1
|
Valente-Frossard TNS, Cruz NRC, Ferreira FO, Belisario AR, Pereira BM, Gomides AFDF, Resende GAD, Carlos AM, Moraes-Souza H, Velloso-Rodrigues C. Polymorphisms in genes that affect the variation of lipid levels in a Brazilian pediatric population with sickle cell disease: rs662799 APOA5 and rs964184 ZPR1. Blood Cells Mol Dis 2019; 80:102376. [PMID: 31670185 DOI: 10.1016/j.bcmd.2019.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
This cross-sectional study investigated associations between SNPs in metabolizing lipid genes, alpha-thalassemia and laboratory parameters in two forms of sickle cell disease (SCD), sickle cell anemia (SCA) and hemoglobin SC disease (HbSC) in a pediatric population. Among the groups SCA and HbSC was found a higher proportion of increased triglycerides (TG) in SCA. High levels of TG were significantly associated with lower hemoglobin (p = 0.006) and HDL-C (p = 0.037), higher white blood cell count (p = 0.027), LDH (p = 0.004) and bilirubins (p < 0.05) in SCD. Patients with HDL-C ≤40 mg/dL had higher markers hemolytic levels. Therapy of HU significantly influenced several hematological and biochemical parameters but not lipid fractions. Genotypes of the APOA5 rs662799 were not associated with lipid levels. The G-risk allele rs964184/ZPRI ZNF259/ZPR1 gene (GC + GG genotypes) was associated with increased levels of TG in children ≥10 years old (p = 0.045) and the atherogenic ratio TG/HDL-C (p = 0.032) in SCD. The use of HU improves levels of hemolysis and inflammation markers in SCD with high TG and, while not interfering with lipid levels, seems to overlap the effect of the G-risk allele in on them. This study reported for the first time that rs964184 SNP could be a genetic modifier of TG in SCD.
Collapse
Affiliation(s)
- Thaisa Netto Souza Valente-Frossard
- Departments of Basic Science of Life, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Nilcemar Rodrigues Carvalho Cruz
- Departments of Nutrition, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Fernanda Oliveira Ferreira
- Departments of Basic Science of Life, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | | | - Brisa Machado Pereira
- Departments of Basic Science of Life, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Antônio Frederico de Freitas Gomides
- Departments of Basic Science of Life, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | | | - Aline Menezes Carlos
- Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil; Uberaba Regional Blood Center, Uberaba, Minas Gerais, Brazil
| | - Helio Moraes-Souza
- Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil; Uberaba Regional Blood Center, Uberaba, Minas Gerais, Brazil
| | - Cibele Velloso-Rodrigues
- Departments of Basic Science of Life, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Niesor EJ, Benghozi R, Amouyel P, Ferdinand KC, Schwartz GG. Adenylyl Cyclase 9 Polymorphisms Reveal Potential Link to HDL Function and Cardiovascular Events in Multiple Pathologies: Potential Implications in Sickle Cell Disease. Cardiovasc Drugs Ther 2015; 29:563-572. [PMID: 26619842 DOI: 10.1007/s10557-015-6626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adenylyl cyclase 9 (ADCY9) mediates β2-adrenoceptor (β2-AR) signalling. Both proteins are associated with caveolae, specialized cholesterol-rich membrane substructures. Apolipoprotein A1 (ApoA1), the major protein component of high-density lipoprotein (HDL), removes cholesterol from cell membrane and caveolae and may thereby influence β2-AR signalling, shown in vitro to be modulated by cholesterol. Patients with Sickle Cell Disease (SCD) typically have low HDL and ApoA1 levels. In patients, mainly of African origin, with SCD, β2-AR activation may trigger adhesion of red blood cells to endothelial cells, leading to vascular occlusive events. Moreover, ADCY9 polymorphism is associated with risk of stroke in SCD. In recent clinical trials, ADCY9 polymorphism was found to be a discriminant factor associated with the risk of cardiovascular (CV) events in Caucasian patients treated with the HDL-raising compound dalcetrapib. We hypothesize that these seemingly disparate observations share a common mechanism related to interaction of HDL/ApoA1 and ADCY9 on β2-AR signalling. This review also raises the importance of characterizing polymorphisms that determine the response to HDL-raising and -mimicking agents in the non-Caucasian population at high risk of CV diseases and suffering from SCD. This may facilitate personalized CV treatments.
