenesis, the gain/loss-of-function experiments were performed. Results showed that the proliferation and differentiation of bovine skeletal muscle satellite cells were all suppressed whether lncKBTBD10 was knocked down or over-expressed. Furthermore, we found that lncKBTBD10 may affect its proximity gene KBTBD10 to involve in myogenesis. Results indicated that the protein level of KBTBD10 was all diminished after induced differentiation for 2 d in differentiation medium (DM2) whether lncKBTBD10 was knocked down or over-expressed. It may support why the altering of lncKBTBD10 can suppress the proliferation and differentiation of bovine skeletal muscle satellite cells. In short, our study elucidated that lncKBTBD10 could induce a decrease of KBTBD10 protein and further to affect bovine skeletal muscle myogenesis. The novel identified lncKBTBD10 may provide a reference for lncRNAs involved in myogenesis of bovine skeletal muscle.
Collapse
|
12
|
Brien P, Pugazhendhi D, Woodhouse S, Oxley D, Pell JM. p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair. Stem Cells 2014; 31:1597-610. [PMID: 23592450 DOI: 10.1002/stem.1399] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 11/05/2022]
Abstract
Stem cell function is essential for the maintenance of adult tissue homeostasis. Controlling the balance between self-renewal and differentiation is crucial to maintain a receptive satellite cell pool capable of responding to growth and regeneration cues. The mitogen-activated protein kinase p38α has been implicated in the regulation of these processes but its influence in adult muscle remains unknown. Using conditional satellite cell p38α knockout mice we have demonstrated that p38α restricts excess proliferation in the postnatal growth phase while promoting timely myoblast differentiation. Differentiation was still able to occur in the p38α-null satellite cells, however, but was delayed. An absence of p38α resulted in a postnatal growth defect along with the persistence of an increased reservoir of satellite cells into adulthood. This population was still capable of responding to cardiotoxin-induced injury, resulting in complete, albeit delayed, regeneration, with further enhancement of the satellite cell population. Increased p38γ phosphorylation accompanied the absence of p38α, and inhibition of p38γ ex vivo substantially decreased the myogenic defect. We have used genome-wide transcriptome analysis to characterize the changes in expression that occur between resting and regenerating muscle, and the influence p38α has on these expression profiles. This study provides novel evidence for the fundamental role of p38α in adult muscle homeostasis in vivo.
Collapse
|
13
|
Gupta VA, Beggs AH. Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet Muscle 2014; 4:11. [PMID: 24959344 PMCID: PMC4067060 DOI: 10.1186/2044-5040-4-11] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022] Open
Abstract
Our understanding of genes that cause skeletal muscle disease has increased tremendously over the past three decades. Advances in approaches to genetics and genomics have aided in the identification of new pathogenic mechanisms in rare genetic disorders and have opened up new avenues for therapeutic interventions by identification of new molecular pathways in muscle disease. Recent studies have identified mutations of several Kelch proteins in skeletal muscle disorders. The Kelch superfamily is one of the largest evolutionary conserved gene families. The 66 known family members all possess a Kelch-repeat containing domain and are implicated in diverse biological functions. In skeletal muscle development, several Kelch family members regulate the processes of proliferation and/or differentiation resulting in normal functioning of mature muscles. Importantly, many Kelch proteins function as substrate-specific adaptors for Cullin E3 ubiquitin ligase (Cul3), a core component of the ubiquitin-proteasome system to regulate the protein turnover. This review discusses the emerging roles of Kelch proteins in skeletal muscle function and disease.
Collapse
Affiliation(s)
- Vandana A Gupta
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
14
|
Elf K, Shevchenko G, Nygren I, Larsson L, Bergquist J, Askmark H, Artemenko K. Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis. J Proteomics 2014; 108:55-64. [PMID: 24846852 DOI: 10.1016/j.jprot.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/24/2014] [Accepted: 05/11/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive muscle paralysis. Currently clinical tools for ALS diagnostics do not perform well enough and their improvement is needed. The objective of this study was to identify specific protein alterations related to the development of ALS using tiny muscle biopsies. We applied a shotgun proteomics and quantitative dimethyl labeling in order to analyze the global changes in human skeletal muscle proteome of ALS versus healthy subjects for the first time. 235 proteins were quantified and 11 proteins were found significantly regulated in ALS muscles. These proteins are involved in muscle development and contraction, metabolic processes, enzyme activity, regulation of apoptosis and transport activity. In order to eliminate a risk to confuse ALS with other denervations, muscle biopsies of patients with postpolio syndrome and Charcot-Marie-Tooth disease (negative controls) were compared to those of ALS and controls. Only few proteins significantly regulated in ALS patients compared to controls were affected differently in negative controls. These proteins (BTB and kelch domain-containing protein 10, myosin light chain 3, glycogen debranching enzyme, transitional endoplasmic reticulum ATPase), individually or as a panel, could be selected for estimation of ALS diagnosis and development. BIOLOGICAL SIGNIFICANCE ALS is a devastating neurodegenerative disease, and luckily, very rare: only one to two people out of 100,000 develop ALS yearly. This fact, however, makes studies of ALS very challenging since it is very difficult to collect the representative set of clinical samples and this may take up to several years. In this study we collected the muscle biopsies from 12 ALS patients and compared the ALS muscle proteome against the one from control subjects. We suggested the efficient method for such comprehensive quantitative analysis by LC-MS and performed it for the first time using human ALS material. This gel- and antibody-free method can be widely applied for muscle proteome studies and has been used by us for revealing of the specific protein alterations associated with ALS.
