1
|
Stewart GW, Gibson JS, Rees DC. The cation-leaky hereditary stomatocytosis syndromes: A tale of six proteins. Br J Haematol 2023; 203:509-522. [PMID: 37679660 DOI: 10.1111/bjh.19093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
This review concerns a series of dominantly inherited haemolytic anaemias in which the membrane of the erythrocyte 'leaks' the univalent cations, compromising the osmotic stability of the cell. The majority of the conditions are explained by mutations in one of six genes, coding for multispanning membrane proteins of different structure and function. These are: RhAG, coding for an ammonium carrier; SLC4A1, coding for the band 3 anion exchanger; PIEZO1, coding for a mechanosensitive cation channel; GLUT1, coding for a glucose transporter; KCNN4, coding for an internal-calcium-activated potassium channel; and ABCB6, coding for a porphyrin transporter. This review describes the five clinical syndromes associated with genetic defects in these genes and their variable genotype/phenotype relationships.
Collapse
Affiliation(s)
- Gordon W Stewart
- Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Haematological Medicine, Kings College London, London, UK
| |
Collapse
|
2
|
Capper MJ, Yang S, Stone AC, Vatansever S, Zilberg G, Mathiharan YK, Habib R, Hutchinson K, Zhao Y, Schlessinger A, Mezei M, Osman R, Zhang B, Wacker D. Substrate binding and inhibition of the anion exchanger 1 transporter. Nat Struct Mol Biol 2023; 30:1495-1504. [PMID: 37679563 PMCID: PMC11008770 DOI: 10.1038/s41594-023-01085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Anion exchanger 1 (AE1), a member of the solute carrier (SLC) family, is the primary bicarbonate transporter in erythrocytes, regulating pH levels and CO2 transport between lungs and tissues. Previous studies characterized its role in erythrocyte structure and provided insight into transport regulation. However, key questions remain regarding substrate binding and transport, mechanisms of drug inhibition and modulation by membrane components. Here we present seven cryo-EM structures in apo, bicarbonate-bound and inhibitor-bound states. These, combined with uptake and computational studies, reveal important molecular features of substrate recognition and transport, and illuminate sterol binding sites, to elucidate distinct inhibitory mechanisms of research chemicals and prescription drugs. We further probe the substrate binding site via structure-based ligand screening, identifying an AE1 inhibitor. Together, our findings provide insight into mechanisms of solute carrier transport and inhibition.
Collapse
Affiliation(s)
- Michael J Capper
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shifan Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander C Stone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sezen Vatansever
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yamuna Kalyani Mathiharan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raul Habib
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yihan Zhao
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roman Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Wacker
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
4
|
Identification of multiple substrate binding sites in SLC4 transporters in the outward-facing conformation: Insights into the transport mechanism. J Biol Chem 2021; 296:100724. [PMID: 33932403 PMCID: PMC8191340 DOI: 10.1016/j.jbc.2021.100724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023] Open
Abstract
Solute carrier family 4 (SLC4) transporters mediate the transmembrane transport of HCO3-, CO32-, and Cl- necessary for pH regulation, transepithelial H+/base transport, and ion homeostasis. Substrate transport with varying stoichiometry and specificity is achieved through an exchange mechanism and/or through coupling of the uptake of anionic substrates to typically co-transported Na+. Recently solved outward-facing structures of two SLC4 members (human anion exchanger 1 [hAE1] and human electrogenic sodium bicarbonate cotransporter 1 [hNBCe1]) with different transport modes (Cl-/HCO3- exchange versus Na+-CO32- symport) revealed highly conserved three-dimensional organization of their transmembrane domains. However, the exact location of the ion binding sites and their protein-ion coordination motifs are still unclear. In the present work, we combined site identification by ligand competitive saturation mapping and extensive molecular dynamics sampling with functional mutagenesis studies which led to the identification of two substrate binding sites (entry and central) in the outward-facing states of hAE1 and hNBCe1. Mutation of residues in the identified binding sites led to impaired transport in both proteins. We also showed that R730 in hAE1 is crucial for anion binding in both entry and central sites, whereas in hNBCe1, a Na+ acts as an anchor for CO32- binding to the central site. Additionally, protonation of the central acidic residues (E681 in hAE1 and D754 in hNBCe1) alters the ion dynamics in the permeation cavity and may contribute to the transport mode differences in SLC4 proteins. These results provide a basis for understanding the functional differences between hAE1 and hNBCe1 and may facilitate potential drug development for diseases such as proximal and distal renal tubular acidosis.
Collapse
|
5
|
Frederiksen H. Dehydrated hereditary stomatocytosis: clinical perspectives. J Blood Med 2019; 10:183-191. [PMID: 31308777 PMCID: PMC6613601 DOI: 10.2147/jbm.s179764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Dehydrated hereditary stomatocytosis (DHSt) is a nonimmune congenital hemolytic disorder characterized by red blood cell (RBC) dehydration and lysis. It has been a recognized diagnostic entity for almost 50 years, and autosomal dominant inheritance has long been suspected, but it was not until 2011 that the first genetic alterations were identified. The current study reviews 73 articles published during 1971–2019 and focuses on clinical perspectives of the disease. All but one of the published clinical data in DHSt were either single case reports or case series. From these, it can be seen that patients with DHSt often have fully or partially compensated hemolysis with few symptoms. Despite this, iron overload is an almost universal finding even in patients without or with only sporadic blood transfusions, and this may lead to organ dysfunction. Other severe complications, such as thrombosis and perinatal fluid effusions unrelated to fetal hemoglobin concentration, may also occur. No specific treatment for symptomatic hemolysis exists, and splenectomy should be avoided as it seems to aggravate the risk of thrombosis. Recently, treatment with senicapoc has shown activity against RBC dehydration in vitro; however, it is not known if this translates into relevant clinical effects. In conclusion, despite recent advances in the understanding of pathophysiology in DHSt, options for clinical management have not improved. Entering data into international registries has the potential to fill gaps in knowledge and eventually care of these rare patients.
