1
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
2
|
Ebrahimi A, Ghorbanpoor H, Apaydın E, Demir Cevizlidere B, Özel C, Tüfekçioğlu E, Koç Y, Topal AE, Tomsuk Ö, Güleç K, Abdullayeva N, Kaya M, Ghorbani A, Şengel T, Benzait Z, Uysal O, Eker Sarıboyacı A, Doğan Güzel F, Singh H, Hassan S, Ankara H, Pat S, Atalay E, Avci H. Convenient rapid prototyping microphysiological niche for mimicking liver native basement membrane: Liver sinusoid on a chip. Colloids Surf B Biointerfaces 2024; 245:114292. [PMID: 39383580 DOI: 10.1016/j.colsurfb.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Liver is responsible for the metabolization processes of up to 90 % of compounds and toxins in the body. Therefore liver-on-a-chip systems, as an in vitro promising cell culture platform, have great importance for fundamental science and drug development. In most of the liver-on-a-chip studies, seeding cells on both sides of a porous membrane, which represents the basement membrane, fail to resemble the native characteristics of biochemical, biophysical, and mechanical properties. In this study, polycarbonate (PC) and polyethylene terephthalate (PET) membranes were coated with gelatin to address this issue by accurately mimicking the native basement membrane present in the space of Disse. Various coating methods were used, including doctor blade, gel micro-injection, electrospinning, and spin coating. Spin coating was demonstrated to be the most effective technique owing to the ability to produce thin gel thickness with desirable surface roughness for cell interactions on both sides of the membrane. HepG2 and EA.HY926 cells were seeded on the upper and bottom sides of the gelatin-coated PET membrane and cultured on-chip for 7 days. Cell viability increased from 90 % to 95 %, while apoptotic index decreased. Albumin secretion notably rose between days 1-7 and 4-7, while GST-α secretion decreased from day 1 to day 7. In conclusion, the optimized spin coating process reported here can effectively modify the membranes to better mimic the native basement membrane niche characteristics.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Elif Apaydın
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biochemistry, Institute of Health Sciences, Anadolu University, Eskisehir, Türkiye
| | - Bahar Demir Cevizlidere
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ceren Özel
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Emre Tüfekçioğlu
- Department of Industrial Design/Department of Industrial Design, Faculty of Architecture and Design, Eskisehir Technical University, Eskisehir, Türkiye
| | - Yücel Koç
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ahmet Emin Topal
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biochemistry, School of Pharmacy, Bahçeşehir University, Istanbul, Türkiye
| | - Özlem Tomsuk
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Kadri Güleç
- Department of Analytical Chemistry, Institute of Health Sciences, Anadolu University, Eskisehir, Türkiye
| | - Nuran Abdullayeva
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Murat Kaya
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Aynaz Ghorbani
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Tayfun Şengel
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye; Central Research Laboratory Research and Application Center (ARUM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Zineb Benzait
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ayla Eker Sarıboyacı
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Fatma Doğan Güzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Türkiye
| | - Hemant Singh
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Hüseyin Ankara
- Mining Engineering Department, Engineering-Architecture Faculty, Eskisehir Osmangazi University, Meşelik Campus, Eskisehir 26480, Türkiye
| | - Suat Pat
- Eskisehir Osmangazi University, Faculty of Science, Department of Physics, Eskisehir TR-26040, Türkiye
| | - Eray Atalay
- Department of Ophthalmology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Türkiye; Translational Medicine Research and Clinical Center (TATUM), Eskisehir Osmangazi University, Eskisehir, Türkiye.
| |
Collapse
|
3
|
Mehta V, Karnam G, Madgula V. Liver-on-chips for drug discovery and development. Mater Today Bio 2024; 27:101143. [PMID: 39070097 PMCID: PMC11279310 DOI: 10.1016/j.mtbio.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Recent FDA modernization act 2.0 has led to increasing industrial R&D investment in advanced in vitro 3D models such as organoids, spheroids, organ-on-chips, 3D bioprinting, and in silico approaches. Liver-related advanced in vitro models remain the prime area of interest, as liver plays a central role in drug clearance of compounds. Growing evidence indicates the importance of recapitulating the overall liver microenvironment to enhance hepatocyte maturity and culture longevity using liver-on-chips (LoC) in vitro. Hence, pharmaceutical industries have started exploring LoC assays in the two of the most challenging areas: accurate in vitro-in vivo extrapolation (IVIVE) of hepatic drug clearance and drug-induced liver injury. We examine the joint efforts of commercial chip manufacturers and pharmaceutical companies to present an up-to-date overview of the adoption of LoC technology in the drug discovery. Further, several roadblocks are identified to the rapid adoption of LoC assays in the current drug development framework. Finally, we discuss some of the underexplored application areas of LoC models, where conventional 2D hepatic models are deemed unsuitable. These include clearance prediction of metabolically stable compounds, immune-mediated drug-induced liver injury (DILI) predictions, bioavailability prediction with gut-liver systems, hepatic clearance prediction of drugs given during pregnancy, and dose adjustment studies in disease conditions. We conclude the review by discussing the importance of PBPK modeling with LoC, digital twins, and AI/ML integration with LoC.
Collapse
Affiliation(s)
- Viraj Mehta
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Guruswamy Karnam
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Vamsi Madgula
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| |
Collapse
|
4
|
Leal F, Zeiringer S, Jeitler R, Costa PF, Roblegg E. A comprehensive overview of advanced dynamic in vitro intestinal and hepatic cell culture models. Tissue Barriers 2024; 12:2163820. [PMID: 36680530 PMCID: PMC10832944 DOI: 10.1080/21688370.2022.2163820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
Orally administered drugs pass through the gastrointestinal tract before being absorbed in the small intestine and metabolised in the liver. To test the efficacy and toxicity of drugs, animal models are often employed; however, they are not suitable for investigating drug-tissue interactions and making reliable predictions, since the human organism differs drastically from animals in terms of absorption, distribution, metabolism and excretion of substances. Likewise, simple static in vitro cell culture systems currently used in preclinical drug screening often do not resemble the native characteristics of biological barriers. Dynamic models, on the other hand, provide in vivo-like cell phenotypes and functionalities that offer great potential for safety and efficacy prediction. Herein, current microfluidic in vitro intestinal and hepatic models are reviewed, namely single- and multi-tissue micro-bioreactors, which are associated with different methods of cell cultivation, i.e., scaffold-based versus scaffold-free.
Collapse
Affiliation(s)
- Filipa Leal
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Scarlett Zeiringer
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Ramona Jeitler
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| |
Collapse
|
5
|
Solan ME, Schackmuth B, Bruce ED, Pradhan S, Sayes CM, Lavado R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on toxicologically relevant gene expression profiles in a liver-on-a-chip model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122610. [PMID: 37742859 DOI: 10.1016/j.envpol.2023.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Short-chain per- and polyfluoroalkyl substances (PFAS) are highly stable and widely used environmental contaminants that pose potential health risks to humans. Aggregating reliable mechanistic information for safety assessments necessitates physiologically relevant high-throughput screening approaches. Here, we demonstrated the utility of a liver-on-a-chip model to investigate the effects of five short-chain PFAS at low (1 nM) and high (1 μM) concentrations on toxicologically-relevant gene expression profiles using the QuantiGene® Plex Assay. We found that the short-chain PFAS tested in this study modulated the expression of ABCG2, a gene encoding for the breast cancer resistance protein (BCRP), with marked and significant upregulation (up to 4-fold) observed for all but one of the short-chain PFAS tested. PFBS and HFPO-DA repressed SLCO1B3 expression, a gene that encodes for an essential liver-specific organic anion transporter. High concentrations of PFBS, PFHxA, and PFHxS upregulated the expression of genes encCYP1A1,CYP2B6 and CYP2C19 with the same treatments resulting in the repression of the expression of the gene encoding CYP1A2. This dysregulation could have consequences for the clearance of endogenous compounds and xenobiotics. However, we acknowledge that increased expression of genes encoding for transporters and biotransformation enzymes may or may not indicate changes to their protein expression or activity. Overall, our study provides important insights into the effects of short-chain PFAS on liver function and their potential implications for human health. The use of the liver-on-a-chip model in combination with the QuantiGene® Plex Assay may be a valuable tool for future high-throughput screening and gene expression profiling in toxicology studies.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Bennett Schackmuth
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Sahar Pradhan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
6
|
Feaver RE, Bowers MS, Cole BK, Hoang S, Lawson MJ, Taylor J, LaMoreaux BD, Zhao L, Henke BR, Johns BA, Nyborg AC, Wamhoff BR, Figler RA. Human cardiovascular disease model predicts xanthine oxidase inhibitor cardiovascular risk. PLoS One 2023; 18:e0291330. [PMID: 37682977 PMCID: PMC10490929 DOI: 10.1371/journal.pone.0291330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Some health concerns are often not identified until late into clinical development of drugs, which can place participants and patients at significant risk. For example, the United States Food and Drug Administration (FDA) labeled the xanthine oxidase inhibitor febuxostat with a"boxed" warning regarding an increased risk of cardiovascular death, and this safety risk was only identified during Phase 3b clinical trials after its approval. Thus, better preclinical assessment of drug efficacy and safety are needed to accurately evaluate candidate drug risk earlier in discovery and development. This study explored whether an in vitro vascular model incorporating human vascular cells and hemodynamics could be used to differentiate the potential cardiovascular risk associated with molecules that have similar on-target mechanisms of action. We compared the transcriptomic responses induced by febuxostat and other xanthine oxidase inhibitors to a database of 111 different compounds profiled in the human vascular model. Of the 111 compounds in the database, 107 are clinical-stage and 33 are FDA-labelled for increased cardiovascular risk. Febuxostat induces pathway-level regulation that has high similarity to the set of drugs FDA-labelled for increased cardiovascular risk. These results were replicated with a febuxostat analog, but not another structurally distinct xanthine oxidase inhibitor that does not confer cardiovascular risk. Together, these data suggest that the FDA warning for febuxostat stems from the chemical structure of the medication itself, rather than the target, xanthine oxidase. Importantly, these data indicate that cardiovascular risk can be evaluated in this in vitro human vascular model, which may facilitate understanding the drug candidate safety profile earlier in discovery and development.