Collapse
Affiliation(s)
- Kristin Elf
- Department of Neuroscience, Unit of Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Ingela Nygren
- Department of Neuroscience, Unit of Neurology, Uppsala University, Uppsala, Sweden
| | - Lars Larsson
- Department of Neuroscience, Unit of Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Håkan Askmark
- Department of Neuroscience, Unit of Neurology, Uppsala University, Uppsala, Sweden
| | - Konstantin Artemenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Gupta V, Ravenscroft G, Shaheen R, Todd E, Swanson L, Shiina M, Ogata K, Hsu C, Clarke N, Darras B, Farrar M, Hashem A, Manton N, Muntoni F, North K, Sandaradura S, Nishino I, Hayashi Y, Sewry C, Thompson E, Yau K, Brownstein C, Yu T, Allcock R, Davis M, Wallgren-Pettersson C, Matsumoto N, Alkuraya F, Laing N, Beggs A. Identification of KLHL41 Mutations Implicates BTB-Kelch-Mediated Ubiquitination as an Alternate Pathway to Myofibrillar Disruption in Nemaline Myopathy. Am J Hum Genet 2013; 93:1108-17. [PMID: 24268659 DOI: 10.1016/j.ajhg.2013.10.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 02/09/2023] Open
Abstract
Nemaline myopathy (NM) is a rare congenital muscle disorder primarily affecting skeletal muscles that results in neonatal death in severe cases as a result of associated respiratory insufficiency. NM is thought to be a disease of sarcomeric thin filaments as six of eight known genes whose mutation can cause NM encode components of that structure, however, recent discoveries of mutations in non-thin filament genes has called this model in question. We performed whole-exome sequencing and have identified recessive small deletions and missense changes in the Kelch-like family member 41 gene (KLHL41) in four individuals from unrelated NM families. Sanger sequencing of 116 unrelated individuals with NM identified compound heterozygous changes in KLHL41 in a fifth family. Mutations in KLHL41 showed a clear phenotype-genotype correlation: Frameshift mutations resulted in severe phenotypes with neonatal death, whereas missense changes resulted in impaired motor function with survival into late childhood and/or early adulthood. Functional studies in zebrafish showed that loss of Klhl41 results in highly diminished motor function and myofibrillar disorganization, with nemaline body formation, the pathological hallmark of NM. These studies expand the genetic heterogeneity of NM and implicate a critical role of BTB-Kelch family members in maintenance of sarcomeric integrity in NM.
Collapse
|
16
|
Bowlin KM, Embree LJ, Garry MG, Garry DJ, Shi X. Kbtbd5 is regulated by MyoD and restricted to the myogenic lineage. Differentiation 2013; 86:184-91. [DOI: 10.1016/j.diff.2013.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/04/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022]
|
17
|
Woodhouse S, Pugazhendhi D, Brien P, Pell JM. Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation. J Cell Sci 2012. [PMID: 23203812 DOI: 10.1242/jcs.114843] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue generation and repair requires a stepwise process of cell fate restriction to ensure that adult stem cells differentiate in a timely and appropriate manner. A crucial role has been implicated for Polycomb-group (PcG) proteins and the H3K27me3 repressive histone mark in coordinating the transcriptional programmes necessary for this process, but the targets and developmental timing for this repression remain unclear. To address these questions, we generated novel genome-wide maps of H3K27me3 and H3K4me3 in freshly isolated muscle stem cells. These data, together with the analysis of two conditional Ezh2-null mouse strains, identified a critical proliferation phase in which Ezh2 activity is essential. Mice lacking Ezh2 in satellite cells exhibited decreased muscle growth, severely impaired regeneration and reduced stem cell number, due to a profound failure of the proliferative progenitor population to expand. Surprisingly, deletion of Ezh2 after the onset of terminal differentiation did not impede muscle repair or homeostasis. Using these knockout models and the RNA-Seq and ChIP-Seq datasets, we show that Ezh2 does not regulate the muscle differentiation process in vivo. These results emphasise the lineage and cell-type-specific functions of Ezh2 and Polycomb repressive complex 2.
Collapse
|
18
|
Sambuughin N, Swietnicki W, Techtmann S, Matrosova V, Wallace T, Goldfarb L, Maynard E. KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochem Biophys Res Commun 2012; 421:743-9. [PMID: 22542517 DOI: 10.1016/j.bbrc.2012.04.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 12/18/2022]
Abstract
Autosomal dominant mutations in BTB and Kelch domain containing 13 protein (KBTBD13) are associated with a new type of Nemaline Myopathy (NEM). NEM is a genetically heterogeneous group of muscle disorders. Mutations causing phenotypically distinct NEM variants have previously been identified in components of muscle thin filament. KBTBD13 is a muscle specific protein composed of an N terminal BTB domain and a C terminal Kelch-repeat domain. The function of this newly identified protein in muscle remained unknown. In this study, we show that KBTBD13 interacts with Cullin 3 (Cul3) and the BTB domain mediates this interaction. Using ubiquitination assays, we determined that KBTBD13 participates in the formation of a Cul3 based RING ubiquitin ligase (Cul3-RL) capable of ubiquitin conjugation. Confocal microscopy of transiently expressed KBTBD13 revealed its co-localization with ubiquitin. Taken together, our results demonstrate that KBTBD13 is a putative substrate adaptor for Cul3-RL that functions as a muscle specific ubiquitin ligase, and thereby implicate the ubiquitin proteasome pathway in the pathogenesis of KBTBD13-associated NEM.
Collapse
Affiliation(s)
- Nyamkhishig Sambuughin
- Department of Anesthesiology, Uniformed Services University, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | | | | | |
Collapse
|