Collapse
|
6
|
Petkova-Kirova P, Hertz L, Danielczok J, Huisjes R, Makhro A, Bogdanova A, Mañú-Pereira MDM, Vives Corrons JL, van Wijk R, Kaestner L. Red Blood Cell Membrane Conductance in Hereditary Haemolytic Anaemias. Front Physiol 2019; 10:386. [PMID: 31040790 PMCID: PMC6477063 DOI: 10.3389/fphys.2019.00386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/21/2019] [Indexed: 11/18/2022] Open
Abstract
Congenital haemolytic anaemias are inherited disorders caused by red blood cell membrane and cytoskeletal protein defects, deviant hemoglobin synthesis and metabolic enzyme deficiencies. In many cases, although the causing mutation might be known, the pathophysiology and the connection between the particular mutation and the symptoms of the disease are not completely understood. Thus effective treatment is lagging behind. As in many cases abnormal red blood cell cation content and cation leaks go along with the disease, by direct electrophysiological measurements of the general conductance of red blood cells, we aimed to assess if changes in the membrane conductance could be a possible cause. We recorded whole-cell currents from 29 patients with different types of congenital haemolytic anaemias: 14 with hereditary spherocytosis due to mutations in α-spectrin, β-spectrin, ankyrin and band 3 protein; 6 patients with hereditary xerocytosis due to mutations in Piezo1; 6 patients with enzymatic disorders (3 patients with glucose-6-phosphate dehydrogenase deficiency, 1 patient with pyruvate kinase deficiency, 1 patient with glutamate-cysteine ligase deficiency and 1 patient with glutathione reductase deficiency), 1 patient with β-thalassemia and 2 patients, carriers of several mutations and a complex genotype. While the patients with β-thalassemia and metabolic enzyme deficiencies showed no changes in their membrane conductance, the patients with hereditary spherocytosis and hereditary xerocytosis showed largely variable results depending on the underlying mutation.
Collapse
Affiliation(s)
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Jens Danielczok
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Rick Huisjes
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zurich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zurich, Switzerland
| | | | - Joan-Lluis Vives Corrons
- Red Blood Cell Defects and Hematopoietic Disorders Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Richard van Wijk
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
7
|
Peng GX, Yang WR, Zhao X, Jin LP, Zhang L, Zhou K, Li Y, Ye L, Li Y, Li JP, Fan HH, Song L, Yang Y, Xiong YZ, Wu ZJ, Wang HJ, Zhang FK. [The characteristic of hereditary spherocytosis related gene mutation in 37 Chinese hereditary spherocytisis patients]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:898-903. [PMID: 30486584 PMCID: PMC7342348 DOI: 10.3760/cma.j.issn.0253-2727.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/25/2022]
Abstract
Objective: To reveal the genetic characteristics of erythrocyte membrane protein in hereditary spherocytosis (HS) in China. Methods: Next-generation sequencing technology was used to detect mutations in genes of erythrocyte membrane proteins in 51 clinically diagnosed HS patients. The relationship between gene mutations and clinical phenotypes was analyzed. Results: Mutations in erythrocyte membrane protein genes were detected in 37 patients, including 17 with ANK1 mutations (17/37, 45.9%), 14 with SPTB mutations (14/37, 37.8%), and 5 with SLC4A1 mutations (5/37, 13.5%). One patient carried both heterozygous ANK1 mutation and SPTB mutation (1/37, 2.7%). SPTA1 and EPB42 mutation was not fou nd in any patient. Nonsense mutations (36.8%) and missense mutations (31.6%) were most common. Of the 38 mutations detected, 34 were novel mutations and have not been reported elsewhere (89.5%). Sixteen HS patients underwent parental genetic validation, 6 patients (37.5%) inherited gene mutation from parents and 10 (62.5%) were de novo. The peripheral blood cell parameters of HS patients were not related to the mutant genes and gene mutation types. However, it seems that HS patients with mild clinical status are prone to carry SPTB mutations while more patients with severe clinical status have ANK1 mutations. Conclusions: ANK1 and SPTB are the most common mutant genes in Chinese HS patients, mainly with missense mutations and nonsense mutations. There was no significant correlation between the mutation of HS related genes and the severity of HS.