Collapse
Affiliation(s)
- Eric J Niesor
- F.Hoffmann-La Roche Ltd, Basel, Switzerland. .,Pre-β1 Consulting, 13c Chemin de Bonmont, 1260, Nyon, Switzerland.
| | - Renée Benghozi
- F.Hoffmann-La Roche Ltd, Basel, Switzerland.,Cerenis Therapeutics Holding, Labège, France
| | | | | | | |
Collapse
|
3
|
Hydroxyurea therapy mobilises arachidonic Acid from inner cell membrane aminophospholipids in patients with homozygous sickle cell disease. J Lipids 2011; 2011:718014. [PMID: 21941660 PMCID: PMC3173880 DOI: 10.1155/2011/718014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/15/2011] [Indexed: 01/29/2023] Open
Abstract
The cytotoxic compound hydroxyurea (HU) is effective therapy for sickle cell disease. However, its effect on unsaturated membrane lipids is unknown. Red cell fatty acids were investigated in HU-treated (n = 19) and HU-untreated (n = 17) sickle cell patients and controls (n = 20). The HU-treated compared with the HU-untreated patients had lower arachidonic (AA) acid level in ethanolamine, physphoglycerids (EPG) (22.9 ± 1.2 versus 24.0 ± 1.1%, P < 0.05) serine SPG (22.13 ± 2.2 versus 24.9 ± 2.3%, P < 0.01) phosphoglycerides. The treated patients and controls had comparable levels of docosahexaenoic (DHA) and total n-3 fatty acids in EPG and choline phosphoglycerides (CPG). In contrast, the untreated group had significantly (P < 0.05) lower DHA and total n-3 compared with the controls in EPG (2.7 ± 0.4 versus 3.2 ± 0.6% and 4.6 ± 0.5 versus 5.2 ± 0.7%) and CPG (0.7 ± 0.2 versus 1.0 ± 0.2%
and 1.2 ± 0.2 versus 1.4 ± 0.3). HU is known to activate cytosolic phospholipase A2 and cyclooxygenase 2, and from this study, it appears to induce mobilisation of AA from the inner cell membrane EPG and SPG. Hence, eicosanoids generated from the released AA may play a role in clinical improvements which occur in HU-treated patients.
Collapse
|
4
|
Fiegl M, Samudio I, Clise-Dwyer K, Burks JK, Mnjoyan Z, Andreeff M. CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood 2009; 113:1504-12. [PMID: 18957686 PMCID: PMC2644078 DOI: 10.1182/blood-2008-06-161539] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 10/18/2008] [Indexed: 12/26/2022] Open
Abstract
The CXCR4/SDF-1 axis has been studied extensively because of its role in development and hematopoiesis. In acute myeloid leukemia (AML), elevated expression of CXCR4 has been shown to correlate with shortened survival. Hy-poxia increases CXCR4 in several tumor models, but the impact of reduced O(2) partial pressure (pO(2)) on expression and biologic function of CXCR4 in AML is unknown. We determined pO(2) in bone marrows of AML patients as 6.1% (+/-1.7%). At this pO(2), CXCR4 surface and total expression were up-regulated within 10 hours in leukemic cell lines and patient samples as shown by Western blotting, fluorescence-activated cell sorting, and microscopy. Interestingly, hypoxic cells failed to internalize CXCR4 in response to SDF-1, and upon reoxygenation at 21% O(2), surface and total expression of CXCR4 rapidly decreased independent of adenosine triphosphate or proteasome activity. Instead, increased pO(2) led to alteration of lipid rafts by cholesterol depletion and structural changes and was associated with increased shedding of CXCR4-positive microparticles, suggesting a novel mechanism of CXCR4 regulation. Given the importance of CXCR4 in cell signaling, survival, and adhesion in leukemia, the results suggest that pO(2) be considered a critical variable in conducting and interpreting studies of CXCR4 expression and regulation in leukemias.
