1
|
Akoulina EA, Bonartseva GA, Dudun AA, Kochevalina MY, Bonartsev AP, Voinova VV. Current State of Research on the Mechanisms of Biological Activity of Alginates. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S263-S286. [PMID: 40164162 DOI: 10.1134/s0006297924604519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 04/02/2025]
Abstract
Alginates are anionic unbranched plant and bacterial polysaccharides composed of mannuronic and guluronic acid residues. Alginates can form hydrogels under mild conditions in the presence of divalent cations (e.g., Ca2+). Because of their capacity to form gels, high biocompatibility, and relatively low cost, these polysaccharides are employed in pharmaceutical industry, medicine, food industry, cosmetology, and agriculture. Alginate oligomers produced by enzymatic cleavage of high-molecular-weight algal alginates are used as medicinal agents and dietary supplements. The global market for alginate-based products exceeds $1 billion. Alginates and their oligomers have attracted a special interest in biomedical sciences due to manifestation of various types of therapeutic activity. Across more than 50-year history of studies of alginates, over 60% scientific articles in this field have been published in the last 5 years. Unfortunately, the works dedicated to the mechanisms of biological activity of alginates and their oligosaccharides are still very scarce. This review analyzes the current state of research on the mechanisms (mainly biochemical) underlying biological and therapeutic activities of alginates (antioxidant, antibacterial, anti-inflammatory, antitumor, neuroprotective, antihypertensive, regenerative, and prebiotic). A comprehensive understanding of these mechanisms will not only improve the efficiency of alginate application in medicine and other traditional fields (cosmetology, food industry), but might also reveal their potential in new areas such as tissue engineering, nanobiotechnology, and bioelectronics.
Collapse
Affiliation(s)
- Elizaveta A Akoulina
- Biological Faculty, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, 518172, China
| | - Garina A Bonartseva
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, 119071, Russia
| | - Andrey A Dudun
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, 119071, Russia
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | | | - Anton P Bonartsev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vera V Voinova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
| |
Collapse
|
2
|
Kleuskens MWA, Crispim JF, van Doeselaar M, van Donkelaar CC, Janssen RPA, Ito K. Neo-cartilage formation using human nondegenerate versus osteoarthritic chondrocyte-derived cartilage organoids in a viscoelastic hydrogel. J Orthop Res 2023. [PMID: 36866819 DOI: 10.1002/jor.25540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Current regenerative cartilage therapies are associated with several drawbacks such as dedifferentiation of chondrocytes during expansion and the formation of fibrocartilage. Optimized chondrocyte expansion and tissue formation could lead to better clinical results of these therapies. In this study, a novel chondrocyte suspension expansion protocol that includes the addition of porcine notochordal cell-derived matrix was used to self-assemble human chondrocytes from osteoarthritic (OA) and nondegenerate (ND) origin into cartilage organoids containing collagen type II and proteoglycans. Proliferation rate and viability were similar for OA and ND chondrocytes and organoids formed had a similar histologic appearance and gene expression profile. Organoids were then encapsulated in viscoelastic alginate hydrogels to form larger tissues. Chondrocytes on the outer bounds of the organoids produced a proteoglycan-rich matrix to bridge the space between organoids. In hydrogels containing ND organoids some collagen type I was observed between the organoids. Surrounding the bulk of organoids in the center of the gels, in both OA and ND gels a continuous tissue containing cells, proteoglycans and collagen type II had been produced. No difference was observed in sulphated glycosaminoglycan and hydroxyproline content between gels containing organoids from OA or ND origin after 28 days. It was concluded that OA chondrocytes, which can be harvested from leftover surgery tissue, perform similar to ND chondrocytes in terms of human cartilage organoid formation and matrix production in alginate gels. This opens possibilities for their potential to serve as a platform for cartilage regeneration but also as an in vitro model to study pathways, pathology, or drug development.
Collapse
Affiliation(s)
- Meike W A Kleuskens
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob P A Janssen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Orthopaedic Surgery and Trauma, Máxima Medical Center, Eindhoven-Veldhoven, The Netherlands.,Department of Paramedical Sciences, Fontys University of Applied Sciences, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
3
|
Díaz‐Payno PJ, Kalogeropoulou M, Muntz I, Kingma E, Kops N, D'Este M, Koenderink GH, Fratila‐Apachitei LE, van Osch GJVM, Zadpoor AA. Swelling-Dependent Shape-Based Transformation of a Human Mesenchymal Stromal Cells-Laden 4D Bioprinted Construct for Cartilage Tissue Engineering. Adv Healthc Mater 2023; 12:e2201891. [PMID: 36308047 PMCID: PMC11468569 DOI: 10.1002/adhm.202201891] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Indexed: 01/18/2023]
Abstract
3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time-dependent stimuli-induced transformation, enables the fabrication of shape-changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi-material system made from two hydrogel-based materials: hyaluronan and alginate. Two ink formulations are used: tyramine-functionalized hyaluronan (HAT, high-swelling) and alginate with HAT (AHAT, low-swelling). Both inks have similar elastic, shear-thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape-change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self-bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage-like matrix production is visible on histology. A proof-of-concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
Collapse
Affiliation(s)
- Pedro J. Díaz‐Payno
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
- Department of Orthopedics and Sports MedicineErasmus MC University Medical CenterRotterdam3015GDNetherlands
| | - Maria Kalogeropoulou
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
| | - Iain Muntz
- Department of BionanoscienceKavli Institute of Nanoscience DelftDelft University of TechnologyDelft2628CDNetherlands
| | - Esther Kingma
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
| | - Nicole Kops
- Department of Orthopedics and Sports MedicineErasmus MC University Medical CenterRotterdam3015GDNetherlands
| | | | - Gijsje H. Koenderink
- Department of BionanoscienceKavli Institute of Nanoscience DelftDelft University of TechnologyDelft2628CDNetherlands
| | - Lidy E. Fratila‐Apachitei
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
| | - Gerjo J. V. M. van Osch
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
- Department of Orthopedics and Sports MedicineErasmus MC University Medical CenterRotterdam3015GDNetherlands
- Department of OtorhinolaryngologyErasmus MC University Medical CenterRotterdam3015GDNetherlands
| | - Amir A. Zadpoor
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
| |
Collapse
|
4
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Shimizu R, Asawa Y, Komura M, Hoshi K, Hikita A. Superior stemness of a rapidly growing subgroup of isolated human auricular chondrocytes and the potential for use in cartilage regenerative therapy. Regen Ther 2022; 19:47-57. [PMID: 35059479 PMCID: PMC8739869 DOI: 10.1016/j.reth.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022] Open
Abstract
Introduction In cartilage regenerative medicine, transplanted chondrocytes contain a mixture of populations, that complicates the regeneration of uniform cartilage tissue. Our group previously reported that chondrocytes with higher chondrogenic ability could be enriched by selection of rapidly growing cells. In this study, the detailed properties of rapidly growing chondrocytes were examined and compared to slowly growing cells. Methods Human auricular chondrocytes were fluorescently labeled with carboxyfluorescein succinimidyl ester (CFSE) and analyzed using flow cytometry, focusing on division rates as indicated by fluorescence intensity and cell morphology according to the forward scatter and side scatter. Rapid and slow growing cell groups were harvested on days 2 and 4 after CFSE labeling, and their ability to produce cartilage matrix in vitro was examined. To compare the chondrogenic ability in vivo, the cells were seeded on poly-l-lactic acid scaffolds and transplanted into nude mice. Gene expression differences between the rapid and slow cell groups were investigated by microarray analysis. Results On day 2 after CFSE labeling, the rapidly growing cell group showed the highest proliferation rate. The results of pellet culture showed that the rapid cell group produced more glycosaminoglycans per cell than the slow cell group. The amount of glycosaminoglycan production was highest in the rapid cell group on day 2 after CFSE labeling, indicating high chondrogenic ability. Furthermore, microarray, gene ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed upregulation of genes that promote cell division such as origin recognition complex subunit 1 and downregulation of genes that inhibit cell division such as cyclin dependent kinase inhibitor 1A. Besides cell cycle-related genes, chondrocyte-related genes such as serpin family B member 2, clusterin, bone morphogenetic protein 2, and matrix metalloproteinase 3 were downregulated, while fibroblast growth factor 5 which is involved in stem cell maintenance, and coiled-coil and C2 domain containing 2A, which is required for cilia formation, were upregulated. Conclusion The results showed that the rapid cell group proliferated well and had more undifferentiated properties, suggesting a higher stemness. The present findings provide a basis for the use of the rapid cell group in cartilage regeneration. Highly-chondrogenic chondrocytes can be enriched based on their high division rate. Rapidly dividing cells are smaller and have less granularity. Cell cycle-related genes are upregulated in rapidly dividing cells. Chondrocyte-related genes are downregulated in rapidly dividing cells.