Collapse
Affiliation(s)
- G X Peng
- Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Flatt JF, Bruce LJ. The Molecular Basis for Altered Cation Permeability in Hereditary Stomatocytic Human Red Blood Cells. Front Physiol 2018; 9:367. [PMID: 29713289 PMCID: PMC5911802 DOI: 10.3389/fphys.2018.00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 11/20/2022] Open
Abstract
Normal human RBCs have a very low basal permeability (leak) to cations, which is continuously corrected by the Na,K-ATPase. The leak is temperature-dependent, and this temperature dependence has been evaluated in the presence of inhibitors to exclude the activity of the Na,K-ATPase and NaK2Cl transporter. The severity of the RBC cation leak is altered in various conditions, most notably the hereditary stomatocytosis group of conditions. Pedigrees within this group have been classified into distinct phenotypes according to various factors, including the severity and temperature-dependence of the cation leak. As recent breakthroughs have provided more information regarding the molecular basis of hereditary stomatocytosis, it has become clear that these phenotypes elegantly segregate with distinct genetic backgrounds. The cryohydrocytosis phenotype, including South-east Asian Ovalocytosis, results from mutations in SLC4A1, and the very rare condition, stomatin-deficient cryohydrocytosis, is caused by mutations in SLC2A1. Mutations in RHAG cause the very leaky condition over-hydrated stomatocytosis, and mutations in ABCB6 result in familial pseudohyperkalemia. All of the above are large multi-spanning membrane proteins and the mutations may either modify the structure of these proteins, resulting in formation of a cation pore, or otherwise disrupt the membrane to allow unregulated cation movement across the membrane. More recently mutations have been found in two RBC cation channels, PIEZO1 and KCNN4, which result in dehydrated stomatocytosis. These mutations alter the activation and deactivation kinetics of these channels, leading to increased opening and allowing greater cation fluxes than in wild type.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
9
|
Jamwal M, Aggarwal A, Sachdeva MUS, Sharma P, Malhotra P, Maitra A, Das R. Overhydrated stomatocytosis associated with a complex RHAG genotype including a novel de novo mutation. J Clin Pathol 2018; 71:648-652. [DOI: 10.1136/jclinpath-2018-205018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 11/04/2022]
Abstract
Overhydrated stomatocytosis is a rare autosomal dominant disorder known to cause variably severe haemolytic anaemia due to heterozygous mutations in the RHAG gene. We report a 26-year-old man with recurring jaundice, splenohepatomegaly and mild chronic haemolytic anaemia with significant stomatocytosis. Extensive haemolytic work-up including flow cytometry for eosin-5′-maleimide and CD47 expression levels was carried out. Targeted resequencing revealed two probably causative heterozygous mutations in RHAG (Leu336Ser and Ile149Met) and one heterozygous mutation in ANK1 (Glu1046Lys). RHAG involvement was confirmed by decreased RhAG macrocomplex component indicated by the reduced CD47 expression on erythrocytes. In silico analysis concordantly flagged RHAG:Leu336Ser and ANK1:Glu1046Lys as likely deleterious mutation, whereas RHAG:Ile149Met was reported as likely neutral by PROVEAN. Family screening by Sanger sequencing revealed RHAG:Leu336Ser in a mother and ANK1:Glu1046Lys in a father who were both asymptomatic, excluding them as causative dominant events, thus establishing RHAG:Ile149Met, novel de novo mutation as probably causative. This case illustrates the importance of family screening in interpreting next-generation sequencing (NGS) data, as in silico analysis alone can be misleading. Erudite generation of diagnostic possibilities based on a thorough baseline clinical and laboratory work-up remains as important as ever, even as NGS brings about a paradigm shift in the diagnostic work-up of rare haemolytic anaemias.
Collapse
|
10
|
Huynh KW, Jiang J, Abuladze N, Tsirulnikov K, Kao L, Shao X, Newman D, Azimov R, Pushkin A, Zhou ZH, Kurtz I. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat Commun 2018; 9:900. [PMID: 29500354 PMCID: PMC5834491 DOI: 10.1038/s41467-018-03271-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Na+-coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na+-coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.
Collapse
Affiliation(s)
- Kevin W Huynh
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jiansen Jiang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Natalia Abuladze
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Kirill Tsirulnikov
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Liyo Kao
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Xuesi Shao
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA
| | - Debra Newman
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rustam Azimov
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alexander Pushkin
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Andolfo I, Russo R, Gambale A, Iolascon A. Hereditary stomatocytosis: An underdiagnosed condition. Am J Hematol 2018; 93:107-121. [PMID: 28971506 DOI: 10.1002/ajh.24929] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Hereditary stomatocytoses are a wide class of hemolytic anemias characterized by alterations of ionic flux with increased cation permeability that results in inappropriate shrinkage or swelling of the erythrocytes, and water lost or gained osmotically. The last few years have been crucial for new acquisitions in this field in terms of identifying new causative genes and of studying their pathogenetic mechanisms. This review summarizes the main features of erythrocyte membrane transport diseases, dividing them into forms with either isolated erythroid phenotype (nonsyndromic) or extra-hematological manifestations (syndromic), and focusing particularly on the most recent advances regarding dehydrated forms of hereditary stomatocytosis and familial pseudohyperkalemia.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| |
Collapse
|
12
|
Ficici E, Faraldo-Gómez JD, Jennings ML, Forrest LR. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism. J Gen Physiol 2017; 149:1149-1164. [PMID: 29167180 PMCID: PMC5715908 DOI: 10.1085/jgp.201711836] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/10/2017] [Indexed: 12/02/2022] Open
Abstract
Anion exchanger 1 catalyzes the transmembrane antiport of chloride and bicarbonate ions through a mechanism that has remained unclear. By modeling its inward-facing state and comparing it with the known outward-facing form, Ficici et al. hypothesize that this transporter features an elevator-like mechanism. The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation.