Collapse
Affiliation(s)
- Ryan E. Feaver
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - M. Scott Bowers
- Horizon Therapeutics plc, Deerfield, Illinois, United States of America
| | - Banumathi K. Cole
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Steve Hoang
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Mark J. Lawson
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Justin Taylor
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | | | - Lin Zhao
- Horizon Therapeutics plc, Deerfield, Illinois, United States of America
| | - Brad R. Henke
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Brian A. Johns
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Andrew C. Nyborg
- Horizon Therapeutics plc, Deerfield, Illinois, United States of America
| | - Brian R. Wamhoff
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| | - Robert A. Figler
- HemoShear Therapeutics, Incorporated., Charlottesville, Virginia, United States of America
| |
Collapse
|
7
|
Bakuova N, Toktarkan S, Dyussembinov D, Azhibek D, Rakhymzhanov A, Kostas K, Kulsharova G. Design, Simulation, and Evaluation of Polymer-Based Microfluidic Devices via Computational Fluid Dynamics and Cell Culture "On-Chip". BIOSENSORS 2023; 13:754. [PMID: 37504152 PMCID: PMC10377015 DOI: 10.3390/bios13070754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Organ-on-a-chip (OoC) technology has experienced exponential growth driven by the need for a better understanding of in-organ processes and the development of novel approaches. This paper investigates and compares the flow behavior and filling characteristics of two microfluidic liver-on-a-chip devices using Computational Fluid Dynamics (CFD) analysis and experimental cell culture growth based on the Huh7 cell line. The conducted computational analyses for the two chips showed that the elliptical chamber chip proposed herein offers improved flow and filling characteristics in comparison with the previously presented circular chamber chip. Huh7 hepatoma cells were cultured in the microfluidic devices for 24 h under static fluidic conditions and for 24 h with a flow rate of 3 μL·min-1. Biocompatibility, continuous flow, and biomarker studies showed cell attachment in the chips, confirming the cell viability and their consistent cell growth. The study successfully analyzed the fluid flow behavior, filling characteristics, and biocompatibility of liver-on-a-chip prototype devices, providing valuable insights to improve design and performance and advance alternative methods of in vitro testing.
Collapse
Affiliation(s)
- Nurzhanna Bakuova
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sultanali Toktarkan
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Darkhan Dyussembinov
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dulat Azhibek
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Almas Rakhymzhanov
- Nanofabrication Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Konstantinos Kostas
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Gulsim Kulsharova
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
8
|
Li S, Li C, Khan MI, Liu J, Shi Z, Gao D, Qiu B, Ding W. Microneedle array facilitates hepatic sinusoid construction in a large-scale liver-acinus-chip microsystem. MICROSYSTEMS & NANOENGINEERING 2023; 9:75. [PMID: 37303831 PMCID: PMC10247758 DOI: 10.1038/s41378-023-00544-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 06/13/2023]
Abstract
Hepatic sinusoids play a key role in maintaining high activities of liver cells in the hepatic acinus. However, the construction of hepatic sinusoids has always been a challenge for liver chips, especially for large-scale liver microsystems. Herein, we report an approach for the construction of hepatic sinusoids. In this approach, hepatic sinusoids are formed by demolding a self-developed microneedle array from a photocurable cell-loaded matrix in a large-scale liver-acinus-chip microsystem with a designed dual blood supply. Primary sinusoids formed by demolded microneedles and spontaneously self-organized secondary sinusoids can be clearly observed. Benefiting from significantly enhanced interstitial flows by formed hepatic sinusoids, cell viability is witnessed to be considerably high, liver microstructure formation occurs, and hepatocyte metabolism is enhanced. In addition, this study preliminarily demonstrates the effects of the resulting oxygen and glucose gradients on hepatocyte functions and the application of the chip in drug testing. This work paves the way for the biofabrication of fully functionalized large-scale liver bioreactors.
Collapse
Affiliation(s)
- Shibo Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027 China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Muhammad Imran Khan
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei, Anhui 230601 China
| | - Zhengdi Shi
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 USA
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| |
Collapse
|
9
|
Chen YT, Huang PY, Chai CY, Yu S, Hsieh YL, Chang HC, Kuo CW, Lee YC, Yu HS. Early detection of the initial stages of LED light-triggered non-alcoholic fatty liver disease by wax physisorption kinetics-Fourier transform infrared imaging. Analyst 2023; 148:643-653. [PMID: 36621928 DOI: 10.1039/d2an01546c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Light-emitting diodes (LEDs), particularly in the blue waveform range, are regarded as a major source of circadian rhythm dysregulation. A circadian rhythm dysregulation induced by blue LEDs is associated with non-alcoholic fatty liver disease (NAFLD). Hepatocellular accumulation of lipids is a key event in the early stages of NAFLD. Kupffer cells (KCs) have been reported to be lost in the early onset of NAFLD followed by an inflammatory reaction that alters the liver response to lipid overload. This study focused on the detection of the initial stages (subpathological stages) of LED light-triggered NAFLD. Mice were exposed to either blue or white LED irradiation for 44 weeks. Synchrotron radiation-based Fourier-transform infrared microspectroscopy (SR-FTIRM) and wax physisorption kinetic-Fourier transform infrared (WPK-FTIR) imaging were used to evaluate the ratio of lipid to protein and the glycosylation of glycoprotein, respectively. Immunohistopathological studies on KCs and circadian-related proteins were performed. Although liver biopsy showed normal pathology, an SR-FTIRM study revealed a high hepatic lipid-to-protein ratio after receiving LED illumination. The results of WPK-FTIR demonstrated that a high inflammation index was found in the high irradiance of the blue LED illumnation group. These groups showed a decrease in KC number and an increase in Bmal1 and Reverbα circadian protein expression. These findings provide explanations for the reduction of KCs without subsequent inflammation. A significant reduction of Per2 and Cry1 expression is correlated with the findings of WPK-FTIR imaging. WPK-FTIR is a sensitive method for detecting initiative stages of NAFLD induced by long-term blue LED illumination.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Yu Huang
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. .,Department of Dermatology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hao-Chao Chang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30205, Taiwan
| | - Chin-Wei Kuo
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yao-Chang Lee
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Department of Optics and Photonics, National Central University, Taoyuan 320317, Taiwan.,Chemistry Department, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. .,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 35053, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
10
|
Chen S, Zhu J, Xue J, Wang X, Jing P, Zhou L, Cui Y, Wang T, Gong X, Lü S, Long M. Numerical simulation of flow characteristics in a permeable liver sinusoid with leukocytes. Biophys J 2022; 121:4666-4678. [PMID: 36271623 PMCID: PMC9748252 DOI: 10.1016/j.bpj.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 02/07/2023] Open
Abstract
Double-layered channels of sinusoid lumen and Disse space separated by fenestrated liver sinusoidal endothelial cells (LSECs) endow the unique mechanical environment of the liver sinusoid network, which further guarantees its biological function. It is also known that this mechanical environment changes dramatically under liver fibrosis and cirrhosis, including the reduced plasma penetration and metabolite exchange between the two flow channels and the reduced Disse space deformability. The squeezing of leukocytes through narrow sinusoid lumen also affects the mechanical environment of liver sinusoid. To date, the detailed flow-field profile of liver sinusoid is still far from clear due to experimental limitations. It also remains elusive whether and how the varied physical properties of the pathological liver sinusoid regulate the fluid flow characteristics. Here a numerical model based on the immersed boundary method was established, and the effects of Disse space and leukocyte elasticities, endothelium permeability, and sinusoidal stenosis degree on fluid flow as well as leukocyte trafficking were specified upon a mimic liver sinusoid structure. Results showed that endothelium permeability dominantly controlled the plasma penetration velocity across the endothelium, whereas leukocyte squeezing promoted local penetration and significantly regulated wall shear stress on hepatocytes, which was strongly related to the Disse space and leukocyte deformability. Permeability and elasticity cooperatively regulated the process of leukocytes trafficking through the liver sinusoid, especially for stiffer leukocytes. This study will offer new insights into deeper understanding of the elaborate mechanical features of liver sinusoid and corresponding biological function.