Collapse
|
6
|
De Kinderen P, Meester J, Loeys B, Peeters S, Gouze E, Woods S, Mortier G, Verstraeten A. Differentiation of Induced Pluripotent Stem Cells Into Chondrocytes: Methods and Applications for Disease Modeling and Drug Discovery. J Bone Miner Res 2022; 37:397-410. [PMID: 35124831 DOI: 10.1002/jbmr.4524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology allows pathomechanistic and therapeutic investigation of human heritable disorders affecting tissue types whose collection from patients is difficult or even impossible. Among them are cartilage diseases. Over the past decade, iPSC-chondrocyte disease models have been shown to exhibit several key aspects of known disease mechanisms. Concurrently, an increasing number of protocols to differentiate iPSCs into chondrocytes have been published, each with its respective (dis)advantages. In this review we provide a comprehensive overview of the different differentiation approaches, the hitherto described iPSC-chondrocyte disease models and mechanistic and/or therapeutic insights that have been derived from their investigation, and the current model limitations. Key lessons are that the most appropriate differentiation approach is dependent upon the cartilage disease under investigation and that further optimization is still required to recapitulate the in vivo cartilage. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Pauline De Kinderen
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Josephina Meester
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Elvire Gouze
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Geert Mortier
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
7
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
8
|
Alizadeh Sardroud H, Wanlin T, Chen X, Eames BF. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded. Front Bioeng Biotechnol 2022; 9:787538. [PMID: 35096790 PMCID: PMC8790514 DOI: 10.3389/fbioe.2021.787538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Hamed Alizadeh Sardroud,
| | - Tasker Wanlin
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Hölzl K, Fürsatz M, Göcerler H, Schädl B, Žigon-Branc S, Markovic M, Gahleitner C, Hoorick JV, Van Vlierberghe S, Kleiner A, Baudis S, Pauschitz A, Redl H, Ovsianikov A, Nürnberger S. Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects. J Tissue Eng Regen Med 2021; 16:207-222. [PMID: 34861104 PMCID: PMC9299930 DOI: 10.1002/term.3273] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/16/2023]
Abstract
Cartilage damage typically starts at its surface, either due to wear or trauma. Treatment of these superficial defects is important in preventing degradation and osteoarthritis. Biomaterials currently used for deep cartilage defects lack appropriate properties for this application. Therefore, we investigated photo‐crosslinked gelatin methacryloyl (gelMA) as a candidate for treatment of surface defects. It allows for liquid application, filling of surface defects and forming a protective layer after UV‐crosslinking, thereby keeping therapeutic cells in place. gelMA and photo‐initiator lithium phenyl‐2,4,6‐trimethyl‐benzoylphosphinate (Li‐TPO) concentration were optimized for application as a carrier to create a favorable environment for human articular chondrocytes (hAC). Primary hAC were used in passages 3 and 5, encapsulated into two different gelMA concentrations (7.5 wt% (soft) and 10 wt% (stiff)) and cultivated for 3 weeks with TGF‐β3 (0, 1 and 10 ng/mL). Higher TGF‐β3 concentrations induced spherical cell morphology independent of gelMA stiffness, while low TGF‐β3 concentrations only induced rounded morphology in stiff gelMA. Gene expression did not vary across gel stiffnesses. As a functional model gelMA was loaded with two different cell types (hAC and/or human adipose‐derived stem cells [ASC/TERT1]) and applied to human osteochondral osteoarthritic plugs. GelMA attached to the cartilage, smoothened the surface and retained cells in place. Resistance against shear forces was tested using a tribometer, simulating normal human gait and revealing maintained cell viability. In conclusion gelMA is a versatile, biocompatible material with good bonding capabilities to cartilage matrix, allowing sealing and smoothening of superficial cartilage defects while simultaneously delivering therapeutic cells for tissue regeneration.
Collapse
Affiliation(s)
- Katja Hölzl
- Institute of Materials Science and Technology, 3D Printing and Biofabrication Group, TU Wien, Vienna, Austria
| | - Marian Fürsatz
- Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Hakan Göcerler
- Institute of Engineering Design and Product Development, TU Wien, Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria.,University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sara Žigon-Branc
- Institute of Materials Science and Technology, 3D Printing and Biofabrication Group, TU Wien, Vienna, Austria
| | - Marica Markovic
- Institute of Materials Science and Technology, 3D Printing and Biofabrication Group, TU Wien, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Claudia Gahleitner
- Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, Vienna, Austria
| | - Jasper Van Hoorick
- Centre of Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Centre of Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Ghent University, Ghent, Belgium
| | - Anne Kleiner
- Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | | | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, 3D Printing and Biofabrication Group, TU Wien, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sylvia Nürnberger
- Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
10
|
Khatami F, Mohajeri-Tehrani MR, Tavangar SM. The Importance of Precision Medicine in Type 2 Diabetes Mellitus (T2DM): From Pharmacogenetic and Pharmacoepigenetic Aspects. Endocr Metab Immune Disord Drug Targets 2020; 19:719-731. [PMID: 31122183 DOI: 10.2174/1871530319666190228102212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a worldwide disorder as the most important challenges of health-care systems. Controlling the normal glycaemia greatly profit long-term prognosis and gives explanation for early, effective, constant, and safe intervention. MATERIAL AND METHODS Finding the main genetic and epigenetic profile of T2DM and the exact molecular targets of T2DM medications can shed light on its personalized management. The comprehensive information of T2DM was earned through the genome-wide association study (GWAS) studies. In the current review, we represent the most important candidate genes of T2DM like CAPN10, TCF7L2, PPAR-γ, IRSs, KCNJ11, WFS1, and HNF homeoboxes. Different genetic variations of a candidate gene can predict the efficacy of T2DM personalized strategy medication. RESULTS SLCs and AMPK variations are considered for metformin, CYP2C9, KATP channel, CDKAL1, CDKN2A/2B and KCNQ1 for sulphonylureas, OATP1B, and KCNQ1 for repaglinide and the last but not the least ADIPOQ, PPAR-γ, SLC, CYP2C8, and SLCO1B1 for thiazolidinediones response prediction. CONCLUSION Taken everything into consideration, there is an extreme need to determine the genetic status of T2DM patients in some known genetic region before planning the medication strategies.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed M Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Schwarz ML, Reisig G, Schütte A, Becker K, Serba S, Forsch E, Thier S, Fickert S, Lenz T, Weiß C, Hetjens S, Bludau F, Bothe F, Richter W, Schneider-Wald B. Report on a large animal study with Göttingen Minipigs where regenerates and controls for articular cartilage were created in a large number. Focus on the conditions of the operated stifle joints and suggestions for standardized procedures. PLoS One 2019; 14:e0224996. [PMID: 31877143 PMCID: PMC6932782 DOI: 10.1371/journal.pone.0224996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