Collapse
Affiliation(s)
- Emel Ficici
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lucy R Forrest
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Abstract
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte.
Collapse
|
14
|
Rapp C, Bai X, Reithmeier RAF. Molecular analysis of human solute carrier SLC26 anion transporter disease-causing mutations using 3-dimensional homology modeling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2420-2434. [PMID: 28941661 DOI: 10.1016/j.bbamem.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 06/08/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022]
Abstract
The availability of the first crystal structure of a bacterial member (SLC26Dg) of the solute carrier SLC26 family of anion transporters has allowed us to create 3-dimensional models of all 10 human members (SLC26A1-A11, A10 being a pseudogene) of these membrane proteins using the Phyre2 bioinformatic tool. The homology modeling predicted that the SLC26 human proteins, like the SLC26Dg template, all consist of 14 transmembrane segments (TM) arranged in a 7+7 inverted topology with the amino-termini of two half-helices (TM3 and 10) facing each other in the centre of the protein to create the anion-binding site, linked to a C-terminal cytosolic sulfate transporter anti-sigma factor antagonist (STAS) domain. A plethora of human diseases are associated with mutations in the genes encoding human SLC26 transporters, including chondrodysplasias with varying severity in SLC26A2 (~50 mutations, 27 point mutations), congenital chloride-losing diarrhea in SLC26A3 (~70 mutations, 31 point mutations) and Pendred Syndrome or deafness autosomal recessive type 4 in SLC26A4 (~500 mutations, 203 point mutations). We have localized all of these point mutations in the 3-dimensional structures of the respective SLC26A2, A3 and A4 proteins and systematically analyzed their effect on protein structure. While most disease-causing mutations may cause folding defects resulting in impaired trafficking of these membrane glycoproteins from the endoplasmic reticulum to the cell surface - as demonstrated in a number of functional expression studies - the modeling also revealed that a number of pathogenic mutations are localized to the anion-binding site, which may directly affect transport function.
Collapse
Affiliation(s)
- Chloe Rapp
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xiaoyun Bai
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
15
|
Vichot AA, Zsengellér ZK, Shmukler BE, Adams ND, Dahl NK, Alper SL. Loss of kAE1 expression in collecting ducts of end-stage kidneys from a family with SLC4A1 G609R-associated distal renal tubular acidosis. Clin Kidney J 2016. [PMID: 28638614 PMCID: PMC5469557 DOI: 10.1093/ckj/sfw074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Distal renal tubular acidosis caused by missense mutations in kidney isoform of anion exchanger 1 (kAE1/SLC4A1), the basolateral membrane Cl−/HCO3− exchanger of renal alpha-intercalated cells, has been extensively investigated in heterologous expression systems but rarely in human kidneys. The preferential apical localization of distal renal tubular acidosis (dRTA)-associated kAE1 mutants R901X, G609R and M909T in cultured epithelial monolayers has not been examined in human kidney. Here, we present kidney tissues from dRTA-affected siblings heterozygous for kAE1 G609R, characterized by predominant absence rather than mistargeting of kAE1 in intercalated cells. Thus, studies of heterologous recombinant expression of mutant proteins should be, whenever possible, interpreted in comparison to affected patient tissues.
Collapse
Affiliation(s)
- Alfred A Vichot
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Zsuzsanna K Zsengellér
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Boris E Shmukler
- Division of Nephrology and Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nancy D Adams
- Division of Nephrology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Neera K Dahl
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Badens C, Guizouarn H. Advances in understanding the pathogenesis of the red cell volume disorders. Br J Haematol 2016; 174:674-85. [PMID: 27353637 DOI: 10.1111/bjh.14197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies.
Collapse
Affiliation(s)
- Catherine Badens
- APHM Department of Medical Genetics, Hôpital de la Timone, Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Hélène Guizouarn
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| |
Collapse
|
17
|
Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1507-32. [PMID: 27058983 DOI: 10.1016/j.bbamem.2016.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/03/2023]
Abstract
The crystal structure of the dimeric membrane domain of human Band 3(1), the red cell chloride/bicarbonate anion exchanger 1 (AE1, SLC4A1), provides a structural context for over four decades of studies into this historic and important membrane glycoprotein. In this review, we highlight the key structural features responsible for anion binding and translocation and have integrated the following topological markers within the Band 3 structure: blood group antigens, N-glycosylation site, protease cleavage sites, inhibitor and chemical labeling sites, and the results of scanning cysteine and N-glycosylation mutagenesis. Locations of mutations linked to human disease, including those responsible for Southeast Asian ovalocytosis, hereditary stomatocytosis, hereditary spherocytosis, and distal renal tubular acidosis, provide molecular insights into their effect on Band 3 folding. Finally, molecular dynamics simulations of phosphatidylcholine self-assembled around Band 3 provide a view of this membrane protein within a lipid bilayer.