Collapse
Affiliation(s)
- Shenbao Chen
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jingchen Zhu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xue
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Wang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Jing
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lüwen Zhou
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Cui
- Department of Mechanics, Tianjin University, Tianjin, China
| | - Tianhao Wang
- Department of Mechanics, Tianjin University, Tianjin, China
| | - Xiaobo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Wang M, Tsuda M, Deguchi S, Higuchi Y, So K, Torisawa YS, Takayama K, Yamashita F. Application of perfluoropolyether elastomers in microfluidic drug metabolism assays. Int J Pharm 2022; 627:122253. [DOI: 10.1016/j.ijpharm.2022.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
|
12
|
Billington CJ, Chapman KA, Leon E, Meltzer BW, Berger SI, Olson M, Figler RA, Hoang SA, Wanxing C, Wamhoff BR, Collado MS, Cusmano‐Ozog K. Genomic and biochemical analysis of repeatedly observed variants in DBT in individuals with maple syrup urine disease of Central American ancestry. Am J Med Genet A 2022; 188:2738-2749. [PMID: 35799415 PMCID: PMC9542135 DOI: 10.1002/ajmg.a.62893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023]
Abstract
Maple syrup urine disease (MSUD) is an intoxication-type inherited metabolic disorder in which hyperleucinemia leads to brain swelling and death without treatment. MSUD is caused by branched-chain alpha-ketoacid dehydrogenase deficiency due to biallelic loss of the protein products from the genes BCKDHA, BCKDHB, or DBT, while a distinct but related condition is caused by loss of DLD. In this case series, eleven individuals with MSUD caused by two pathogenic variants in DBT are presented. All eleven individuals have a deletion of exon 2 (delEx2, NM_001918.3:c.48_171del); six individuals are homozygous and five individuals are compound heterozygous with a novel missense variant (NM_001918.5:c.916 T > C [p.Ser306Pro]) confirmed to be in trans. Western Blot indicates decreased amount of protein product in delEx2;c.916 T > C liver cells and absence of protein product in delEx2 homozygous hepatocytes. Ultrahigh performance liquid chromatography-tandem mass spectrometry demonstrates an accumulation of branched-chain amino acids and alpha-ketoacids in explanted hepatocytes. Individuals with these variants have a neonatal-onset, non-thiamine-responsive, classical form of MSUD. Strikingly, the entire cohort is derived from families who immigrated to the Washington, DC, metro area from Honduras or El Salvador suggesting the possibility of a founder effect.
Collapse
Affiliation(s)
- Charles J. Billington
- Children's National Rare Disease InstituteWashingtonDistrict of ColumbiaUSA
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Eyby Leon
- Children's National Rare Disease InstituteWashingtonDistrict of ColumbiaUSA
| | - Beatrix W. Meltzer
- Laboratory Medicine, Children's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Seth I. Berger
- Children's National Rare Disease InstituteWashingtonDistrict of ColumbiaUSA
| | - Matthew Olson
- HemoShear Therapeutics, Inc.CharlottesvilleVirginiaUSA
| | | | | | - Cui Wanxing
- Georgetown University HospitalWashingtonDistrict of ColumbiaUSA
| | | | | | | |
Collapse
|
13
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
14
|
Eckstrum K, Striz A, Ferguson M, Zhao Y, Sprando R. Evaluation of the utility of the Beta Human Liver Emulation System (BHLES) for CFSAN's regulatory toxicology program. Food Chem Toxicol 2022; 161:112828. [PMID: 35066125 DOI: 10.1016/j.fct.2022.112828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Microphysiological systems (MPS), such as organ-on-a-chip platforms, are an emerging alternative model that may be useful for predicting human physiology and/or toxicity. Due to the interest in these platforms, the Center for Food Safety and Applied Nutrition partnered with Emulate to evaluate the utility of the Beta Human Liver Emulation System (BHLES) for its regulatory science program. Using known hepatotoxic compounds (usnic acid, benzbromarone, tamoxifen, and acetaminophen) and compounds that have no reported human cases of liver toxicity (dimethyl sulfoxide, theophylline, and aminohippurate) the platforms' performance was evaluated. Chemical toxicity was assessed by albumin secretion, urea and LDH release, nuclei number, mitochondrial membrane potential, and apoptosis. System/platform performance was evaluated in terms of sensitivity and specificity, power, and variability and repeatability. Chemical interactions with the Chip material were also assessed. Preliminary findings suggested that for the model test compounds selected, the BHLES was able to accurately predict toxicity, demonstrated high sensitivity and specificity, high power, and low variability. However, some compounds interacted with the Chip material indicating variable exposure levels that should be accounted for when planning experimentation. The details of the evaluation are presented herein.
Collapse
Affiliation(s)
- Kirsten Eckstrum
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Anneliese Striz
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Martine Ferguson
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Yang Zhao
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Robert Sprando
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
15
|
Yamamoto C, Takemura A, Ishii S, Doi A, Saito I, Yamada H, Sakai Y, Matsunaga T, Ito K. A novel perfusion culture system for screening mitochondrial toxicity in primary mouse hepatocytes. J Toxicol Sci 2022; 47:13-18. [PMID: 34987137 DOI: 10.2131/jts.47.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The liver microphysiological system (MPS) model is an in-vitro culture method that mimics physiological blood flow, which enhances basal cellular functions. However, the liver MPS model has not been tested in the preclinical stage because of its obscure utility. It can overcome the major problem of conventional systems-rapid loss of mitochondrial activity in cultured hepatocytes due to limited oxygen supply-by supplying oxygen to cultured hepatocytes using a perfusion device. In this study, we developed a new perfusion culture system that can detect mitochondrial toxicity. Primary mouse hepatocytes were cultured under perfusion condition for 48 hr. The hepatocytes showed increased oxygen consumption and reduced lactate release. These results indicated that the ATP-production pathway was switched from glycolysis to mitochondrial oxidative phosphorylation in the perfusion culture system. Furthermore, ATP levels were considerably reduced in the perfusion culture system after exposure to phenformin, a mitochondrial complex I inhibitor. To summarize, the perfusion culture system could improve the mitochondrial activity in primary mouse hepatocytes, and thus, has potential implications in the detection of mitochondrial toxicity.
Collapse
Affiliation(s)
- Chika Yamamoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Akinori Takemura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Sanae Ishii
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | | | - Yoko Sakai
- Department of Clinical Pharmacy, Graduate School and Faculty of Pharmaceutical Sciences, Nagoya City University
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School and Faculty of Pharmaceutical Sciences, Nagoya City University
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
16
|
Van Ness KP, Cesar F, Yeung CK, Himmelfarb J, Kelly EJ. Microphysiological systems in absorption, distribution, metabolism, and elimination sciences. Clin Transl Sci 2022; 15:9-42. [PMID: 34378335 PMCID: PMC8742652 DOI: 10.1111/cts.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
The use of microphysiological systems (MPS) to support absorption, distribution, metabolism, and elimination (ADME) sciences has grown substantially in the last decade, in part driven by regulatory demands to move away from traditional animal-based safety assessment studies and industry desires to develop methodologies to efficiently screen and characterize drugs in the development pipeline. The past decade of MPS development has yielded great user-driven technological advances with the collective fine-tuning of cell culture techniques, fluid delivery systems, materials engineering, and performance enhancing modifications. The rapid advances in MPS technology have now made it feasible to evaluate critical ADME parameters within a stand-alone organ system or through interconnected organ systems. This review surveys current MPS developed for liver, kidney, and intestinal systems as stand-alone or interconnected organ systems, and evaluates each system for specific performance criteria recommended by regulatory authorities and MPS leaders that would render each system suitable for evaluating drug ADME. Whereas some systems are more suitable for ADME type research than others, not all system designs were intended to meet the recently published desired performance criteria and are reported as a summary of initial proof-of-concept studies.
Collapse
Affiliation(s)
- Kirk P. Van Ness
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Francine Cesar
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Catherine K. Yeung
- Department of PharmacyUniversity of WashingtonSeattleWashingtonUSA
- Kidney Research InstituteUniversity of WashingtonSeattleWashingtonUSA
| | | | - Edward J. Kelly
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
- Kidney Research InstituteUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
17
|
Cell spinpods are a simple inexpensive suspension culture device to deliver fluid shear stress to renal proximal tubular cells. Sci Rep 2021; 11:21296. [PMID: 34716334 PMCID: PMC8556299 DOI: 10.1038/s41598-021-00304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Rotating forms of suspension culture allow cells to aggregate into spheroids, prevent the de-differentiating influence of 2D culture, and, perhaps most importantly of all, provide physiologically relevant, in vivo levels of shear stress. Rotating suspension culture technology has not been widely implemented, in large part because the vessels are prohibitively expensive, labor-intensive to use, and are difficult to scale for industrial applications. Our solution addresses each of these challenges in a new vessel called a cell spinpod. These small 3.5 mL capacity vessels are constructed from injection-molded thermoplastic polymer components. They contain self-sealing axial silicone rubber ports, and fluoropolymer, breathable membranes. Here we report the two-fluid modeling of the flow and stresses in cell spinpods. Cell spinpods were used to demonstrate the effect of fluid shear stress on renal cell gene expression and cellular functions, particularly membrane and xenobiotic transporters, mitochondrial function, and myeloma light chain, cisplatin and doxorubicin, toxicity. During exposure to myeloma immunoglobulin light chains, rotation increased release of clinically validated nephrotoxicity cytokine markers in a toxin-specific pattern. Addition of cisplatin or doxorubicin nephrotoxins reversed the enhanced glucose and albumin uptake induced by fluid shear stress in rotating cell spinpod cultures. Cell spinpods are a simple, inexpensive, easily automated culture device that enhances cellular functions for in vitro studies of nephrotoxicity.
Collapse
|
18
|
Pluta KD, Ciezkowska M, Wisniewska M, Wencel A, Pijanowska DG. Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Armstrong AJ, Henke BR, Collado MS, Taylor JM, Pourtaheri TD, Dillberger JE, Roper TD, Wamhoff BR, Olson MW, Figler RA, Hoang SA, Reardon JE, Johns BA. Identification of 2,2-Dimethylbutanoic Acid (HST5040), a Clinical Development Candidate for the Treatment of Propionic Acidemia and Methylmalonic Acidemia. J Med Chem 2021; 64:5037-5048. [PMID: 33848153 DOI: 10.1021/acs.jmedchem.1c00124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, caused by a deficiency in the enzymes P-CoA carboxylase and methylmalonyl-CoA (M-CoA) mutase, respectively. PA and MMA are classified as intoxication-type inborn errors of metabolism because the intramitochondrial accumulation of P-CoA, M-CoA, and other metabolites results in secondary inhibition of multiple pathways of intermediary metabolism, leading to organ dysfunction and failure. Herein, we describe the structure-activity relationships of a series of short-chain carboxylic acids which reduce disease-related metabolites in PA and MMA primary hepatocyte disease models. These studies culminated in the identification of 2,2-dimethylbutanoic acid (10, HST5040) as a clinical candidate for the treatment of PA and MMA. Additionally, we describe the in vitro and in vivo absorption, distribution, metabolism, and excretion profile of HST5040, data from preclinical studies, and the synthesis of the sodium salt of HST5040 for clinical trials.