The characterization of regenerated articular cartilage (AC) can be based on various methods, as there is an unambiguous accepted criterion neither for the natural cartilage tissue nor for regenerates. Biomechanical aspects should be considered as well, leading to the need for more equivalent samples. The aim of the study was to describe a large animal model where 8 specimens of regenerated AC can be created in one animal plus the impact of two surgeries on the welfare of the animals. The usefulness of the inclusion of a group of untreated animals (NAT) was to analyzed. Based on the histological results the conditions of the regenerates were to be described and the impact on knee joints were to be explored in terms of degenerative changes of the cartilage. The usefulness of the statistical term “effect size” (ES) will be explained with histological results. We analyzed an animal model where 8 AC regenerates were obtained from one Göttingen Minipig, on both sides of the trochleae. 60 animals were divided into 6 groups of 10 each, where the partial thickness defects in the trochlea were filled with matrices made of Collagen I with or without autologous chondrocytes or left empty over the healing periods of 24 and 48 weeks. One additional control group consisting of 10 untreated animals was used to provide untouched “external” cartilage. We harvested 560 samples of regenerated tissue and “external” controls, besides that, twice the number of further samples from other parts of the joints referred to as “internal” controls were also harvested. The animals recovered faster after the 1st operation when the defects were set compared to the 2nd operation when the defects were treated. 9% of all animals were lost. Other complications were for example superficial infections, seroma, diarrhea, febrile state and an injury of a claw. The histological results of the treatments proved the robustness of the study design where we included an “external” control group (NAT) in which the animals were not operated. Comparable significant differences between treated groups and the NAT group were detected both after ½ year and after 1 year. Spontaneous regenerated AC as control revealed differences after an observation time of nearly 1 year. The impact of the treatment on cartilage adjacent to the defect as well as the remaining knee joint was low. The ES was helpful for planning the study as it is shown that the power of a statistical comparison seems to be more influenced by the ES than by the sample size. The ranking of the ES was done exemplarily, listing the results according to their magnitude, thus making the results comparable. We were able to follow the 3 R requirements also in terms of a numerical reduction of animals due to the introduction of a group of untreated animals. This makes the model cost effective. The presented study may contribute as an improvement of the standardization of large animal models for research and regulatory requirements for regenerative therapies of AC.
Collapse
Affiliation(s)
- Markus L. Schwarz
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| | - Gregor Reisig
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andy Schütte
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristianna Becker
- Interfaculty Biomedical Facility, Heidelberg University, Heidelberg, Germany
| | - Susanne Serba
- Interfaculty Biomedical Facility, Heidelberg University, Heidelberg, Germany
| | - Elmar Forsch
- Department of Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steffen Thier
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Sportchirurgie Heidelberg, Klonz—Thier–Stock, ATOS Klinik Heidelberg, Heidelberg, Germany
| | - Stefan Fickert
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Sporthopaedicum Regensburg/Straubing, Straubing, Germany
| | | | - Christel Weiß
- Department of Medical Statistics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederic Bludau
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Friederike Bothe
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Schneider-Wald
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Imanishi T, Akeda K, Murata K, Sudo A. Effect of diminished flow in rabbit lumbar arteries on intervertebral disc matrix changes using MRI T2-mapping and histology. BMC Musculoskelet Disord 2019; 20:347. [PMID: 31351455 PMCID: PMC6661094 DOI: 10.1186/s12891-019-2721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background Impaired lumbar artery flow has been reported in clinical and epidemiological studies to be associated with low back pain and lumbar disc degeneration. However, it has not been experimentally demonstrated that impaired lumbar artery flow directly induces intervertebral disc (IVD) degeneration by affecting IVD matrix metabolism. The purpose of this study was to evaluate whether ligation of the lumbar artery can affect degenerative changes in the rabbit IVD. Methods New Zealand White rabbits (n = 20) were used in this study. Under general anesthesia, the third and fourth lumbar arteries were double-ligated using vascular clips. The blood flow to the L3/L4 disc (cranial disc) was reduced by ligation of the third lumbar artery and that of the L5/L6 disc (caudal disc) by ligation of the fourth lumbar artery. The blood flow to the L4/L5 disc (bilateral disc) was decreased by ligation of both the third and fourth lumbar arteries. The L2/L3 disc was used as the control. Disc height was radiographically monitored biweekly until 12 weeks after surgery. The rabbits were sacrificed at 4, 8, and 12 weeks after surgery and magnetic resonance imaging (MRI) T2-mapping, histology and immunohistochemistry were assessed. Results Lumbar artery ligation did not induce significant changes in disc height between control and ischemic discs (cranial, bilateral and caudal discs) during the 12-week experimental period. T2-values of ischemic discs had no significant trend to be lower than those of the control L2/L3 discs. Histologically, Safranin-O staining changed following ligation of corresponding IVD lumbar arteries. Histological grading scores for disc degeneration, which correlated significantly with MRI T2-values, had significant changes after the surgery. Immunohistochemical analysis showed that the ligation of lumbar arteries significantly affected a change in the percentage of HIF-1α immunoreactive cells of ischemia discs compared to that of control discs four weeks after the surgery (p < 0.05). Conclusions The MRI and histology results suggest that diminished flow in lumbar arteries induce mild changes in the extracellular matrix metabolism of rabbit IVDs. These matrix changes, however, were not progressive and differed from the degenerative disc changes seen in the process of human IVD degeneration.
Collapse
Affiliation(s)
- Takao Imanishi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| | - Koichiro Murata
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| |
Collapse
|
13
|
Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 2019; 214:119214. [PMID: 31163358 DOI: 10.1016/j.biomaterials.2019.05.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Given their native-like biological properties, high growth factor retention capacity and porous nature, sulfated-polysaccharide-based scaffolds hold great promise for a number of tissue engineering applications. Specifically, as they mimic important properties of tissues such as bone and cartilage they are ideal for orthopaedic tissue engineering. Their biomimicry properties encompass important cell-binding motifs, native-like mechanical properties, designated sites for bone mineralisation and strong growth factor binding and signaling capacity. Even so, scientists in the field have just recently begun to utilise them as building blocks for tissue engineering scaffolds. Most of these efforts have so far been directed towards in vitro studies, and for these reasons the clinical gap is still substantial. With this review paper, we have tried to highlight some of the important chemical, physical and biological features of sulfated-polysaccharides in relation to their chondrogenic and osteogenic inducing capacity. Additionally, their usage in various in vivo model systems is discussed. The clinical studies reviewed herein paint a promising picture heralding a brave new world for orthopaedic tissue engineering.
Collapse
Affiliation(s)
- Jeremy Dinoro
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Malachy Maher
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Sepehr Talebian
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mahboubeh Jafarkhani
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Javad Foroughi
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands.
| |
Collapse
|
14
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Filardo G, Perdisa F, Gelinsky M, Despang F, Fini M, Marcacci M, Parrilli AP, Roffi A, Salamanna F, Sartori M, Schütz K, Kon E. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:74. [PMID: 29804259 DOI: 10.1007/s10856-018-6074-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Current therapeutic strategies for osteochondral restoration showed a limited regenerative potential. In fact, to promote the growth of articular cartilage and subchondral bone is a real challenge, due to the different functional and anatomical properties. To this purpose, alginate is a promising biomaterial for a scaffold-based approach, claiming optimal biocompatibility and good chondrogenic potential. A previously developed mineralized alginate scaffold was investigated in terms of the ability to support osteochondral regeneration both in a large and medium size animal model. The results were evaluated macroscopically and by microtomography, histology, histomorphometry, and immunohistochemical analysis. No evidence of adverse or inflammatory reactions was observed in both models, but limited subchondral bone formation was present, together with a slow scaffold resorption time.The implantation of this biphasic alginate scaffold provided partial osteochondral regeneration in the animal model. Further studies are needed to evaluate possible improvement in terms of osteochondral tissue regeneration for this biomaterial.