Collapse
Affiliation(s)
- Reinhart A F Reithmeier
- Department of Biochemistry, 1 King's College Circle, University of Toronto, Toronto M5S 1A8, Canada.
| | - Joseph R Casey
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
18
|
Glogowska E, Gallagher PG. Disorders of erythrocyte volume homeostasis. Int J Lab Hematol 2016; 37 Suppl 1:85-91. [PMID: 25976965 DOI: 10.1111/ijlh.12357] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/13/2015] [Indexed: 01/18/2023]
Abstract
Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneities characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis.
Collapse
Affiliation(s)
- E Glogowska
- Departments of Pediatrics, Pathology and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - P G Gallagher
- Departments of Pediatrics, Pathology and Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron AD, Kobayashi T, Hamasaki N, Iwata S. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 2015; 350:680-4. [PMID: 26542571 DOI: 10.1126/science.aaa4335] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anion exchanger 1 (AE1), also known as band 3 or SLC4A1, plays a key role in the removal of carbon dioxide from tissues by facilitating the exchange of chloride and bicarbonate across the plasma membrane of erythrocytes. An isoform of AE1 is also present in the kidney. Specific mutations in human AE1 cause several types of hereditary hemolytic anemias and/or distal renal tubular acidosis. Here we report the crystal structure of the band 3 anion exchanger domain (AE1(CTD)) at 3.5 angstroms. The structure is locked in an outward-facing open conformation by an inhibitor. Comparing this structure with a substrate-bound structure of the uracil transporter UraA in an inward-facing conformation allowed us to identify the anion-binding position in the AE1(CTD), and to propose a possible transport mechanism that could explain why selected mutations lead to disease.
Collapse
Affiliation(s)
- Takatoshi Arakawa
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takami Kobayashi-Yurugi
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hinako Hatae
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - Momi Iwata
- Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK
| | - Yoshito Abe
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoya Hino
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiyo Ikeda-Suno
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kuma
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Murata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Alexander D Cameron
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Takuya Kobayashi
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naotaka Hamasaki
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - So Iwata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Regulation of erythrocyte volume homeostasis is critical for survival of the erythrocyte. Inherited or acquired disorders that perturb this homeostasis jeopardize the erythrocyte, leading to its premature destruction. This report reviews recent insights into pathways that influence cellular water and solute homeostasis and cell volume. RECENT FINDINGS The molecular and genetic bases of primary disorders of erythrocyte hydration are beginning to be revealed. Recent studies have implicated roles for a new protein PIEZO1, a long sought after mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; and ABCB6, an ATP-binding cassette family member. Secondary disorders associated with perturbed cellular volume and volume regulation include sickle cell disease, thalassemia, and hereditary spherocytosis, in which dehydration contributes to disease pathology and clinical complications. Advances in understanding the mechanisms regulating erythrocyte solute and water content, particularly associated with mechanotransduction pathways, have revealed novel mechanisms controlling erythrocyte hydration. Understanding these processes may provide innovative strategies to maintain normal erythrocyte volume in disorders associated with primary or secondary cellular dehydration. SUMMARY Understanding the mechanisms controlling erythrocyte volume regulation will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment.
Collapse
|
21
|
Frumence E, Genetet S, Ripoche P, Iolascon A, Andolfo I, Le Van Kim C, Colin Y, Mouro-Chanteloup I, Lopez C. Rapid Cl−/HCO3−exchange kinetics of AE1 in HEK293 cells and hereditary stomatocytosis red blood cells. Am J Physiol Cell Physiol 2013; 305:C654-62. [DOI: 10.1152/ajpcell.00142.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anion exchanger 1 (AE1) or band 3 is a membrane protein responsible for the rapid exchange of chloride for bicarbonate across the red blood cell membrane. Nine mutations leading to single amino-acid substitutions in the transmembrane domain of AE1 are associated with dominant hereditary stomatocytosis, monovalent cation leaks, and reduced anion exchange activity. We set up a stopped-flow spectrofluorometry assay coupled with flow cytometry to investigate the anion transport and membrane expression characteristics of wild-type recombinant AE1 in HEK293 cells, using an inducible expression system. Likewise, study of three stomatocytosis-associated mutations (R730C, E758K, and G796R), allowed the validation of our method. Measurement of the rapid and specific chloride/bicarbonate exchange by surface expressed AE1 showed that E758K mutant was fully active compared with wild-type (WT) AE1, whereas R730C and G796R mutants were inactive, reinforcing previously reported data on other experimental models. Stopped-flow analysis of AE1 transport activity in red blood cell ghost preparations revealed a 50% reduction of G796R compared with WT AE1 corresponding to a loss of function of the G796R mutated protein, in accordance with the heterozygous status of the AE1 variant patients. In conclusion, stopped-flow led to measurement of rapid transport kinetics using the natural substrate for AE1 and, conjugated with flow cytometry, allowed a reliable correlation of chloride/bicarbonate exchange to surface expression of AE1, both in recombinant cells and ghosts and therefore a fine comparison of function between different stomatocytosis samples. This technical approach thus provides significant improvements in anion exchange analysis in red blood cells.