Collapse
Affiliation(s)
- Allison J Armstrong
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Brad R Henke
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Maria Sol Collado
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Justin M Taylor
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Taylor D Pourtaheri
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - John E Dillberger
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Thomas D Roper
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Brian R Wamhoff
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Matthew W Olson
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Robert A Figler
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Stephen A Hoang
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - John E Reardon
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| | - Brian A Johns
- HemoShear Therapeutics Inc., 501 Locust Avenue, Charlottesville, Virginia 22902, United States
| |
Collapse
|
20
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Li W, Li P, Li N, Du Y, Lü S, Elad D, Long M. Matrix stiffness and shear stresses modulate hepatocyte functions in a fibrotic liver sinusoidal model. Am J Physiol Gastrointest Liver Physiol 2021; 320:G272-G282. [PMID: 33296275 PMCID: PMC8609567 DOI: 10.1152/ajpgi.00379.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular matrix (ECM) rigidity has important effects on cell behaviors and increases sharply in liver fibrosis and cirrhosis. Hepatic blood flow is essential in maintaining hepatocytes' (HCs) functions. However, it is still unclear how matrix stiffness and shear stresses orchestrate HC phenotype in concert. A fibrotic three-dimensional (3-D) liver sinusoidal model is constructed using a porous membrane sandwiched between two polydimethylsiloxane (PDMS) layers with respective flow channels. The HCs are cultured in collagen gels of various stiffnesses in the lower channel, whereas the upper channel is pre-seeded with liver sinusoidal endothelial cells (LSECs) and accessible to shear flow. The results reveal that HCs cultured within stiffer matrices exhibit reduced albumin production and cytochrome P450 (CYP450) reductase expression. Low shear stresses enhance synthetic and metabolic functions of HC, whereas high shear stresses lead to the loss of HC phenotype. Furthermore, both mechanical factors regulate HC functions by complementing each other. These observations are likely attributed to mechanically induced mass transport or key signaling molecule of hepatocyte nuclear factor 4α (HNF4α). The present study results provide an insight into understanding the mechanisms of HC dysfunction in liver fibrosis and cirrhosis, especially from the viewpoint of matrix stiffness and blood flow.NEW & NOTEWORTHY A fibrotic three-dimensional (3-D) liver sinusoidal model was constructed to mimic different stages of liver fibrosis in vivo and to explore the cooperative effects of matrix stiffness and shear stresses on hepatocyte (HC) functions. Mechanically induced alterations of mass transport mainly contributed to HC functions via typical mechanosensitive signaling.
Collapse
Affiliation(s)
- Wang Li
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Peiwen Li
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ning Li
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yu Du
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Shouqin Lü
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - David Elad
- 5Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mian Long
- 1Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,2Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,3Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China,4School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Bircsak KM, DeBiasio R, Miedel M, Alsebahi A, Reddinger R, Saleh A, Shun T, Vernetti LA, Gough A. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology 2021; 450:152667. [PMID: 33359578 DOI: 10.1016/j.tox.2020.152667] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
We report the development, automation and validation of a 3D, microfluidic liver-on-a-chip for high throughput hepatotoxicity screening, the OrganoPlate LiverTox™. The model is comprised of aggregates of induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep) seeded in an extracellular matrix in the organ channel and co-cultured with endothelial cells and THP-1 monoblasts differentiated to macrophages seeded in the vascular channel of the 96 well Mimetas OrganoPlate 2-lane. A key component of high throughput screening is automation and we report a protocol to seed, dose, collect and replenish media and add assay reagents in the OrganoPlate 2-lane using a standard laboratory liquid handling robot. A combination of secretome measurements and image-based analysis was used to demonstrate stable 15 day cell viability, albumin and urea secretion. Over the same time-period, CYP3A4 activity increased and alpha-fetoprotein secretion decreased suggesting further maturation of the iHeps. Troglitazone, a clinical hepatotoxin, was chosen as a control compound for validation studies. Albumin, urea, hepatocyte nuclear size and viability staining provided Robust Z'factors > 0.2 in plates treated 72 h with 180 μM troglitazone compared with a vehicle control. The viability assay provided the most robust statistic for a Robust Z' factor = 0.6. A small library of 159 compounds with known liver effects was added to the OrganoPlate LiverTox model for 72 h at 50 μM and the Toxicological Prioritization scores were calculated. A follow up dose-response evaluation of select hits revealed the albumin assay to be the most sensitive in calculating TC50 values. This platform provides a robust, novel model which can be used for high throughput hepatotoxicity screening.
Collapse
Affiliation(s)
| | - Richard DeBiasio
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Mark Miedel
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | | | | | - Tongying Shun
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Lawrence A Vernetti
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Albert Gough
- Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
23
|
Lorvellec M, Pellegata AF, Maestri A, Turchetta C, Alvarez Mediavilla E, Shibuya S, Jones B, Scottoni F, Perocheau DP, Cozmescu AC, Delhove JM, Kysh D, Gjinovci A, Counsell JR, Heywood WE, Mills K, McKay TR, De Coppi P, Gissen P. An In Vitro Whole-Organ Liver Engineering for Testing of Genetic Therapies. iScience 2020; 23:101808. [PMID: 33305175 PMCID: PMC7708813 DOI: 10.1016/j.isci.2020.101808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Explosion of gene therapy approaches for treating rare monogenic and common liver disorders created an urgent need for disease models able to replicate human liver cellular environment. Available models lack 3D liver structure or are unable to survive in long-term culture. We aimed to generate and test a 3D culture system that allows long-term maintenance of human liver cell characteristics. The in vitro whole-organ "Bioreactor grown Artificial Liver Model" (BALM) employs a custom-designed bioreactor for long-term 3D culture of human induced pluripotent stem cells-derived hepatocyte-like cells (hiHEPs) in a mouse decellularized liver scaffold. Adeno-associated viral (AAV) and lentiviral (LV) vectors were introduced by intravascular injection. Substantial AAV and LV transgene expression in the BALM-grown hiHEPs was detected. Measurement of secreted proteins in the media allowed non-invasive monitoring of the system. We demonstrated that humanized whole-organ BALM is a valuable tool to generate pre-clinical data for investigational medicinal products.
Collapse
Affiliation(s)
- Maëlle Lorvellec
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alessandro Filippo Pellegata
- Developmental Biology and Cancer Research & Teaching Department, Stem Cells & Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alice Maestri
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chiara Turchetta
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan 20133, Italy
| | - Elena Alvarez Mediavilla
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Soichi Shibuya
- Developmental Biology and Cancer Research & Teaching Department, Stem Cells & Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Brendan Jones
- Developmental Biology and Cancer Research & Teaching Department, Stem Cells & Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Federico Scottoni
- Developmental Biology and Cancer Research & Teaching Department, Stem Cells & Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dany P. Perocheau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrei Claudiu Cozmescu
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Juliette M. Delhove
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5006, Australia
| | - Daniel Kysh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Asllan Gjinovci
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - John R. Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Wendy E. Heywood
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kevin Mills
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Tristan R. McKay
- Centre for Bioscience, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Paolo De Coppi
- Developmental Biology and Cancer Research & Teaching Department, Stem Cells & Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
24
|
Jung DJ, Byeon JH, Jeong GS. Flow enhances phenotypic and maturation of adult rat liver organoids. Biofabrication 2020; 12:045035. [PMID: 33000764 DOI: 10.1088/1758-5090/abb538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A biologically relevant in vitro model of hepatic microtissue would be a valuable tool for the preclinical study of pharmacokinetics and metabolism. Although considerable advances have been made in recent years in the establishment of alternative in vitro culture systems that mimic liver tissue, generating an effective liver model remains challenging. Specifically, existing model systems still exhibit limited functions for hepatocellular differentiation potential and cellular complexity. It is essential to improve the in vitro differentiation of liver progenitor cells (LPCs) for disease modeling and preclinical pharmatoxicological research. Here, we describe a rat liver organoid culture system under in vivo-like steady-state flow conditions; this system is capable of controlling the expansion and differentiation of rat liver organoids over 10-15 d. LPCs cultured in medium flow conditions become self-assembled liver organoids that exhibit phenotypic and functional hepato-biliary modeling. In addition, hepatocytes that are differentiated using liver organoids produced albumin and maintained polygonal morphology, which is characteristic of mature hepatocytes.