Collapse
Affiliation(s)
- Giuseppe Filardo
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesco Perdisa
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Florian Despang
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Milena Fini
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Maurilio Marcacci
- Knee Joint Reconstruction Center - 3rd Orthopaedic Division, Humanitas Clinical Institute, Via Alessandro Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan, Italy
| | - Anna Paola Parrilli
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Alice Roffi
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesca Salamanna
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Elizaveta Kon
- Knee Joint Reconstruction Center - 3rd Orthopaedic Division, Humanitas Clinical Institute, Via Alessandro Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan, Italy
| |
Collapse
|
16
|
Cheng X, Li K, Xu S, Li P, Yan Y, Wang G, Berman Z, Guo R, Liang J, Traore S, Yang X. Applying chlorogenic acid in an alginate scaffold of chondrocytes can improve the repair of damaged articular cartilage. PLoS One 2018; 13:e0195326. [PMID: 29621359 PMCID: PMC5886530 DOI: 10.1371/journal.pone.0195326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Damaged cartilage has very low regenerative potential which has led to the search for novel tissue-engineering approaches to help treat cartilage defects. While various approaches have been reported, there is no perfect treatment currently. In this study we evaluated the effects of a plant extract, chlorogenic acid (CGA), as part of chondrocyte transplantation on a model of knee joint injury in chicks. First, primary cultured chondrocytes used to evaluate the effects of CGA on chondrogenesis. Then using an articular cartilage injury model of chick knee we assessed the functional recovery after transplantation of the complexes containing chondrocytes and CGA in an alginate scaffold. Histological analysis, PCR, and western blot were further used to understand the underlying mechanisms. We showed that 60 μM CGA in alginate exhibited notable effects on stimulating chondrogenesis in vitro. Secondly, it was shown that the application of these complexes accelerated the recovery of injury-induced dysfunction by gait analysis when followed for 21 days. Histochemical analysis demonstrated that there was less abnormal vasculature formation, more chondrocyte proliferation and cartilage matrix synthesis in the presence of the complexes containing CGA. We discovered CGA treated transplantation up-regulated the expressions of Sox9 and Col2a1 which were responsible for the stimulation of chondrogenesis. Furthermore, the application of these complexes could suppress the abnormal angiogenesis and fibrosis at the injury site. Lastly, the elevated levels of inflammatory cytokines IL-1β, TNF-α, p-p65, and MMPs expression were decreased in the presence of CGA. This may be caused through adjusting cellular redox homeostasis associated with Nrf2. This study suggests that combining chondrocytes and CGA on an alginate scaffold can improve the recovery of damaged articular cartilage.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Ke Li
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Shengsong Xu
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Peizhi Li
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Yu Yan
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Guang Wang
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Zachary Berman
- Department of Radiology, University of California San Diego, San Diego, California, United States of America
| | - Rui Guo
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Jianxin Liang
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Sira Traore
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Xuesong Yang
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
17
|
Angelozzi M, Penolazzi L, Mazzitelli S, Lambertini E, Lolli A, Piva R, Nastruzzi C. Dedifferentiated Chondrocytes in Composite Microfibers As Tool for Cartilage Repair. Front Bioeng Biotechnol 2017; 5:35. [PMID: 28660185 PMCID: PMC5468460 DOI: 10.3389/fbioe.2017.00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
Tissue engineering (TE) approaches using biomaterials have gain important roles in the regeneration of cartilage. This paper describes the production by microfluidics of alginate-based microfibers containing both extracellular matrix (ECM)-derived biomaterials and chondrocytes. As ECM components gelatin or decellularized urinary bladder matrix (UBM) were investigated. The effectiveness of the composite microfibers has been tested to modulate the behavior and redifferentiation of dedifferentiated chondrocytes. The complete redifferentiation, at the single-cell level, of the chondrocytes, without cell aggregate formation, was observed after 14 days of cell culture. Specific chondrogenic markers and high cellular secretory activity was observed in embedded cells. Notably, no sign of collagen type 10 deposition was determined. The obtained data suggest that dedifferentiated chondrocytes regain a functional chondrocyte phenotype when embedded in appropriate 3D scaffold based on alginate plus gelatin or UBM. The proposed scaffolds are indeed valuable to form a cellular microenvironment mimicking the in vivo ECM, opening the way to their use in cartilage TE.
Collapse
Affiliation(s)
- Marco Angelozzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Mazzitelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Claudio Nastruzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Bioactive TGF-β1/HA Alginate-Based Scaffolds for Osteochondral Tissue Repair: Design, Realization and Multilevel Characterization. J Appl Biomater Funct Mater 2016; 14:e42-52. [DOI: 10.5301/jabfm.5000249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2015] [Indexed: 11/20/2022] Open
Abstract
Background The design of an appropriate microenvironment for stem cell differentiation constitutes a multitask mission and a critical step toward the clinical application of tissue substitutes. With the aim of producing a bioactive material for orthopedic applications, a transforming growth factor-β (TGF- β1)/hydroxyapatite (HA) association within an alginate-based scaffold was investigated. The bioactive scaffold was carefully designed to offer specific biochemical cues for an efficient and selective cell differentiation toward the bony and chondral lineages. Methods Highly porous alginate scaffolds were fabricated from a mixture of calcium cross-linked alginates by means of a freeze-drying technique. In the chondral layer, the TGF in citric acid was mixed with an alginate/alginate-sulfate solution. In the bony layer, HA granules were added as bioactive signal, to offer an osteoinductive surface to the cells. Optical and scanning electron microscopy analyses were performed to assess the macro-micro architecture of the biphasic scaffold. Different mechanical tests were conducted to evaluate the elastic modulus of the grafts. For the biological validation of the developed prototype, mesenchymal stem cells were loaded onto the samples; cellular adhesion, proliferation and in vivo biocompatibility were evaluated. Results and conclusions The results successfully demonstrated the efficacy of the designed osteochondral graft, which combined interesting functional properties and biomechanical performances, thus becoming a promising candidate for osteochondral tissue-engineering applications.
Collapse
|
19
|
van Bree BWJ, Lenaers E, Nabben M, Briedé JJ, Jörgensen JA, Schaart G, Schrauwen P, Hoeks J, Hesselink MKC. A genistein-enriched diet neither improves skeletal muscle oxidative capacity nor prevents the transition towards advanced insulin resistance in ZDF rats. Sci Rep 2016; 6:22854. [PMID: 26973284 PMCID: PMC4789602 DOI: 10.1038/srep22854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/26/2016] [Indexed: 01/07/2023] Open
Abstract
Genistein, a natural food compound mainly present in soybeans, is considered a potent antioxidant and to improve glucose homeostasis. However, its mechanism of action remains poorly understood. Here, we analyzed whether genistein could antagonize the progression of the hyperinsulinemic normoglycemic state (pre-diabetes) toward full-blown T2DM in Zucker Diabetic Fatty (ZDF) rats by decreasing mitochondrial oxidative stress and improving skeletal muscle oxidative capacity. Rats were assigned to three groups: (1) lean control (CNTL), (2) fa/fa CNTL, and (3) fa/fa genistein (GEN). GEN animals were subjected to a 0.02% (w/w) genistein-enriched diet for 8 weeks, whereas CNTL rats received a standard diet. We show that genistein did not affect the overall response to a glucose challenge in ZDF rats. In fact, genistein may exacerbate glucose intolerance as fasting glucose levels were significantly higher in fa/fa GEN (17.6 ± 0.7 mM) compared with fa/fa CNTL animals (14.9 ± 1.4 mM). Oxidative stress, established by electron spin resonance (ESR) spectroscopy, carbonylated protein content and UCP3 levels, remained unchanged upon dietary genistein supplementation. Furthermore, respirometry measurements revealed no effects of genistein on mitochondrial function. In conclusion, dietary genistein supplementation did not improve glucose homeostasis, alleviate oxidative stress, or augment skeletal muscle metabolism in ZDF rats.