Collapse
Affiliation(s)
- Etienne Frumence
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
- Université de la Réunion, Saint-Denis, France; and
| | - Sandrine Genetet
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Pierre Ripoche
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Achille Iolascon
- Chair of Medical Genetics, Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, and CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Immacolata Andolfo
- Chair of Medical Genetics, Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, and CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Caroline Le Van Kim
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Yves Colin
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Isabelle Mouro-Chanteloup
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| | - Claude Lopez
- Inserm U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence GR-Ex., Paris, France
| |
Collapse
|
22
|
Barneaud-Rocca D, Etchebest C, Guizouarn H. Structural model of the anion exchanger 1 (SLC4A1) and identification of transmembrane segments forming the transport site. J Biol Chem 2013; 288:26372-84. [PMID: 23846695 DOI: 10.1074/jbc.m113.465989] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anion exchanger 1 (AE1), a member of bicarbonate transporter family SLC4, mediates an electroneutral chloride/bicarbonate exchange in physiological conditions. However, some point mutations in AE1 membrane-spanning domain convert the electroneutral anion exchanger into a Na(+) and K(+) conductance or induce a cation leak in a still functional anion exchanger. The molecular determinants that govern ion movement through this transporter are still unknown. The present study was intended to identify the ion translocation pathway within AE1. In the absence of a resolutive three-dimensional structure of AE1 membrane-spanning domain, in silico modeling combined with site-directed mutagenesis experiments was done. A structural model of AE1 membrane-spanning domain is proposed, and this model is based on the structure of a uracil-proton symporter. This model was used to design cysteine-scanning mutagenesis on transmembrane (TM) segments 3 and 5. By measuring AE1 anion exchange activity or cation leak, it is proposed that there is a unique transport site comprising TM3-5 and TM8 that should function as an anion exchanger and a cation leak.
Collapse
Affiliation(s)
- Damien Barneaud-Rocca
- From the Université Nice Sophia Antipolis, Institut de Biologie Valrose, UMR7277, 06100 Nice, France
| | | | | |
Collapse
|
23
|
Bonar P, Schneider HP, Becker HM, Deitmer JW, Casey JR. Three-dimensional model for the human Cl-/HCO3- exchanger, AE1, by homology to the E. coli ClC protein. J Mol Biol 2013; 425:2591-608. [PMID: 23583773 DOI: 10.1016/j.jmb.2013.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 01/19/2023]
Abstract
AE1 mediates electroneutral 1:1 exchange of bicarbonate for chloride across the plasma membrane of erythrocytes and type A cells of the renal collecting duct. No high-resolution structure is available for the AE1 membrane domain, which alone is required for its transport activity. A recent electron microscopy structure of the AE1 membrane domain was proposed to have a similar protein fold to ClC chloride channels. We developed a three-dimensional homology model of the AE1 membrane domain, using the Escherichia coli ClC channel structure as a template. This model agrees well with a long list of biochemically established spatial constraints for AE1. To investigate the AE1 transport mechanism, we created point mutations in regions corresponding to E. coli ClC transport mechanism residues. When expressed in HEK293 cells, several mutants had Cl(-)/HCO3(-) exchange rates significantly different from that of wild-type AE1. When further assessed in Xenopus laevis oocytes, there were significant changes in the transport activity of several AE1 point mutants as assessed by changes in pH. None of the mutants, however, added an electrogenic component to AE1 transport activity. This indicates that the AE1 point mutants altered the transport activity of AE1, without changing its electrogenicity and stoichiometry. The homology model successfully identified residues in AE1 that are critical to AE1 transport activity. Thus, we conclude that AE1 has a similar protein fold to ClC chloride channels.
Collapse
Affiliation(s)
- Pamela Bonar
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
24
|
Reimold FR, Stewart AK, Stolpe K, Heneghan JF, Shmukler BE, Alper SL. Substitution of transmembrane domain Cys residues alters pH(o)-sensitive anion transport by AE2/SLC4A2 anion exchanger. Pflugers Arch 2012; 465:839-51. [PMID: 23271450 DOI: 10.1007/s00424-012-1196-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/19/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
AE2/SLC4A2 is the most widely expressed of the Na(+)-independent SLC4 Cl(-)/HCO3 (-) exchangers and is essential for postnatal survival, but its structure remains unknown. We have generated and expressed a mouse AE2 construct devoid of transmembrane domain cysteine (Cys) residues, mAE2Cys-less, to enhance the utility of Cys-substitution mutagenesis for structural and structure-function studies of mAE2. mAE2Cys-less expressed in Xenopus oocytes exhibited partial reduction of stilbene disulfonate-sensitive anion exchange activity. This activity was independent of the mAE2 N-terminal cytosolic domain and was accompanied by near-normal surface expression, without change in K 1/2 for extracellular Cl(-). mAE2Cys-less exhibited wildtype activation of anion exchange by hypertonicity and by NH4Cl, and wildtype inhibition of anion exchange by acidic intracellular pH (pHi) in the absence of NH4 (+). However, inhibition of anion exchange by extracellular pH (pHo) exhibited an alkaline shifted pHo(50) value of at least 0.6-0.7 pH units. Although SO4 (2-) transport by mAE2Cys-less resembled wildtype mAE2 in its stimulation by acidic pHo, the absence of transmembrane domain Cys residues abrogated activation of oxalate transport by acidic pHo. The contrasting enhancement of SO4 (2-) transport by alkaline pHo in the mAE1 anion translocation pathway mutant E699Q (Am J Physiol Cell Physiol 295: C302) was phenocopied by the corresponding mutant E1007Q in both AE2 and AE2Cys-less. However, the absence of transmembrane domain Cys residues exacerbated the reduced basal anion transport function exhibited by this and other missense substitutions at AE2 residue E1007. AE2Cys-less will be a valuable experimental tool for structure-function studies of the SLC4 gene family, but its utility for studies of AE2 regulation by extracellular pH must be evaluated in the context of its alkaline-shifted pHo sensitivity, resembling that of AE2 gastric parietal cell variant AE2c1.