Collapse
Affiliation(s)
- Da Jung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | | | | |
Collapse
|
25
|
Busche M, Tomilova O, Schütte J, Werner S, Beer M, Groll N, Hagmeyer B, Pawlak M, Jones PD, Schmees C, Becker H, Schnabel J, Gall K, Hemmler R, Matz-Soja M, Damm G, Beuck S, Klaassen T, Moer J, Ullrich A, Runge D, Schenke-Layland K, Gebhardt R, Stelzle M. HepaChip-MP - a twenty-four chamber microplate for a continuously perfused liver coculture model. LAB ON A CHIP 2020; 20:2911-2926. [PMID: 32662810 DOI: 10.1039/d0lc00357c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
HepaChip microplate (HepaChip-MP) is a microfluidic platform comprised of 24 independent culture chambers with continuous, unidirectional perfusion. In the HepaChip-MP, an automated dielectrophoresis process selectively assembles viable cells into elongated micro tissues. Freshly isolated primary human hepatocytes (PHH) and primary human liver endothelial cells (HuLEC) were successfully assembled as cocultures aiming to mimic the liver sinusoid. Minimal quantities of primary human cells are required to establish micro tissues in the HepaChip-MP. Metabolic function including induction of CYP enzymes in PHH was successfully measured demonstrating a high degree of metabolic activity of cells in HepaChip-MP cultures and sufficient sensitivity of LC-MS analysis even for the relatively small number of cells per chamber. Further, parallelization realized in HepaChip-MP enabled the acquisition of dose-response toxicity data of diclofenac with a single device. Several unique technical features should enable a widespread application of this in vitro model. We have demonstrated fully automated preparation of cell cultures in HepaChip-MP using a pipetting robot. The tubeless unidirectional perfusion system based on gravity-driven flow can be operated within a standard incubator system. Overall, the system readily integrates in workflows common in cell culture labs. Further research will be directed towards optimization of media composition to further extend culture lifetime and study oxygen gradients and their effect on zonation within the sinusoid-like microorgans. In summary, we have established a novel parallelized and scalable microfluidic in vitro liver model showing hepatocyte function and anticipate future in-depth studies of liver biology and applications in pre-clinical drug development.
Collapse
Affiliation(s)
- Marius Busche
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Olena Tomilova
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Julia Schütte
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Simon Werner
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Meike Beer
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Nicola Groll
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Britta Hagmeyer
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Michael Pawlak
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Peter D Jones
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | | | | | | | | | - Madlen Matz-Soja
- Section of Hepatology, Clinic and Polyclinic for Gastroenterology, Hepatology, Infectiology, Pneumology, University Clinic Leipzig, Leipzig, Germany and Rudolf-Schönheimer-Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Simon Beuck
- A & M Labor fuer Analytik und Metabolismusforschung Service GmbH, Bergheim, Germany
| | - Tobias Klaassen
- A & M Labor fuer Analytik und Metabolismusforschung Service GmbH, Bergheim, Germany
| | - Jana Moer
- PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany
| | - Anett Ullrich
- PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany
| | - Dieter Runge
- PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany. and Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany and Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Germany and Department of Medicine/Cardiology, Cardiovascular Research Laboratories (CVRL), University of California (UCLA), Los Angeles, CA, USA
| | - Rolf Gebhardt
- Section of Hepatology, Clinic and Polyclinic for Gastroenterology, Hepatology, Infectiology, Pneumology, University Clinic Leipzig, Leipzig, Germany and Rudolf-Schönheimer-Institute of Biochemistry, Leipzig University, Leipzig, Germany and InViSys-Tübingen GbR, Leipzig, Germany
| | - Martin Stelzle
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| |
Collapse
|
26
|
Collado MS, Armstrong AJ, Olson M, Hoang SA, Day N, Summar M, Chapman KA, Reardon J, Figler RA, Wamhoff BR. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes. Mol Genet Metab 2020; 130:183-196. [PMID: 32451238 PMCID: PMC7337260 DOI: 10.1016/j.ymgme.2020.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Propionic acidemia (PA) and methylmalonic acidemia (MMA) are autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, which are caused by a deficiency in the enzyme propionyl-CoA carboxylase or the enzyme methylmalonyl-CoA (MM-CoA) mutase, respectively. The functional consequence of PA or MMA is the inability to catabolize P-CoA to MM-CoA or MM-CoA to succinyl-CoA, resulting in the accumulation of P-CoA and other metabolic intermediates, such as propionylcarnitine (C3), 3-hydroxypropionic acid, methylcitric acid (MCA), and methylmalonic acid (only in MMA). P-CoA and its metabolic intermediates, at high concentrations found in PA and MMA, inhibit enzymes in the first steps of the urea cycle as well as enzymes in the tricarboxylic acid (TCA) cycle, causing a reduction in mitochondrial energy production. We previously showed that metabolic defects of PA could be recapitulated using PA patient-derived primary hepatocytes in a novel organotypic system. Here, we sought to investigate whether treatment of normal human primary hepatocytes with propionate would recapitulate some of the biochemical features of PA and MMA in the same platform. We found that high levels of propionate resulted in high levels of intracellular P-CoA in normal hepatocytes. Analysis of TCA cycle intermediates by GC-MS/MS indicated that propionate may inhibit enzymes of the TCA cycle as shown in PA, but is also incorporated in the TCA cycle, which does not occur in PA. To better recapitulate the disease phenotype, we obtained hepatocytes derived from livers of PA and MMA patients. We characterized the PA and MMA donors by measuring key proximal biomarkers, including P-CoA, MM-CoA, as well as clinical biomarkers propionylcarnitine-to-acetylcarnitine ratios (C3/C2), MCA, and methylmalonic acid. Additionally, we used isotopically-labeled amino acids to investigate the contribution of relevant amino acids to production of P-CoA in models of metabolic stability or acute metabolic crisis. As observed clinically, we demonstrated that the isoleucine and valine catabolism pathways are the greatest sources of P-CoA in PA and MMA donor cells and that each donor showed differential sensitivity to isoleucine and valine. We also studied the effects of disodium citrate, an anaplerotic therapy, which resulted in a significant increase in the absolute concentration of TCA cycle intermediates, which is in agreement with the benefit observed clinically. Our human cell-based PA and MMA disease models can inform preclinical drug discovery and development where mouse models of these diseases are inaccurate, particularly in well-described species differences in branched-chain amino acid catabolism.
Collapse
Affiliation(s)
- M Sol Collado
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | - Matthew Olson
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | - Nathan Day
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | - Marshall Summar
- Children's National Rare Disease Institute, Washington, DC, USA
| | | | - John Reardon
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | | |
Collapse
|
27
|
|
28
|
Lin N, Zhou X, Geng X, Drewell C, Hübner J, Li Z, Zhang Y, Xue M, Marx U, Li B. Repeated dose multi-drug testing using a microfluidic chip-based coculture of human liver and kidney proximal tubules equivalents. Sci Rep 2020; 10:8879. [PMID: 32483208 PMCID: PMC7264205 DOI: 10.1038/s41598-020-65817-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/15/2020] [Indexed: 11/28/2022] Open
Abstract
A microfluidic multi-organ chip emulates the tissue culture microenvironment, enables interconnection of organ equivalents and overcomes interspecies differences, making this technology a promising and powerful tool for preclinical drug screening. In this study, we established a microfluidic chip-based model that enabled non-contact cocultivation of liver spheroids and renal proximal tubule barriers in a connecting media circuit over 16 days. Meanwhile, a 14-day repeated-dose systemic administration of cyclosporine A (CsA) alone or in combination with rifampicin was performed. Toxicity profiles of the two different doses of CsA on different target organs could be discriminated and that concomitant treatment with rifampicin from day6 onwards decreased the CsA concentration and attenuated the toxicity compared with that after treatment with CsA for 14 consecutive days. The latter is manifested with the changes in cytotoxicity, cell viability and apoptosis, gene expression of metabolic enzymes and transporters, and noninvasive toxicity biomarkers. The on chip coculture of the liver and the proximal tubulus equivalents showed its potential as an effective and translational tool for repeated dose multi-drug toxicity screening in the preclinical stage of drug development.
Collapse
Affiliation(s)
- Ni Lin
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, P. R. China.,Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Institute for Drug Control, 25 Science Park Road, Changping District, Beijing, 102206, China
| | - Xiaobing Zhou
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, P. R. China
| | - Xingchao Geng
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, P. R. China
| | - Christopher Drewell
- Technische Universitaet Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Juliane Hübner
- Technische Universitaet Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Zuogang Li
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, P. R. China
| | - Yingli Zhang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, P. R. China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Uwe Marx
- TissUse GmbH, Oudenarder Strasse 16, 13347, Berlin, Germany.
| | - Bo Li
- National Institutes for Food and Drug Control, 31 Hua Tuo road, Daxing district, Beijing, 102629, China.
| |
Collapse
|
29
|
Walker PA, Ryder S, Lavado A, Dilworth C, Riley RJ. The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Arch Toxicol 2020; 94:2559-2585. [PMID: 32372214 PMCID: PMC7395068 DOI: 10.1007/s00204-020-02763-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Early identification of toxicity associated with new chemical entities (NCEs) is critical in preventing late-stage drug development attrition. Liver injury remains a leading cause of drug failures in clinical trials and post-approval withdrawals reflecting the poor translation between traditional preclinical animal models and human clinical outcomes. For this reason, preclinical strategies have evolved over recent years to incorporate more sophisticated human in vitro cell-based models with multi-parametric endpoints. This review aims to highlight the evolution of the strategies adopted to improve human hepatotoxicity prediction in drug discovery and compares/contrasts these with recent activities in our lab. The key role of human exposure and hepatic drug uptake transporters (e.g. OATPs, OAT2) is also elaborated.