Collapse
Affiliation(s)
- Bianca W J van Bree
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ellen Lenaers
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jacco J Briedé
- Department of Toxicogenomics, GROW School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Johanna A Jörgensen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joris Hoeks
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomater Sci 2016; 4:734-67. [PMID: 26923076 DOI: 10.1039/c6bm00068a] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
21
|
Reed S, Lau G, Delattre B, Lopez DD, Tomsia AP, Wu BM. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication 2016; 8:015003. [PMID: 26741113 DOI: 10.1088/1758-5090/8/1/015003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
While many tissue-engineered constructs aim to treat cartilage defects, most involve chondrocyte or stem cell seeding on scaffolds. The clinical application of cell-based techniques is limited due to the cost of maintaining cellular constructs on the shelf, potential immune response to allogeneic cell lines, and autologous chondrocyte sources requiring biopsy from already diseased or injured, scarce tissue. An acellular scaffold that can induce endogenous influx and homogeneous distribution of native stem cells from bone marrow holds great promise for cartilage regeneration. This study aims to develop such an acellular scaffold using designed, channeled architecture that simultaneously models the native zones of articular cartilage and subchondral bone. Highly porous, hydrophilic chitosan-alginate (Ch-Al) scaffolds were fabricated in three-dimensionally printed (3DP) molds designed to create millimeter scale macro-channels. Different polymer preform casting techniques were employed to produce scaffolds from both negative and positive 3DP molds. Macro-channeled scaffolds improved cell suspension distribution and uptake overly randomly porous scaffolds, with a wicking volumetric flow rate of 445.6 ± 30.3 mm(3) s(-1) for aqueous solutions and 177 ± 16 mm(3) s(-1) for blood. Additionally, directional freezing was applied to Ch-Al scaffolds, resulting in lamellar pores measuring 300 μm and 50 μm on the long and short axes, thus creating micrometer scale micro-channels. After directionally freezing Ch-Al solution cast in 3DP molds, the combined macro- and micro-channeled scaffold architecture enhanced cell suspension uptake beyond either macro- or micro-channels alone, reaching a volumetric flow rate of 1782.1 ± 48 mm(3) s(-1) for aqueous solutions and 440.9 ± 0.5 mm(3) s(-1) for blood. By combining 3DP and directional freezing, we can control the micro- and macro-architecture of Ch-Al to drastically improve cell influx into and distribution within the scaffold, while achieving porous zones that mimic articular cartilage zonal architecture. In future applications, precisely controlled micro- and macro-channels have the potential to assist immediate endogenous bone marrow uptake, stimulate chondrogenesis, and encourage vascularization of bone in an osteochondral scaffold.
Collapse
Affiliation(s)
- Stephanie Reed
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Camarero-Espinosa S, Rothen-Rutishauser B, Weder C, Foster EJ. Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. Biomaterials 2016; 74:42-52. [DOI: 10.1016/j.biomaterials.2015.09.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
|
23
|
Preliminary Characterization of a Leptin Receptor Knockout Rat Created by CRISPR/Cas9 System. Sci Rep 2015; 5:15942. [PMID: 26537785 PMCID: PMC4633582 DOI: 10.1038/srep15942] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/29/2015] [Indexed: 12/28/2022] Open
Abstract
Leptin receptor, which is encoded by the diabetes (db) gene and is highly expressed in the choroid plexus, regulatesenergy homeostasis, the balance between food intake and energy expenditure, fertility and bone mass. Here, using CRISPR/Cas9 technology, we created the leptin receptor knockout rat. Homozygous leptin receptor null rats are characterized by obesity, hyperphagia, hyperglycemia, glucose intolerance, hyperinsulinemia and dyslipidemia. Due to long-term poor glycemic control, the leptin receptor knockout rats also develop some diabetic complications such as pancreatic, hepatic and renal lesions. In addition, the leptin receptor knockout rats show a significant decrease in bone volume and bone mineral density of the femur compared with their wild-type littermates. Our model has rescued some deficiency of the existing rodent models, such as the transient hyperglycemia of db/db mice in the C57BL/6J genetic background and the delayed onset of glucose intolerance in the Zucker rats, and it is proven to be a useful animal model for biomedical and pharmacological research on obesity and diabetes.
Collapse
|
24
|
Ueno M, Cho K, Nakazono S, Isaka S, Abu R, Takeshita S, Yamaguchi K, Kim D, Oda T. Alginate oligomer induces nitric oxide (NO) production in RAW264.7 cells: elucidation of the underlying intracellular signaling mechanism. Biosci Biotechnol Biochem 2015; 79:1787-93. [PMID: 26072953 DOI: 10.1080/09168451.2015.1052768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alginate is an acidic linear polysaccharide with immune-modulating activities. In this study, we found that enzymatically digested alginate oligomer (AO) with various degrees of polymerization (DP; 2-5) induced a higher level of nitric oxide (NO) production in RAW264.7 cells than undigested alginate polymer (AP). Reverse transcription-polymerase chain reaction and western blot analyses revealed that the expression level of inducible NO synthase in AO-treated RAW264.7 cells was higher than that in AP-treated cells. AO induced nuclear translocation of nuclear factor (NF)-κB p65 subunit in RAW264.7 cells to a greater extent than AP. Although AO and AP induced similar extents of phosphorylation in three mitogen-activated protein (MAP) kinases, c-Jun N-terminal kinase inhibitor exhibited the most potent inhibitory effect on NO induction in AO- and AP-treated RAW264.7 cells, among three MAP kinase inhibitors that were tested.
Collapse
Affiliation(s)
- Mikinori Ueno
- a Graduate School of Fisheries Science and Environmental Studies , Nagasaki University , Nagasaki , Japan
| | - Kichul Cho
- b Korea University of Science and Technology , Daejeon , Republic of Korea.,d Jeju center , Korea Basic Science Institute (KBSI) , Jeju , Republic of Korea
| | - Satoru Nakazono
- a Graduate School of Fisheries Science and Environmental Studies , Nagasaki University , Nagasaki , Japan
| | - Shogo Isaka
- a Graduate School of Fisheries Science and Environmental Studies , Nagasaki University , Nagasaki , Japan
| | - Ryogo Abu
- a Graduate School of Fisheries Science and Environmental Studies , Nagasaki University , Nagasaki , Japan
| | - Satoshi Takeshita
- c Joint Research Division, Center for Industry, University and Government Corporation , Nagasaki University , Nagasaki , Japan
| | - Kenichi Yamaguchi
- a Graduate School of Fisheries Science and Environmental Studies , Nagasaki University , Nagasaki , Japan
| | - Daekyung Kim
- b Korea University of Science and Technology , Daejeon , Republic of Korea.,d Jeju center , Korea Basic Science Institute (KBSI) , Jeju , Republic of Korea
| | - Tatsuya Oda
- a Graduate School of Fisheries Science and Environmental Studies , Nagasaki University , Nagasaki , Japan
| |
Collapse
|
25
|
Oprenyeszk F, Sanchez C, Dubuc JE, Maquet V, Henrist C, Compère P, Henrotin Y. Chitosan enriched three-dimensional matrix reduces inflammatory and catabolic mediators production by human chondrocytes. PLoS One 2015; 10:e0128362. [PMID: 26020773 PMCID: PMC4447380 DOI: 10.1371/journal.pone.0128362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/25/2015] [Indexed: 11/19/2022] Open
Abstract
This in vitro study investigated the metabolism of human osteoarthritic (OA) chondrocytes encapsulated in a spherical matrix enriched of chitosan. Human OA chondrocytes were encapsulated and cultured for 28 days either in chitosan-alginate beads or in alginate beads. The beads were formed by slowly passing dropwise either the chitosan 0.6%-alginate 1.2% or the alginate 1.2% solution through a syringe into a 102 mM CaCl2 solution. Beads were analyzed histologically after 28 days. Interleukin (IL)-6 and -8, prostaglandin (PG) E2, matrix metalloproteinases (MMPs), hyaluronan and aggrecan were quantified directly in the culture supernatant by specific ELISA and nitric oxide (NO) by using a colorimetric method based on the Griess reaction. Hematoxylin and eosin staining showed that chitosan was homogeneously distributed through the matrix and was in direct contact with chondrocytes. The production of IL-6, IL-8 and MMP-3 by chondrocytes significantly decreased in chitosan-alginate beads compared to alginate beads. PGE2 and NO decreased also significantly but only during the first three days of culture. Hyaluronan and aggrecan production tended to increase in chitosan-alginate beads after 28 days of culture. Chitosan-alginate beads reduced the production of inflammatory and catabolic mediators by OA chondrocytes and tended to stimulate the synthesis of cartilage matrix components. These particular effects indicate that chitosan-alginate beads are an interesting scaffold for chondrocytes encapsulation before transplantation to repair cartilage defects.