Collapse
Affiliation(s)
- Michael Fiegl
- Department of Molecular Hematology & Therapy and Stem Cell Transplantation & Cellular Therapy and Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
5
|
Storey SM, Gallegos AM, Atshaves BP, McIntosh AL, Martin GG, Parr RD, Landrock KK, Kier AB, Ball JM, Schroeder F. Selective cholesterol dynamics between lipoproteins and caveolae/lipid rafts. Biochemistry 2007; 46:13891-906. [PMID: 17990854 DOI: 10.1021/bi700690s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although low-density lipoprotein (LDL) receptor-mediated cholesterol uptake through clathrin-coated pits is now well understood, the molecular details and organizing principles for selective cholesterol uptake/efflux (reverse cholesterol transport, RCT) from peripheral cells remain to be resolved. It is not yet completely clear whether RCT between serum lipoproteins and the plasma membrane occurs primarily through lipid rafts/caveolae or from non-raft domains. To begin to address these issues, lipid raft/caveolae-, caveolae-, and non-raft-enriched fractions were resolved from purified plasma membranes isolated from L-cell fibroblasts and MDCK cells by detergent-free affinity chromatography and compared with detergent-resistant membranes isolated from the same cells. Fluorescent sterol exchange assays between lipoproteins (VLDL, LDL, HDL, apoA1) and these enriched domains provided new insights into supporting the role of lipid rafts/caveolae and caveolae in plasma membrane/lipoprotein cholesterol dynamics: (i) lipids known to be translocated through caveolae were detected (cholesteryl ester, triacylglycerol) and/or enriched (cholesterol, phospholipid) in lipid raft/caveolae fractions; (ii) lipoprotein-mediated sterol uptake/efflux from lipid rafts/caveolae and caveolae was rapid and lipoprotein specific, whereas that from non-rafts was very slow and independent of lipoprotein class; and (iii) the rate and lipoprotein specificity of sterol efflux from lipid rafts/caveolae or caveolae to lipoprotein acceptors in vitro was slower and differed in specificity from that in intact cells-consistent with intracellular factors contributing significantly to cholesterol dynamics between the plasma membrane and lipoproteins.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Pathobiology, Texas A&M University, TVMC College Station, Texas 77843-4467, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB. Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:700-18. [PMID: 17543577 PMCID: PMC1989133 DOI: 10.1016/j.bbalip.2007.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/28/2007] [Accepted: 04/03/2007] [Indexed: 12/31/2022]
Abstract
Sterol carrier protein-2 (SCP-2) was independently discovered as a soluble protein that binds and transfers cholesterol as well as phospholipids (nonspecific lipid transfer protein, nsLTP) in vitro. Physiological functions of this protein are only now beginning to be resolved. The gene encoding SCP-2 also encodes sterol carrier protein-x (SCP-x) arising from an alternate transcription site. In vitro and in vivo SCP-x serves as a peroxisomal 3-ketoacyl-CoA thiolase in oxidation of branched-chain lipids (cholesterol to form bile acids; branched-chain fatty acid for detoxification). While peroxisomal SCP-2 facilitates branched-chain lipid oxidation, the role(s) of extraperoxisomal (up to 50% of total) are less clear. Studies using transfected fibroblasts overexpressing SCP-2 and hepatocytes from SCP-2/SCP-x gene-ablated mice reveal that SCP-2 selectively remodels the lipid composition, structure, and function of lipid rafts/caveolae. Studies of purified SCP-2 and in cells show that SCP-2 has high affinity for and selectively transfers many lipid species involved in intracellular signaling: fatty acids, fatty acyl CoAs, lysophosphatidic acid, phosphatidylinositols, and sphingolipids (sphingomyelin, ceramide, mono-di-and multi-hexosylceramides, gangliosides). SCP-2 selectively redistributes these signaling lipids between lipid rafts/caveolae and intracellular sites. These findings suggest SCP-2 serves not only in cholesterol and phospholipid transfer, but also in regulating multiple lipid signaling pathways in lipid raft/caveolae microdomains of the plasma membrane.