Collapse
Affiliation(s)
- Paul A Walker
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | - Stephanie Ryder
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Andrea Lavado
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Clive Dilworth
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Alderley Park Accelerator, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Robert J Riley
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| |
Collapse
|
30
|
Burton L, Scaife P, Paine SW, Mellor HR, Abernethy L, Littlewood P, Rauch C. Hydrostatic pressure regulates CYP1A2 expression in human hepatocytes via a mechanosensitive aryl hydrocarbon receptor-dependent pathway. Am J Physiol Cell Physiol 2020; 318:C889-C902. [PMID: 32159360 PMCID: PMC7294326 DOI: 10.1152/ajpcell.00472.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Approximately 75% of xenobiotics are primarily eliminated through metabolism; thus the accurate scaling of metabolic clearance is vital to successful drug development. Yet, when data is scaled from in vitro to in vivo, hepatic metabolic clearance, the primary source of metabolism, is still commonly underpredicted. Over the past decades, with biophysics used as a key component to restore aspects of the in vivo environment, several new cell culture settings have been investigated to improve hepatocyte functionalities. Most of these studies have focused on shear stress, i.e., flow mediated by a pressure gradient. One potential conclusion of these studies is that hepatocytes are naturally "mechanosensitive," i.e., they respond to a change in their biophysical environment. We demonstrate that hepatocytes also respond to an increase in hydrostatic pressure that, we suggest, is directly linked to the lobule geometry and vessel density. Furthermore, we demonstrate that hydrostatic pressure improves albumin production and increases cytochrome P-450 (CYP) 1A2 expression levels in an aryl hydrocarbon-dependent manner in human hepatocytes. Increased albumin production and CYP function are commonly attributed to the impacts of shear stress in microfluidic experiments. Therefore, our results highlight evidence of a novel link between hydrostatic pressure and CYP metabolism and demonstrate that the spectrum of hepatocyte mechanosensitivity might be larger than previously thought.
Collapse
Affiliation(s)
- Lewis Burton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paula Scaife
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Stuart W Paine
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Howard R Mellor
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Lynn Abernethy
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Peter Littlewood
- Vertex Pharmaceuticals Europe Ltd., Abingdon Oxfordshire, United Kingdom
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
31
|
Heydari Z, Najimi M, Mirzaei H, Shpichka A, Ruoss M, Farzaneh Z, Montazeri L, Piryaei A, Timashev P, Gramignoli R, Nussler A, Baharvand H, Vosough M. Tissue Engineering in Liver Regenerative Medicine: Insights into Novel Translational Technologies. Cells 2020; 9:E304. [PMID: 32012725 PMCID: PMC7072533 DOI: 10.3390/cells9020304] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Organ and tissue shortage are known as a crucially important public health problem as unfortunately a small percentage of patients receive transplants. In the context of emerging regenerative medicine, researchers are trying to regenerate and replace different organs and tissues such as the liver, heart, skin, and kidney. Liver tissue engineering (TE) enables us to reproduce and restore liver functions, fully or partially, which could be used in the treatment of acute or chronic liver disorders and/or generate an appropriate functional organ which can be transplanted or employed as an extracorporeal device. In this regard, a variety of techniques (e.g., fabrication technologies, cell-based technologies, microfluidic systems and, extracorporeal liver devices) could be applied in tissue engineering in liver regenerative medicine. Common TE techniques are based on allocating stem cell-derived hepatocyte-like cells or primary hepatocytes within a three-dimensional structure which leads to the improvement of their survival rate and functional phenotype. Taken together, new findings indicated that developing liver tissue engineering-based techniques could pave the way for better treatment of liver-related disorders. Herein, we summarized novel technologies used in liver regenerative medicine and their future applications in clinical settings.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1665659911, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, B-1200 Brussels, Belgium;
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 121135879, Iran;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, 119146 Moscow, Russia; (A.S.); (P.T.)
| | - Marc Ruoss
- Siegfried Weller Institute for Trauma Research, University of Tübingen, 72076 Tübingen, Germany; (M.R.); (A.N.)
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Abbas Piryaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119146 Moscow, Russia; (A.S.); (P.T.)
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 117977 Moscow, Russia
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Andreas Nussler
- Siegfried Weller Institute for Trauma Research, University of Tübingen, 72076 Tübingen, Germany; (M.R.); (A.N.)
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1665659911, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
32
|
Baudy AR, Otieno MA, Hewitt P, Gan J, Roth A, Keller D, Sura R, Van Vleet TR, Proctor WR. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. LAB ON A CHIP 2020; 20:215-225. [PMID: 31799979 DOI: 10.1039/c9lc00768g] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.
Collapse
Affiliation(s)
| | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Spring House, PA, USA
| | | | - Jinping Gan
- Bristol-Myers Squibb, New York City, NY, USA
| | | | | | | | | | | |
Collapse
|
33
|
Bale SS, Manoppo A, Thompson R, Markoski A, Coppeta J, Cain B, Haroutunian N, Newlin V, Spencer A, Azizgolshani H, Lu M, Gosset J, Keegan P, Charest JL. A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions. Biotechnol Bioeng 2019; 116:3409-3420. [DOI: 10.1002/bit.26986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Alex Markoski
- DraperCambridge Massachusetts
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcester Massachusetts
| | | | | | | | | | | | | | - Mingjian Lu
- Pfizer Global Research and Development Cambridge Massachusetts
| | - James Gosset
- Pfizer Global Research and Development Cambridge Massachusetts
| | | | | |
Collapse
|
34
|
Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer 2019; 19:707. [PMID: 31319796 PMCID: PMC6637598 DOI: 10.1186/s12885-019-5916-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is the leading cause of liver cancer, but the mechanisms by which HBV causes liver cancer are poorly understood and chemotherapeutic strategies to cure liver cancer are not available. A better understanding of how HBV requisitions cellular components in the liver will identify novel therapeutic targets for HBV associated hepatocellular carcinoma (HCC). MAIN BODY The development of HCC involves deregulation in several cellular signalling pathways including Wnt/FZD/β-catenin, PI3K/Akt/mTOR, IRS1/IGF, and Ras/Raf/MAPK. HBV is known to dysregulate several hepatocyte pathways and cell cycle regulation resulting in HCC development. A number of these HBV induced changes are also mediated through the Wnt/FZD/β-catenin pathway. The lack of a suitable human liver model for the study of HBV has hampered research into understanding pathogenesis of HBV. Primary human hepatocytes provide one option; however, these cells are prone to losing their hepatic functionality and their ability to support HBV replication. Another approach involves induced-pluripotent stem (iPS) cell-derived hepatocytes. However, iPS technology relies on retroviruses or lentiviruses for effective gene delivery and pose the risk of activating a range of oncogenes. Liver organoids developed from patient-derived liver tissues provide a significant advance in HCC research. Liver organoids retain the characteristics of their original tissue, undergo unlimited expansion, can be differentiated into mature hepatocytes and are susceptible to natural infection with HBV. CONCLUSION By utilizing new ex vivo techniques like liver organoids it will become possible to develop improved and personalized therapeutic approaches that will improve HCC outcomes and potentially lead to a cure for HBV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Bang Manh Tran
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Renate Hilda Marianne Schwab
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Elizabeth Vincan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6845 Australia
| |
Collapse
|
35
|
Alsaeedi F, Wilson R, Candlish C, Ibrahim I, Leitch AC, Abdelghany TM, Wilson C, Armstrong L, Wright MC. Expression of serine/threonine protein kinase SGK1F promotes an hepatoblast state in stem cells directed to differentiate into hepatocytes. PLoS One 2019; 14:e0218135. [PMID: 31242206 PMCID: PMC6594595 DOI: 10.1371/journal.pone.0218135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/25/2019] [Indexed: 11/19/2022] Open
Abstract
The rat pancreatic AR42J-B13 (B-13) cell line differentiates into non-replicative hepatocyte-like (B-13/H) cells in response to glucocorticoid. Since this response is dependent on an induction of serine/threonine protein kinase 1 (SGK1), this may suggest that a general pivotal role for SGK1 in hepatocyte maturation. To test this hypothesis, the effects of expressing adenoviral-encoded flag tagged human SGK1F (AdV-SGK1F) was examined at 3 stages of human induced pluripotent stem cell (iPSC) differentiation to hepatocytes. B-13 cells infected with AdV-SGK1F in the absence of glucocorticoid resulted in expression of flag tagged SGK1F protein; increases in β-catenin phosphorylation; decreases in Tcf/Lef transcriptional activity; expression of hepatocyte marker genes and conversion of B-13 cells to a cell phenotype near-similar to B-13/H cells. Given this demonstration of functionality, iPSCs directed to differentiate towards hepatocyte-like cells using a standard protocol of chemical inhibitors and mixtures of growth factors were additionally infected with AdV-SGK1F, either at an early time point during differentiation to endoderm; during endoderm differentiation to anterior definitive endoderm and hepatoblasts and once converted to hepatocyte-like cells. SGK1F expression had no effect on differentiation to endoderm, likely due to low levels of expression. However, expression of SGK1F in both iPSCs-derived endoderm and hepatocyte-like cells both resulted in promotion of cells to an hepatoblast phenotype. These data demonstrate that SGK1 expression promotes an hepatoblast phenotype rather than maturation of human iPSC towards a mature hepatocyte phenotype and suggest a transient role for Sgk1 in promoting an hepatoblast state in B-13 trans-differentiation to B-13/H cells.