Collapse
Affiliation(s)
- Fabian R Reimold
- Renal Division and Molecular and Vascular Medicine Division, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, RN-380F, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
25
|
Parker MD, Qin X, Williamson RC, Toye AM, Boron WF. HCO(3)(-)-independent conductance with a mutant Na(+)/HCO(3)(-) cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis. J Physiol 2012; 590:2009-34. [PMID: 22331414 PMCID: PMC3573318 DOI: 10.1113/jphysiol.2011.224733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/07/2012] [Indexed: 12/14/2022] Open
Abstract
The renal electrogenic Na(+)/HCO(3)(−) cotransporter (NBCe1-A) contributes to the basolateral step of transepithelial HCO(3)(−) reabsorption in proximal tubule epithelia, contributing to the buffering of blood pH. Elsewhere in the body (e.g. muscle cells) NBCe1 variants contribute to, amongst other processes, maintenance of intracellular pH. Others have described a homozygous mutation in NBCe1 (NBCe1-A p.Ala799Val) in an individual with severe proximal renal tubular acidosis (pRTA; usually associated with defective HCO(3)(−) reabsorption in proximal tubule cells) and hypokalaemic periodic paralysis (hypoPP; usually associated with leaky cation channels in muscle cells). Using biotinylation and two-electrode voltage-clamp on Xenopus oocytes expressing NBCe1, we demonstrate that the mutant NBCe1-A (A(A799V)) exhibits a per-molecule transport defect that probably contributes towards the observed pRTA. Furthermore, we find that A(A799V) expression is associated with an unusual HCO(3)(−)-independent conductance that, if associated with mutant NBCe1 in muscle cells, could contribute towards the appearance of hypokalaemic paralysis in the affected individual. We also study three novel lab mutants of NBCe1-A: p.Ala799Ile, p.Ala799Gly and p.Ala799Ser. All three exhibit a per-molecule transport defect, but only A(A799I) exhibits an A(A799V)-like ion conductance. A(A799G) and A(A799S) exhibit unusual outward rectification in their HCO(3)(−)-dependent conductance and A(A799G) exhibits reduced sensitivity to both DIDS and tenidap. A799G is the first mutation shown to affect the apparent tenidap affinity of NBCe1. Finally we show that A(A799V) and A(A799I), which accumulate poorly in the plasma membrane of oocytes, exhibit signs of abnormal intracellular accumulation in a non-polarized renal cell-line.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
26
|
Shmukler BE, Rivera A, Vandorpe DH, Alves J, Bonfanti U, Paltrinieri S, Alper SL. Cation-leak stomatocytosis in standard schnauzers does not cosegregate with coding mutations in the RhAG, SLC4A1, or GLUT1 genes associated with human disease. Blood Cells Mol Dis 2012; 48:219-25. [PMID: 22406315 DOI: 10.1016/j.bcmd.2012.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Autosomal dominant overhydrated cation-leak stomatocytosis in humans has been associated with missense mutations in the erythroid membrane transport genes AE1, RhAG, and GLUT1. Syndromic stomatocytosis has been reported in three dog breeds, but stomatocytosis in Standard Schnauzers is usually asymptomatic, and is accompanied by minimal if any anemia. We have extended the evaluation of a cohort of schnauzers. We found that low-level stomatocytosis was accompanied by increased MCV and increased red cell Na content, and minimal or no reticulocytosis. Red cells from two affected dogs exhibited increased currents in on-cell patches measured in symmetrical NaCl solutions, but Na,K-ATPase and NKCC-mediated cation flux was minimal. Three novel coding polymorphisms found in canine RhAG cDNA and three novel polymorphisms found in canine SLC4A1 cDNA did not cosegregate with MCV or Na content. The GLUT1 cDNA sequence was normal. We conclude that unlike human overhydrated cation-leak stomatocytosis, stomatocytosis in this cohort of Standard Schnauzers is not caused by mutations in the genes encoding RhAG, SLC4A1, or GLUT1.
Collapse
Affiliation(s)
- Boris E Shmukler
- Dept. of Medicine, Beth Israel Deaconess Med. Ctr, Boston, MA 02215, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Stewart AK, Shmukler BE, Vandorpe DH, Rivera A, Heneghan JF, Li X, Hsu A, Karpatkin M, O'Neill AF, Bauer DE, Heeney MM, John K, Kuypers FA, Gallagher PG, Lux SE, Brugnara C, Westhoff CM, Alper SL. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S. Am J Physiol Cell Physiol 2011; 301:C1325-43. [PMID: 21849667 PMCID: PMC3233792 DOI: 10.1152/ajpcell.00054.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li(+) and (86)Rb(+), with secondarily increased (86)Rb(+) influx sensitive to ouabain and to bumetanide. Increased RhAG-associated (14)C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li(+), (86)Rb(+), and (14)C-MA were pharmacologically distinct, and Li(+) uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH(4)(+) and Gd(3+). RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH(3)/NH(4)(+), but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA(+)). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH(4)Cl, but MA/MA(+) elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li(+) substitution or bath addition of 5 mM NH(4)Cl or MA/MA(+). These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH(3)/NH(4)(+) and MA/MA(+); 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA(+) transport, and decreased NH(3)/NH(4)(+)-associated depolarization; and 3) RhAG transports NH(3)/NH(4)(+) and MA/MA(+) by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.