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Klings ES, Safaya S, Adewoye AH, Odhiambo A, Frampton G, Lenburg M, Gerry N, Sebastiani P, Steinberg MH, Farber HW. Differential gene expression in pulmonary artery endothelial cells exposed to sickle cell plasma. Physiol Genomics 2005; 21:293-8. [PMID: 15741505 DOI: 10.1152/physiolgenomics.00246.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical variability in sickle cell disease (SCD) suggests a role for extra-erythrocytic factors in the pathogenesis of vasoocclusion. We hypothesized that endothelial cell (EC) dysfunction, one possible modifier of disease variability, results from induction of phenotypic changes by circulating factors. Accordingly, we analyzed gene expression in cultured human pulmonary artery ECs (HPAEC) exposed to plasma from 1) sickle acute chest syndrome (ACS) patients, 2) SCD patients at steady state, 3) normal volunteers, and 4) serum-free media, using whole genome microarrays (U133A-B GeneChip, Affymetrix). Data were analyzed by Bayesian analysis of differential gene expression (BADGE). Differential expression was defined by the probability of >1.5 fold change in signal intensity greater than 0.999 and a predicted score of 70-100, measured by cross-validation. Compared with normal plasma, plasma from SCD patients (steady state) resulted in differential expression of 50 genes in HPAEC. Of these genes, molecules involved in cholesterol biosynthesis and lipid transport, the cellular stress response, and extracellular matrix proteins were most prominent. Another 58 genes were differentially expressed in HPAEC exposed to plasma from ACS patients. The pattern of altered gene expression suggests that plasma from SCD patients induces an EC phenotype which is anti-apoptotic and favors cholesterol biosynthesis. An altered EC phenotype elicited by SCD plasma may contribute to the pathogenesis of sickle vasoocclusion.
Collapse
Affiliation(s)
- Elizabeth S Klings
- The Pulmonary Center, Boston University School of Public Health, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H, McIntosh AL, Martin GG, Chao H, Kier AB, Schroeder F. Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 2001; 40:498-563. [PMID: 11591437 DOI: 10.1016/s0163-7827(01)00015-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since its discovery three decades ago, sterol carrier protein-2 (SCP-2) has remained a fascinating protein whose physiological function in lipid metabolism remains an enigma. Its multiple proposed functions arise from its complex gene structure, post-translational processing, intracellular localization, and ligand specificity. The SCP-2 gene has two initiation sites coding for proteins that share a common 13 kDa SCP-2 C-terminus: (1) One site codes for 58 kDa SCP-x which is partially post-translationally cleaved to 13 kDa SCP-2 and a 45 kDa protein. (2) A second site codes for 15 kDa pro-SCP-2 which is completely post-translationally cleaved to 13 kDa SCP-2. Very little is yet known regarding how the relative proportions of the two transcripts are regulated. Although all three proteins contain a C-terminal SKL peroxisomal targeting sequence, it is unclear why all three proteins are not exclusively localized in peroxisomes. However, the recent demonstration that the SCP-2 N-terminal presequence in pro-SCP-2 dramatically modulated the intracellular targeting coded by the C-terminal peroxisomal targeting sequence may account for the observation that as much as half of total SCP-2 is localized outside the peroxisome. The tertiary and secondary structure of the 13 kDa SCP-2, but not that of 15 kDa pro-SCP-2 and 58 kDa SCP-x, are now resolved. Increasing evidence suggests that the 58 kDa SCP-x and 45 kDa proteins are peroxisomal 3-ketoacyl-CoA-thiolases involved in the oxidation of branched chain fatty acids. Since 15 kDa pro-SCP-2 is post-translationally completely cleaved to 13 kDa SCP-2, relatively little attention has been focused on this protein. Finally, although the 13 kDa SCP-2 is the most studied of these proteins, because it exhibits diversity of its ligand partners (fatty acids, fatty acyl CoAs, cholesterol, phospholipids), new potential physiological function(s) are still being proposed and questions regarding potential compensation by other proteins with overlapping specificity are only beginning to be resolved.