Collapse
Affiliation(s)
- Fouzeyyah Alsaeedi
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Faculty of Medical Sciences, Taif University, Taif, KSA
| | - Rachel Wilson
- Institute Human Genetics, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Charlotte Candlish
- Institute Human Genetics, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ibrahim Ibrahim
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Freeman Hospital, Newcastle Upon Tyne, United Kingdom
| | - Alistair C. Leitch
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Tarek M. Abdelghany
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Colin Wilson
- Freeman Hospital, Newcastle Upon Tyne, United Kingdom
| | - Lyle Armstrong
- Institute Human Genetics, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Matthew C. Wright
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
36
|
Tan K, Keegan P, Rogers M, Lu M, Gosset JR, Charest J, Bale SS. A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions. LAB ON A CHIP 2019; 19:1556-1566. [PMID: 30855604 DOI: 10.1039/c8lc01262h] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microphysiological systems (MPSs) are dynamic cell culture systems that provide micro-environmental and external cues to support physiologically relevant, organ-specific functions. Recent progresses in MPS fabrication technologies have enabled the development of advanced models to capture microenvironments with physiological relevance, while increasing throughput and reducing material-based artefacts. In addition to conventional cell culture systems, advanced MPSs are emerging as ideal contenders for disease modeling and incorporation into drug screening. Since liver is a central organ for drug metabolism, liver-on-chip models have been developed to recapitulate hepatic microenvironment with varying complexities, while allowing long-term culture. Recently, we have developed a novel thermoplastic, oxygen-permeable MPS for primary human hepatocyte (PHH) culture. Herein, we have adapted and extended the MPS to a) a 96 microfluidic array (PREDICT-96 array) and b) integrated a novel, ultra-low volume, re-circulating pumping system (PREDICT-96 pump) - collectively known as the PREDICT-96 platform. The PREDICT-96 platform conforms to the industrial standard 96-well footprint and enables media re-circulation. First, we demonstrate the introduction of PHHs into the PREDICT-96 array using standard handling procedures for multi-well plates and allow cells to stabilize in static conditions. Next, we introduce recirculating flow into the bottom channel (using PREDICT-96 pump) to mimic mass transport in vivo. Our results indicate an increase in metabolic and secretory functions of PHHs in the PREDICT-96 platform, and their maintenance over 10 days of flow. Furthermore, long-term culture with fluid flow allows for the periodic introduction of media components (e.g., fatty acids, cytokines) and capture cellular responses to chronic stimuli. The low-volume footprint of the pump and small media volume in the MPS allow for the interrogation of hepatic responses incorporating secretion feedback to a stimulus, which is essential for disease model development and drug interrogation. We envision future development of this liver model to incorporate key primary hepatic cells, multi-cellular co-cultures and adaptation, integration with high-throughput analytical tools.
Collapse
Affiliation(s)
- Kelly Tan
- Draper, 555 Technology Square, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gioeli D, Snow CJ, Simmers MB, Hoang SA, Figler RA, Allende JA, Roller DG, Parsons JT, Wulfkuhle JD, Petricoin EF, Bauer TW, Wamhoff BR. Development of a multicellular pancreatic tumor microenvironment system using patient-derived tumor cells. LAB ON A CHIP 2019; 19:1193-1204. [PMID: 30839006 PMCID: PMC7486791 DOI: 10.1039/c8lc00755a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of drugs to treat cancer is hampered by the inefficiency of translating pre-clinical in vitro monoculture and mouse studies into clinical benefit. There is a critical need to improve the accuracy of evaluating pre-clinical drug efficacy through the development of more physiologically relevant models. In this study, a human triculture 3D in vitro tumor microenvironment system (TMES) was engineered to accurately mimic the tumor microenvironment. The TMES recapitulates tumor hemodynamics and biological transport with co-cultured human microvascular endothelial cells, pancreatic ductal adenocarcinoma, and pancreatic stellate cells. We demonstrate that significant tumor cell transcriptomic changes occur in the TMES that correlate with the in vivo xenograft and patient transcriptome. Treatment with therapeutically relevant doses of chemotherapeutics yields responses paralleling the patients' clinical responses. Thus, this model provides a unique platform to rigorously evaluate novel therapies and is amenable to using patient tumor material directly, with applicability for patient avatars.
Collapse
Affiliation(s)
- Daniel Gioeli
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
- Cancer Center Member, University of Virginia, Charlottesville, Virginia
- HemoShear Therapeutics, Charlottesville, Virginia
| | | | | | | | | | - J. Ashe Allende
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Devin G. Roller
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - J. Thomas Parsons
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
- Cancer Center Member, University of Virginia, Charlottesville, Virginia
| | - Julia D. Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Todd W. Bauer
- Department of Surgery, University of Virginia, Charlottesville, Virginia
- Cancer Center Member, University of Virginia, Charlottesville, Virginia
| | | |
Collapse
|
38
|
Wang L, Li Z, Xu C, Qin J. Bioinspired Engineering of Organ-on-Chip Devices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:401-440. [PMID: 31713207 DOI: 10.1007/978-981-13-9791-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human body can be viewed as an organism consisting of a variety of cellular and non-cellular materials interacting in a highly ordered manner. Its complex and hierarchical nature inspires the multi-level recapitulation of the human body in order to gain insights into the inner workings of life. While traditional cell culture models have led to new insights into the cellular microenvironment and biological control in vivo, deeper understanding of biological systems and human pathophysiology requires the development of novel model systems that allow for analysis of complex internal and external interactions within the cellular microenvironment in a more relevant organ context. Engineering organ-on-chip systems offers an unprecedented opportunity to unravel the complex and hierarchical nature of human organs. In this chapter, we first highlight the advances in microfluidic platforms that enable engineering of the cellular microenvironment and the transition from cells-on-chips to organs-on-chips. Then, we introduce the key features of the emerging organs-on-chips and their proof-of-concept applications in biomedical research. We also discuss the challenges and future outlooks of this state-of-the-art technology.
Collapse
Affiliation(s)
- Li Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhongyu Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Cong Xu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Bale SS, Borenstein JT. Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions. Drug Metab Dispos 2018; 46:1638-1646. [PMID: 30115643 DOI: 10.1124/dmd.118.083055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/14/2018] [Indexed: 02/13/2025] Open
Abstract
Animal models such as rats and primates provide body-wide information for drug and metabolite responses, including organ-specific toxicity and any unforeseen side effects on other organs. Although effective in the drug-screening process, their translatability to humans is limited because of the lack of high concordance and correlation among enzymatic mechanisms, cellular mechanisms, and resulting toxicities. A significant mode of failure for safety prediction in drug screening is hepatotoxicity, resulting in ∼30% of all safety-related drug failures and withdrawals from the market. The liver is a multifunctional organ with diverse metabolic, secretory, and inflammatory response roles and is essential for maintaining key body functions. Conventional cell culture platforms (such as multiwell plate cultures) and metabolic enzyme systems (microsomes, cytochrome P450 enzymes) have been routinely used to assess drug pharmacokinetics and metabolism. However, current in vitro models often fail to recapitulate the complexity and dynamic nature of human tissues, imposing a heavy reliance on in vivo testing using preclinical species that have metabolic processes, disease mechanisms, and modes of toxicity distinct from humans. Recently, microphysiological systems (MPS) have gained attention as powerful tools with the potential to generate human-relevant information that can supplant and fill the gap of knowledge between preclinical animal models and simpler, conventional in vitro cell culture systems. Developments in microfabrication technologies for generating complex microfluidic systems, along with the ability to establish and maintain multicellular models to capture dynamic, human-relevant behavior, have provided new avenues to generate such physiologically relevant systems. These MPS platforms, when designed and developed with in vivo-derived design parameters, have the potential to capture key aspects and better mimic organ functionality. In this review, we discuss developments in microtechnologies for fabricating, establishing, and maintaining hepatic cell culture systems, with a specific focus on models that aim to capture in vivo physiology in vitro. By designing microscale systems to impart specific in vivo physiologic parameters, it is possible to create a dynamic system that can capture multiple aspects of the hepatic microenvironment, bringing us closer to a comprehensive in vitro testing platform for hepatic responses and toxicities.
Collapse
Affiliation(s)
- Shyam Sundhar Bale
- Cellular and Tissue Engineering, and Synthetic Biology and Bio-Instrumentation, Draper, Cambridge, Massachusetts
| | - Jeffrey T Borenstein
- Cellular and Tissue Engineering, and Synthetic Biology and Bio-Instrumentation, Draper, Cambridge, Massachusetts
| |
Collapse
|
40
|
Caetano-Pinto P, Stahl SH. Perspective on the Application of Microphysiological Systems to Drug Transporter Studies. Drug Metab Dispos 2018; 46:1647-1657. [PMID: 30135246 DOI: 10.1124/dmd.118.082750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 02/13/2025] Open
Abstract
Transmembrane flux of a drug within a tissue or organ frequently involves a complex system of transporters from multiple families that have redundant and overlapping specificities. Current in vitro systems poorly represent physiology, with reduced expression and activity of drug transporter proteins; therefore, novel models that recapitulate the complexity and interplay among various transporters are needed. The development of microphysiological systems that bring simulated physiologic conditions to in vitro cell culture models has enormous potential to better reproduce the morphology and transport activity across several organ models, especially in tissues such as the liver, kidney, intestine, or the blood-brain barrier, in which drug transporters play a key role. The prospect of improving the in vitro function of organ models highly prolific in drug transporters holds the promise of implementing novel tools to study these mechanisms with far more representative biology than before. In this short review, we exemplify recent developments in the characterization of perfused microphysiological systems involving the activity of drug transporters. Furthermore, we analyze the challenges and opportunities for the implementation of such systems in the study of transporter-mediated drug disposition and the generation of clinically relevant physiology-based in silico models incorporating relevant drug transport activity.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Simone H Stahl
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
41
|
Phillips MB, Balbuena-Venancio P, Enders JR, Norini RL, Shim YS, Burgunder E, Rao L, Billings D, Pedersen J, Macdonald JM, Andersen M, Clewell HJ, Yoon M. Xenobiotic Metabolism in Alginate-Encapsulated Primary Human Hepatocytes Over Long Timeframes. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Pergentino Balbuena-Venancio
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | | | | | - Yoo-Sik Shim
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Erin Burgunder
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Lavanya Rao
- ScitoVation, LLC, Research Triangle Park, North Carolina
| | - David Billings
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jenny Pedersen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jeffrey M. Macdonald
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Melvin Andersen
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Harvey J. Clewell
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Miyoung Yoon
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
42
|
Ortega-Ribera M, Fernández-Iglesias A, Illa X, Moya A, Molina V, Maeso-Díaz R, Fondevila C, Peralta C, Bosch J, Villa R, Gracia-Sancho J. Resemblance of the human liver sinusoid in a fluidic device with biomedical and pharmaceutical applications. Biotechnol Bioeng 2018; 115:2585-2594. [PMID: 29940068 PMCID: PMC6220781 DOI: 10.1002/bit.26776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/10/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Maintenance of the complex phenotype of primary hepatocytes in vitro represents a limitation for developing liver support systems and reliable tools for biomedical research and drug screening. We herein aimed at developing a biosystem able to preserve human and rodent hepatocytes phenotype in vitro based on the main characteristics of the liver sinusoid: unique cellular architecture, endothelial biodynamic stimulation, and parenchymal zonation. Primary hepatocytes and liver sinusoidal endothelial cells (LSEC) were isolated from control and cirrhotic human or control rat livers and cultured in conventional in vitro platforms or within our liver‐resembling device. Hepatocytes phenotype, function, and response to hepatotoxic drugs were analyzed. Results evidenced that mimicking the in vivo sinusoidal environment within our biosystem, primary human and rat hepatocytes cocultured with functional LSEC maintained morphology and showed high albumin and urea production, enhanced cytochrome P450 family 3 subfamily A member 4 (CYP3A4) activity, and maintained expression of hepatocyte nuclear factor 4 alpha (hnf4α) and transporters, showing delayed hepatocyte dedifferentiation. In addition, differentiated hepatocytes cultured within this liver‐resembling device responded to acute treatment with known hepatotoxic drugs significantly different from those seen in conventional culture platforms. In conclusion, this study describes a new bioengineered device that mimics the human sinusoid in vitro, representing a novel method to study liver diseases and toxicology.