Collapse
Affiliation(s)
- Andrew K Stewart
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Reimold FR, Heneghan JF, Stewart AK, Zelikovic I, Vandorpe DH, Shmukler BE, Alper SL. Pendrin function and regulation in Xenopus oocytes. Cell Physiol Biochem 2011; 28:435-50. [PMID: 22116357 DOI: 10.1159/000335106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2011] [Indexed: 01/24/2023] Open
Abstract
SLC26A4/PDS mutations cause Pendred Syndrome and non-syndromic deafness. but some aspects of function and regulation of the SLC26A4 polypeptide gene product, pendrin, remain controversial or incompletely understood. We have therefore extended the functional analysis of wildtype and mutant pendrin in Xenopus oocytes, with studies of isotopic flux, electrophysiology, and protein localization. Pendrin mediated electroneutral, pH-insensitive, DIDS-insensitive anion exchange, with extracellular K((1/2)) (in mM) of 1.9 (Cl(-)), 1.8 (I(-)), and 0.9 (Br(-)). The unusual phenotype of Pendred Syndrome mutation E303Q (loss-of-function with normal surface expression) prompted systematic mutagenesis at position 303. Only mutant E303K exhibited loss-of-function unrescued by forced overexpression. Mutant E303C was insensitive to charge modification by methanethiosulfonates. The corresponding mutants SLC26A2 E336Q, SLC26A3 E293Q, and SLC26A6 E298Q exhibited similar loss-of-function phenotypes, with wildtype surface expression also documented for SLC26A2 E336Q. The strong inhibition of wildtype SLC26A2, SLC26A3, and SLC26A6 by phorbol ester contrasts with its modest inhibition of pendrin. Phorbol ester inhibition of SLC26A2, SLC26A3, and SLC26A6 was blocked by coexpressed kinase-dead PKCδ but was without effect on pendrin. Mutation of SLC26A2 serine residues conserved in PKCδ -sensitive SLC26 proteins but absent from pendrin failed to reduce PKCδ sensitivity of SLC26A2 (190).
Collapse
Affiliation(s)
- Fabian R Reimold
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Wong P. The basis of echinocytosis of the erythrocyte by glucose depletion. Cell Biochem Funct 2011; 29:708-11. [PMID: 22009606 DOI: 10.1002/cbf.1806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 11/11/2022]
Abstract
Echinocytosis of erythrocytes by glucose depletion is attributed to adenosine triphosphate depletion, but its process still remains unknown. A mechanism of control of the erythrocyte shape has been previously proposed in which the anion exchanger Band 3, linked to flexible membrane skeleton, has a pivotal role. Recruitments of its inward facing (Band 3(i) ) and outward facing (Band 3(o) ) conformations contract and relax the membrane skeleton, thus promoting echinocytosis and stomatocytosis, respectively. The Band 3(o) /Band 3(i) equilibrium ratio increases with the increase of the Donnan equilibrium ratio, and preferential inward and outward transport by Band 3 of substrates slowly transported are echinocytogenic and stomatocytogenic, respectively. The mechanism suggests the following process. The major organic phosphate 2,3-bisphosphoglycerate is catabolized to lactate to form inorganic phosphate, 3-phosphoglycerate, and adenosine triphosphate. The last two products can be reversibly transformed into 1,3-bisphosphoglycerate and adenosine diphosphate by the glycolytic enzyme phosphoglycerate kinase, thus allowing 2,3-bisphosphoglycerate formation by 2,3-bisphosphoglycerate synthase/phosphatase. The catabolic and cyclic processes initially oppose echinocytosis by increasing the Donnan ratio and outward transport of slowly transported inorganic phosphate by Band 3 (its basic form is transported with a hydrogen ion). Echinocytosis occurs when inward transport of this product becomes predominant. This process can rationalize direct and indirect observations.
Collapse
Affiliation(s)
- Pierre Wong
- Laboratoire de Chimie des Protéines, Montréal, Québec, Canada.
| |
Collapse
|
30
|
Band 3 missense mutations and stomatocytosis: insight into the molecular mechanism responsible for monovalent cation leak. Int J Cell Biol 2011; 2011:136802. [PMID: 21876696 PMCID: PMC3163022 DOI: 10.1155/2011/136802] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/27/2011] [Accepted: 05/29/2011] [Indexed: 02/03/2023] Open
Abstract
Missense mutations in the erythroid band 3 protein (Anion Exchanger 1) have been associated with hereditary stomatocytosis. Features of cation leaky red cells combined with functional expression of the mutated protein led to the conclusion that the AE1 point mutations were responsible for Na(+) and K(+) leak through a conductive mechanism. A molecular mechanism explaining mutated AE1-linked stomatocytosis involves changes in AE1 transport properties that become leaky to Na(+) and K(+). However, another explanation suggests that point-mutated AE1 could regulate a cation leak through other transporters. This short paper intends to discuss these two alternatives.
Collapse
|