Collapse
Affiliation(s)
- Frederic Oprenyeszk
- Bone and Cartilage Research Unit, Arthropôle Liege, University of Liege, Liege, Belgium
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liege, University of Liege, Liege, Belgium
| | - Jean-Emile Dubuc
- Orthopaedic Department, Cliniques Universitaires St Luc, Brussels, Belgium
| | | | - Catherine Henrist
- Group of Research in Energy and Environment from Materials and Center for Applied Technology in Microscopy, University of Liege, Liege, Belgium
| | - Philippe Compère
- Laboratory of Functional and Evolutive Morphology, Department of Environmental Sciences and Management, University of Liege, Liege, Belgium
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liege, University of Liege, Liege, Belgium
- * E-mail:
| |
Collapse
|
26
|
Madry H, Cucchiarini M. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches. Curr Rheumatol Rep 2015; 16:450. [PMID: 25182678 DOI: 10.1007/s11926-014-0450-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics and Department of Orthopaedic Surgery, Saarland University, 66421, Homburg, Germany,
| | | |
Collapse
|
27
|
Mačiulaitis J, Deveikytė M, Rekštytė S, Bratchikov M, Darinskas A, Šimbelytė A, Daunoras G, Laurinavičienė A, Laurinavičius A, Gudas R, Malinauskas M, Mačiulaitis R. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 2015; 7:015015. [PMID: 25797444 DOI: 10.1088/1758-5090/7/1/015015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade DLW employing ultrafast pulsed lasers has become a well-established technique for the creation of custom-made free-form three-dimensional (3D) microscaffolds out of a variety of materials ranging from proteins to biocompatible glasses. Its potential applications for manufacturing a patient's specific scaffold seem unlimited in terms of spatial resolution and geometry complexity. However, despite few exceptions in which live cells or primitive organisms were encapsulated into a polymer matrix, no demonstration of an in vivo study case of scaffolds generated with the use of such a method was performed. Here, we report a preclinical study of 3D artificial microstructured scaffolds out of hybrid organic-inorganic (HOI) material SZ2080 fabricated using the DLW technique. The created 2.1 × 2.1 × 0.21 mm(3) membrane constructs are tested both in vitro by growing isolated allogeneic rabbit chondrocytes (Cho) and in vivo by implanting them into rabbit organisms for one, three and six months. An ex vivo histological examination shows that certain pore geometry and the pre-growing of Cho prior to implantation significantly improves the performance of the created 3D scaffolds. The achieved biocompatibility is comparable to the commercially available collagen membranes. The successful outcome of this study supports the idea that hexagonal-pore-shaped HOI microstructured scaffolds in combination with Cho seeding may be successfully implemented for cartilage tissue engineering.
Collapse
Affiliation(s)
- Justinas Mačiulaitis
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian Health Science University, Mickevičiaus 9, LT 44307 Kaunas, Lithuania. Institute of Sports, Medical Academy, Lithuanian University of Health Science, Kalniečių 231, LT 44307 Kaunas, Lithuania. Orthopaedic and Trauma Department, Lithuanian Health Science University, Mickevičiaus 9, LT 44307 Kaunas, Lithuania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Skaalure SC, Chu S, Bryant SJ. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering. Adv Healthc Mater 2015; 4:420-31. [PMID: 25296398 PMCID: PMC4516272 DOI: 10.1002/adhm.201400277] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/04/2014] [Indexed: 11/06/2022]
Abstract
A new cartilage-specific degradable hydrogel based on photoclickable thiol-ene poly(ethylene glycol) (PEG) hydrogels is presented. The hydrogel crosslinks are composed of the peptide, CRDTEGE-ARGSVIDRC, derived from the aggrecanase-cleavable site in aggrecan. This new hydrogel is evaluated for use in cartilage tissue engineering by encapsulating bovine chondrocytes from different cell sources (skeletally immature (juvenile) and mature (adult) donors and adult cells stimulated with proinflammatory lipopolysaccharide (LPS)) and culturing for 12 weeks. Regardless of cell source, a twofold decrease in compressive modulus is observed by 12 weeks, but without significant hydrogel swelling indicating limited bulk degradation. For juvenile cells, a connected matrix rich in aggrecan and collagen II, but minimal collagens I and X is observed. For adult cells, less matrix, but similar quality, is deposited. Aggrecanase activity is elevated, although without accelerating bulk hydrogel degradation. LPS further decreases matrix production, but does not affect aggrecanase activity. In contrast, matrix deposition in the nondegradable hydrogels consists of aggrecan and collagens I, II, and X, indicative of hypertrophic cartilage. Lastly, no inflammatory response in chondrocytes is observed by the aggrecanase-sensitive hydrogels. Overall, it is demonstrated that this new aggrecanase-sensitive hydrogel, which is degradable by chondrocytes and promotes a hyaline-like engineered cartilage, is promising for cartilage regeneration.
Collapse
Affiliation(s)
- Stacey C. Skaalure
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309
| | - Stanley Chu
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309
| |
Collapse
|
29
|
Shi Y, Ma J, Zhang X, Li H, Jiang L, Qin J. Hypoxia combined with spheroid culture improves cartilage specific function in chondrocytes. Integr Biol (Camb) 2015; 7:289-97. [PMID: 25614382 DOI: 10.1039/c4ib00273c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling the chondrocyte phenotype and function in a physiologically relevant microenvironment remains a major challenge for cartilage repair in tissue engineering applications. This work presents a straightforward strategy to create a high throughput concave microwell array used for generating multicellular spheroids of chondrocytes and facilitating the maintenance of the articular chondrocyte phenotype and function by combining 3D spheroid culture with hypoxia. The polydimethylsiloxane (PDMS) concave microwells were simply produced from a concave SU-8 template fabricated using a soft-lithography approach and easily adopted for size-controlled spheroid culture. 3D spheroid culture was observed to facilitate the cartilage-specific phenotype and function maintenance as compared to 2D monolayer culture. Combining hypoxia with spheroid culture markedly increased the expressions of cartilage-specific collagen II and aggrecan at protein and mRNA levels. The hypoxia-inducible factor (HIF) signaling pathway was found to get involved in phenotype maintenance, metabolism and differentiation of chondrocytes by regulating HIF-1α and HIF-2α, respectively. The established approach provides a useful platform for a wide range of applications in the field of cartilage biology, stem cell research and high throughput 3D drug testing in cancer.