Collapse
Affiliation(s)
- Martí Ortega-Ribera
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Biomedical Applications Group (GAB), Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Xavi Illa
- Biomedical Applications Group (GAB), Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Madrid, Spain
| | - Ana Moya
- Biomedical Applications Group (GAB), Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Madrid, Spain
| | - Víctor Molina
- Liver Surgery and Transplantation Unit, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raquel Maeso-Díaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Constantino Fondevila
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Liver Surgery and Transplantation Unit, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carmen Peralta
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Protective Strategies Against Hepatic Ischemia-Reperfusion Group, IDIBAPS, Barcelona, Spain
| | - Jaume Bosch
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland
| | - Rosa Villa
- Biomedical Applications Group (GAB), Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain.,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland
| |
Collapse
|
43
|
Abstract
Liver sinusoid is the main functional site in liver. Multiple types of hepatic cells are well organized in a precisely-controlled biochemical and biomechanical environment, maintaining a spectrum of hepatic functions. Here, using micro-engineering techniques, four types of primary hepatic cells are integrated into two layer channels connected by porous membrane, which recreates the sinusoidal cell composition and architecture. By incorporating shear flow into this permeable system, the blood flow in sinusoids and interstitial flow in space of Disse are recapitulated. Conventional hepatocyte-based liver-specific functions are enhanced by non-parenchymal cells co-culture and shear flow. Moreover, major immune responses in liver sinusoids, i.e., neutrophil recruitment under lipopolysaccharide (LPS) stimulation, are replicated, indicating that all types of hepatic cells contribute to this process. Thus, this liver chip provides a new in vitro model to investigate the short-duration cellular interactions under a microenvironment mimicking the physiological composition and architecture of liver organ.
Collapse
Affiliation(s)
- Yu Du
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Freyer N, Greuel S, Knöspel F, Gerstmann F, Storch L, Damm G, Seehofer D, Foster Harris J, Iyer R, Schubert F, Zeilinger K. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions. Bioengineering (Basel) 2018; 5:bioengineering5010024. [PMID: 29543727 PMCID: PMC5874890 DOI: 10.3390/bioengineering5010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.
Collapse
Affiliation(s)
- Nora Freyer
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Selina Greuel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Fanny Knöspel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Florian Gerstmann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Lisa Storch
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany.
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany.
| | | | - Rashi Iyer
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Katrin Zeilinger
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
45
|
Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, Valdez J, Cook CD, Parent T, Snyder S, Yu J, Suter E, Shockley M, Velazquez J, Velazquez JJ, Stockdale L, Papps JP, Lee I, Vann N, Gamboa M, LaBarge ME, Zhong Z, Wang X, Boyer LA, Lauffenburger DA, Carrier RL, Communal C, Tannenbaum SR, Stokes CL, Hughes DJ, Rohatgi G, Trumper DL, Cirit M, Griffith LG. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep 2018. [PMID: 29540740 PMCID: PMC5852083 DOI: 10.1038/s41598-018-22749-0] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs – “4-way”, “7-way”, and “10-way” – each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS “physiome-on-a-chip” approaches in drug discovery.
Collapse
Affiliation(s)
- Collin D Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Geishecker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy Kassis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis R Soenksen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brij M Bhushan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Christian Maass
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikolaos Tsamandouras
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jorge Valdez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christi D Cook
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Jiajie Yu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Suter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Shockley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jason Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeremy J Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linda Stockdale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia P Papps
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Iris Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas Vann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mario Gamboa
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew E LaBarge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhe Zhong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Catherine Communal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - David L Trumper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
46
|
|
47
|
Cole BK, Feaver RE, Wamhoff BR, Dash A. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov 2017; 13:193-205. [PMID: 29190166 DOI: 10.1080/17460441.2018.1410135] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The progressive disease spectrum of non-alcoholic fatty liver disease (NAFLD), which includes non-alcoholic steatohepatitis (NASH), is a rapidly emerging public health crisis with no approved therapy. The diversity of various therapies under development highlights the lack of consensus around the most effective target, underscoring the need for better translatable preclinical models to study the complex progressive disease and effective therapies. Areas covered: This article reviews published literature of various mouse models of NASH used in preclinical studies, as well as complex organotypic in vitro and ex vivo liver models being developed. It discusses translational challenges associated with both kinds of models, and describes some of the studies that validate their application in NAFLD. Expert opinion: Animal models offer advantages of understanding drug distribution and effects in a whole body context, but are limited by important species differences. Human organotypic in vitro and ex vivo models with physiological relevance and translatability need to be used in a tiered manner with simpler screens. Leveraging newer technologies, like metabolomics, proteomics, and transcriptomics, and the future development of validated disease biomarkers will allow us to fully utilize the value of these models to understand disease and evaluate novel drugs in isolation or combination.
Collapse
Affiliation(s)
| | | | | | - Ajit Dash
- b Early Development Safety , Genentech Inc , South San Francisco , CA , USA
| |
Collapse
|
48
|
3D in vitro models of liver fibrosis. Adv Drug Deliv Rev 2017; 121:133-146. [PMID: 28697953 DOI: 10.1016/j.addr.2017.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Animal testing is still the most popular preclinical assessment model for liver fibrosis. To develop efficient anti-fibrotic therapies, robust and representative in vitro models are urgently needed. The most widely used in vitro fibrosis model is the culture-induced activation of primary rodent hepatic stellate cells. While these cultures have contributed greatly to the current understanding of hepatic stellate cell activation, they seem to be inadequate to cover the complexity of this regenerative response. This review summarizes recent progress towards the development of 3D culture models of liver fibrosis. Thus far, only a few hepatic culture systems have successfully implemented hepatic stellate cells (or other non-parenchymal cells) into hepatocyte cultures. Recent advances in bioprinting, spheroid- and precision-cut liver slice cultures and the use of microfluidic bioreactors will surely lead to valid 3D in vitro models of liver fibrosis in the near future.
Collapse
|
49
|
Hepatocyte CYP2B6 Can Be Expressed in Cell Culture Systems by Exerting Physiological Levels of Shear: Implications for ADME Testing. J Toxicol 2017; 2017:1907952. [PMID: 29081796 PMCID: PMC5610861 DOI: 10.1155/2017/1907952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/27/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022] Open
Abstract
Cytochrome 2B6 (CYP2B6) has substantial clinical effects on morbidity and mortality and its effects on drug metabolism should be part of hepatotoxicity screening. Examples of CYP2B6's impacts include its linkage to mortality during cyclophosphamide therapy and its role in determining hepatotoxicity and CNS toxicity during efavirenz therapy for HIV infection. CYP2B6 is key to metabolism of many common drugs from opioids to antidepressants, anesthetics, and anticonvulsants. But CYP2B6 has been extremely difficult to express in cell culture, and as a result, it has been largely deemphasized in preclinical toxicity studies. It has now been shown that CYP2B6 expression can be supported for extended periods of time using suspension culture techniques that exert physiological levels of shear. New understanding of CYP2B6 has identified five clinically significant genetic polymorphisms that have a high incidence in many populations and that convey a substantial dynamic range of activity. We propose that, with the use of culture devices exerting physiological shear levels, CYP2B6 dependent drug testing, including definition of polymorphisms and application of specific inhibitors, should be a standard part of preclinical absorption, distribution, metabolism, and excretion (ADME) testing.
Collapse
|
50
|
Ewart L, Dehne EM, Fabre K, Gibbs S, Hickman J, Hornberg E, Ingelman-Sundberg M, Jang KJ, Jones DR, Lauschke VM, Marx U, Mettetal JT, Pointon A, Williams D, Zimmermann WH, Newham P. Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery. Annu Rev Pharmacol Toxicol 2017; 58:65-82. [PMID: 29029591 DOI: 10.1146/annurev-pharmtox-010617-052722] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery.
Collapse
Affiliation(s)
- Lorna Ewart
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | | | - Kristin Fabre
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451, USA
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA Amsterdam, The Netherlands
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Ellinor Hornberg
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, 431 83 Mölndal, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - David R Jones
- Medicines & Healthcare Products Regulatory Agency, London SW1W 9SZ, United Kingdom
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Jerome T Mettetal
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451, USA
| | - Amy Pointon
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | - Dominic Williams
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK), Goettingen 37075, Germany
| | - Peter Newham
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| |
Collapse
|