Collapse
Affiliation(s)
- A M Gallegos
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huang H, Schroeder F, Zeng C, Estes MK, Schoer JK, Ball JM. Membrane interactions of a novel viral enterotoxin: rotavirus nonstructural glycoprotein NSP4. Biochemistry 2001; 40:4169-80. [PMID: 11300798 DOI: 10.1021/bi002346s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The rotavirus enterotoxin, NSP4, is a novel secretory agonist that also plays a role in the unique rotavirus morphogenesis that involves a transient budding of newly made immature viral particles into the endoplasmic reticulum. NSP4 and an active peptide corresponding to NSP4 residues 114 to 135 (NSP4(114-135)) mobilize intracellular calcium and induce secretory chloride currents when added exogenously to intestinal cells or mucosa. Membrane-NSP4 interactions may contribute to these alterations; however, details of a lipid-binding domain are unresolved. Therefore, circular dichroism was used to determine (i) the interaction(s) of NSP4 and NSP4(114-135) with model membranes, (ii) the conformational changes elicited in NSP4 upon interacting with membranes, (iii) if NSP4(114-135) is a membrane interacting domain, and (iv) the molar dissociation constant (K(d)) of NSP4(114-135) with defined lipid vesicles. Circular dichroism revealed for the first time that NSP4 and NSP4(114-135) undergo secondary structural changes upon interaction with membrane vesicles. This interaction was highly dependent on both the membrane surface curvature and the lipid composition. NSP4 and NSP4(114-135) preferentially interacted with highly curved, small unilamellar vesicle membranes (SUV), but significantly less with low-curvature, large unilamellar vesicle membranes (LUV). Binding to SUV, but not LUV, was greatly enhanced by negatively charged phospholipids. Increasing the SUV cholesterol content, concomitant with the presence of negatively charged phospholipids, further potentiated the interaction of NSP4(114-135) with the SUV membrane. The K(d) of NSP4(114-135) was determined as well as partitioning of NSP4(114-135) with SUVs in a filtration-binding assay. These data confirmed NSP4 and its active peptide interact with model membranes that mimic caveolae.
Collapse
Affiliation(s)
- H Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
10
|
Schoer JK, Gallegos AM, McIntosh AL, Starodub O, Kier AB, Billheimer JT, Schroeder F. Lysosomal membrane cholesterol dynamics. Biochemistry 2000; 39:7662-77. [PMID: 10869172 DOI: 10.1021/bi992686h] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the majority of exogenous cholesterol and cholesterol ester enters the cell by LDL-receptor-mediated endocytosis and the lysosomal pathway, the assumption that cholesterol transfers out of the lysosome by rapid (minutes), spontaneous diffusion has heretofore not been tested. As shown herein, lysosomal membranes were unique among known organellar membranes in terms of cholesterol content, cholesterol dynamics, and response to cholesterol-mobilizing proteins. First, the lysosomal membrane cholesterol:phospholipid molar ratio, 0.38, was intermediate between those of the plasma membrane and other organellar membranes. Second, a fluorescence sterol exchange assay showed that the initial rate of spontaneous sterol transfer out of lysosomes and purified lysosomal membranes was extremely slow, t(1/2) >4 days. This was >100-fold longer than that reported in intact cells (2 min) and 40-60-fold longer than from any other known intracellular membrane. Third, when probed with several cholesterol-binding proteins, the initial rate of sterol transfer was maximally increased nearly 80-fold and the organization of cholesterol in the lysosomal membrane was rapidly altered. Nearly half of the essentially nonexchangeable sterol in the lysosomal membrane was converted to rapidly (t(1/2) = 6 min; fraction = 0.06) and slowly (t(1/2) = 154 min; fraction = 0.36) exchangeable sterol domains/pools. In summary, the data revealed that spontaneous cholesterol transfer out of the lysosome and lysosomal membrane was extremely slow, inconsistent with rapid spontaneous diffusion across the lysosomal membrane. In contrast, the very slow spontaneous transfer of sterol out of the lysosome and lysosomal membrane was consistent with cholesterol leaving the lysosome earlier in the endocytic process and/or with cholesterol transfer out of the lysosome being mediated by additional process(es) extrinsic to the lysosome and lysosomal membrane.
Collapse
Affiliation(s)
- J K Schoer
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | | | | | |
Collapse
|