Collapse
Affiliation(s)
- Yang Shi
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | | | | | | | | | | |
Collapse
|
30
|
Jang J, Seol YJ, Kim HJ, Kundu J, Kim SW, Cho DW. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. J Mech Behav Biomed Mater 2014; 37:69-77. [PMID: 24880568 DOI: 10.1016/j.jmbbm.2014.05.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 10/25/2022]
Abstract
An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.
Collapse
Affiliation(s)
- Jinah Jang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk, 790-784, South Korea.
| | - Young-Joon Seol
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk, 790-784, South Korea.
| | - Hyeon Ji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk, 790-784, South Korea.
| | - Joydip Kundu
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk, 790-784, South Korea.
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, South Korea; Department of Biomedical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, South Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk, 790-784, South Korea.
| |
Collapse
|
31
|
Schütz K, Despang F, Lode A, Gelinsky M. Cell-laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue. J Tissue Eng Regen Med 2014; 10:404-17. [PMID: 24644134 DOI: 10.1002/term.1879] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 12/03/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
Abstract
Sufficient treatment of chondral and osteochondral defects to restore function of the respective tissue remains challenging in regenerative medicine. Biphasic scaffolds that mimic properties of bone and cartilage are appropriate to regenerate both tissues at the same time. The present study describes the development of biphasic, but monolithic scaffolds based on alginate, which are suitable for embedding of living cells in the chondral part. Scaffolds are fabricated under sterile and cell-compatible conditions according to the principle of diffusion-controlled, directed ionotropic gelation, which leads to the formation of channel-like, parallel aligned pores, running through the whole length of the biphasic constructs. The synthesis process leads to an anisotropic structure, as it is found in many natural tissues. The two different layers of the scaffolds are characterized by different microstructure and mechanical properties which provide a suitable environment for cells to form the respective tissue. Human chondrocytes and human mesenchymal stem cells were embedded within the chondral layer of the biphasic scaffolds during hydrogel formation and their chondrogenic (re)differentiation was successfully induced. Whereas viability of non-induced human mesenchymal stem cells decreased during culture, cell viability of human chondrocytes and chondrogenically induced human mesenchymal stem cells remained high within the scaffolds over the whole culture period of 3 weeks, demonstrating successful fabrication of cell-laden centimetre-scaled constructs for potential application in regenerative treatment of osteochondral defects. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Germany
| | - Florian Despang
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Germany
| |
Collapse
|
32
|
Mhanna R, Kashyap A, Palazzolo G, Vallmajo-Martin Q, Becher J, Möller S, Schnabelrauch M, Zenobi-Wong M. Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. Tissue Eng Part A 2014; 20:1454-64. [PMID: 24320935 DOI: 10.1089/ten.tea.2013.0544] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The loss of expression of chondrogenic markers during monolayer expansion remains a stumbling block for cell-based treatment of cartilage lesions. Here, we introduce sulfated alginate hydrogels as a cartilage biomimetic biomaterial that induces cell proliferation while maintaining the chondrogenic phenotype of encapsulated chondrocytes. Hydroxyl groups of alginate were converted to sulfates by incubation with sulfur trioxide-pyridine complex (SO3/pyridine), yielding a sulfated material cross-linkable with calcium chloride. Passage 3 bovine chondrocytes were encapsulated in alginate and alginate sulfate hydrogels for up to 35 days. Cell proliferation was five-fold higher in alginate sulfate compared with alginate (p=0.038). Blocking beta1 integrins in chondrocytes within alginate sulfate hydrogels significantly inhibited proliferation (p=0.002). Sulfated alginate increased the RhoA activity of chondrocytes compared with unmodified alginate, an increase that was blocked by β1 blocking antibodies (p=0.017). Expression and synthesis of type II collagen, type I collagen, and proteoglycan was not significantly affected by the encapsulation material evidenced by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Alginate sulfate constructs showed an opaque appearance in culture, whereas the unmodified alginate samples remained translucent. In conclusion, alginate sulfate provides a three dimensional microenvironment that promotes both chondrocyte proliferation and maintenance of the chondrogenic phenotype and represents an important advance for chondrocyte-based cartilage repair therapies providing a material in which cell expansion can be done in situ.
Collapse
Affiliation(s)
- Rami Mhanna
- 1 Cartilage Engineering+Regeneration, ETH Zürich , Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zamani S, Hashemibeni B, Esfandiari E, Kabiri A, Rabbani H, Abutorabi R. Assessment of TGF-β3 on production of aggrecan by human articular chondrocytes in pellet culture system. Adv Biomed Res 2014; 3:54. [PMID: 24627862 PMCID: PMC3950793 DOI: 10.4103/2277-9175.125799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/23/2012] [Indexed: 11/27/2022] Open
Abstract
Background: The Autologous Chondrocytes Transplantation (ACT) method is being studied for repair of cartilage diseases. As the chondrocytes dedifferentiated during monolayer culture, three-dimensional cultures are suggested to redifferentiate them. The aim of this study was investigation of the effect of TGF-β3 growth factor on chondrocytes in pellet culture system. Materials and Methods: The chondrocytes were isolated from three human articular cartilages by enzymatic digestion. The cells of the second passage were transferred to pellet culture system. We determined the chondrogenic medium with TGF-β3 as the experimental group and without it as the control group. After 2 weeks, the aggrecan production was investigated using histological and immunohistochemical (IHC) methods. Results: The presence of glycosaminoglycans was proved through Toluiden blue staining. Comparison of IHC results using MATLAB software showed that aggrecan in the experimental group was significantly higher than in the control group (P ≤ 0.05). Conclusion: The presence of TGF-β3 in the chondrogenic medium could lead to the production of more aggrecan in chondrocytes cultivated in pellet culture system.
Collapse
Affiliation(s)
- Saeed Zamani
- Department of Anatomical Sciences and Molecular Biology, Medical Faculty, Isfahan University of Medical Sciences, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Medical Faculty, Isfahan University of Medical Sciences, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical Faculty, Isfahan University of Medical Sciences, Iran
| | - Azadeh Kabiri
- Department of Anatomical Sciences and Molecular Biology, Medical Faculty, Isfahan University of Medical Sciences, Iran
| | - Hossein Rabbani
- Department of Biophysics, Medical Faculty, Isfahan University of Medical Sciences, Iran
| | - Roshanak Abutorabi
- Department of Anatomical Sciences and Molecular Biology, Medical Faculty, Isfahan University of Medical Sciences, Iran
| |
Collapse
|
34
|
Abstract
To gain insight into the structure-activity relationship of alginate, we examined the effect of alginates with varying molecular weights and M/G ratio on murine macrophage cell line, RAW264.7 cells in terms of induction of tumor necrosis factor-α (TNF-α) secretion. Among the alginates tested, alginate with the highest molecular weight (MW 38,000, M/G 2.24) showed the most potent TNF-α-inducing activity. Alginates having higher M/G ratio tended to show higher activity. These results suggest that molecular size and M/G ratio are important structural parameters influencing the TNF-α-inducing activity. Interestingly, enzymatic depolymerization of alginate with bacterial alginate lyase resulted in dramatic increase in the TNF-α-inducing activity. The higher activity of enzymatically digested alginate oligomers to induce nitric oxide production from RAW264.7 cells than alginate polymer was also observed. On the other hand, alginate polymer and oligomer showed nearly equal hydroxyl radical scavenging activities.
Collapse
Affiliation(s)
- Mikinori Ueno
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, Nagasaki, Japan
| | - Tatsuya Oda
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
35
|
Mhanna R, Öztürk E, Schlink P, Zenobi-Wong M. Probing the microenvironmental conditions for induction of superficial zone protein expression. Osteoarthritis Cartilage 2013; 21:1924-32. [PMID: 23978656 DOI: 10.1016/j.joca.2013.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the in vitro conditions which promote expression of superficial zone protein (SZP). METHODS Chondrocytes from 6-month-old calves were expanded in monolayer culture and the expression of SZP in alginate bead and monolayer culture was quantified with quantitative real time-polymerase chain reaction (qRT-PCR) and immunostaining. The effect of oxygen tension on SZP expression was determined by qRT-PRC analysis of cells cultured in two dimension (2D) and three dimension (3D) under hypoxic (1% pO2) or normoxic (21% pO2) conditions. Finally, to examine the effect of cyclic tensile strain on expression of SZP in 2D and 3D cultures, chondrocytes encapsulated in alginate beams or seeded on type I collagen coated polydimethylsiloxane (PDMS) chambers were subjected to 5% strain at 1 Hz, 2 h/day for 4 days or 2 h at the fourth day of culture and mRNA levels were quantified. RESULTS Bovine chondrocytes in monolayer showed a drastic decrease in SZP expression, similar in trend to the commonly reported downregulation of type II collagen (Col2). Chondrocytes embedded in alginate beads for 4 days re-expressed SZP but not Col2. SZP expression was higher under normoxic conditions whereas Col2 was upregulated only in alginate beads under hypoxic conditions. Cyclic mechanical strain showed a tendency to upregulate mRNA levels of SZP. CONCLUSIONS A microenvironment encompassing a soft encapsulation material and 21% oxygen is sufficient for fibroblastic chondrocytes to re-express SZP. These results serve as a guideline for the design of stratified engineered articular cartilage and suggest that microenvironmental cues (oxygen tension level) strongly influence the pattern of SZP expression in vivo.
Collapse
Affiliation(s)
- R Mhanna
- Cartilage Engineering + Regeneration Laboratory, ETHZ, Schafmattstrasse 22, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
36
|
Bak EJ, Kim J, Jang S, Woo GH, Yoon HG, Yoo YJ, Cha JH. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 73:607-14. [DOI: 10.3109/00365513.2013.831470] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Thackeray JT, deKemp RA, Beanlands RS, DaSilva JN. Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats. J Nucl Cardiol 2013; 20:845-56. [PMID: 23842711 DOI: 10.1007/s12350-013-9759-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Diabetes is associated with increased sympathetic activity, elevated norepinephrine, impaired heart rate variability, and the added risk of cardiovascular mortality. The temporal development of sympathetic neuronal dysfunction, response to therapy, and relation to ventricular function is not well characterized. METHODS AND RESULTS Sympathetic neuronal integrity was serially investigated in high fat diet-fed streptozotocin diabetic rats using [(11)C]meta-hydroxyephedrine (HED) positron emission tomography at baseline, 8 weeks of diabetes, and after a further 8 weeks of insulin or insulin-sensitizing metformin therapy. Myocardial HED retention was reduced in diabetic rats (n = 16) compared to non-diabetics (n = 6) at 8 weeks by 52-57% (P = .01) with elevated plasma and myocardial norepinephrine levels. Echocardiography pulse-wave Doppler measurements demonstrated prolonged mitral valve deceleration and increased early-to-atrial filling velocity, consistent with diastolic dysfunction. Insulin but not metformin evoked recovery of HED retention and plasma norepinephrine (P < .05), whereas echocardiography measurements of diastolic function were not improved by either treatment. Relative expressions of norepinephrine reuptake transporter and β-adrenoceptors were lower in metformin-treated as compared to insulin-treated diabetic and non-diabetic rats. Diabetic rats exhibited depressed heart rate variability and impaired diastolic function which persisted despite insulin treatment. CONCLUSIONS HED imaging provides sound estimation of sympathetic function. Effective glycemic control can recover sympathetic function in diabetic rats without the corresponding recovery of echocardiography indicators of diastolic dysfunction. HED positron emission tomography imaging may be useful in stratifying cardiovascular risk among diabetic patients and in evaluating the effect of glycemic therapy on the heart.
Collapse
Affiliation(s)
- James T Thackeray
- Molecular Function & Imaging Program, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada,
| | | | | | | |
Collapse
|
38
|
Kim JS, Ellman MB, Yan D, An HS, Kc R, Li X, Chen D, Xiao G, Cs-Szabo G, Hoskin DW, Buechter DD, Van Wijnen AJ, Im HJ. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc. J Cell Physiol 2013; 228:1884-96. [PMID: 23460134 DOI: 10.1002/jcp.24350] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/08/2013] [Indexed: 12/11/2022]
Abstract
The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production, and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Section of Rheumatology, Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2744-51. [DOI: 10.1016/j.msec.2013.02.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/15/2013] [Accepted: 02/20/2013] [Indexed: 01/24/2023]
|
40
|
Son YJ, Yoon IS, Sung JH, Cho HJ, Chung SJ, Shim CK, Kim DD. Porous hyaluronic acid/sodium alginate composite scaffolds for human adipose-derived stem cells delivery. Int J Biol Macromol 2013; 61:175-81. [PMID: 23817101 DOI: 10.1016/j.ijbiomac.2013.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/29/2013] [Accepted: 06/21/2013] [Indexed: 11/17/2022]
Abstract
The aim of this study is to evaluate the feasibility of hyaluronic acid/sodium alginate (HA/SA) scaffold-based interpenetrating polymeric network (IPN) for the proliferation and chondrogenic differentiation of the human adipose-derived stem cells (hADSCs). The hADSCs cultured in HA/SA IPN scaffold exhibited enhanced cell adhesion and proliferation compared to the HA scaffold. Superior chondrogenic differentiation of hADSCs in HA/SA IPN scaffold, compared to HA-based scaffold, was confirmed by measuring expression levels of chondrogenic markers. These results suggested that HA/SA IPN scaffold could provide a desirable environment for the cell adhesion, proliferation and chondrogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Yun-Jeong Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Stevens JW. Swarm chondrosarcoma: a continued resource for chondroblastic-like extracellular matrix and chondrosarcoma biology research. Connect Tissue Res 2013; 54:252-9. [PMID: 23758266 DOI: 10.3109/03008207.2013.806913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since its first description over four decades ago, the Swarm chondrosarcoma (Swarm rat chondrosarcoma, SRC) remains a valuable tool for studies of chondroblastic-like extracellular matrix (ECM) biology and as an animal model of human chondrosarcoma of histological grades I-III. Moreover, articular joints and skeletal anomalies such as arthritis as well as cartilage regeneration, skeletal development, tissue engineering, hard tissue tumorigenesis and space flight physiology are advanced through studies in hyaline cartilage-like models. With more than 500 articles published since the first report on the characteristics of mucopolysaccharides (glycosaminoglycans) of the tumor in 1971, several transplantable tumor and cell lines have been developed by multiple laboratories worldwide. This review describes the characterization of SRC tumors and cell lines, including the use of SRC lines as a resource for isolation and characterization of several ECM elements that have become vital for the advancement of our understanding of cartilage biology. Also presented is the importance of pertubation of ECM components and the influence of the tumor microenvironment on disease progression. Therapeutic failure and currently pursued avenues of intervention utilizing the SRC lines in treatment of chondrosarcoma are also discussed.
Collapse
Affiliation(s)
- Jeff W Stevens
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa Carver College of Medicine , Iowa City, IA , USA
| |
Collapse
|
42
|
Gowda N, Dandu A, Singh J, Biswas S, Raghav V, Lakshmi MN, Shilpa PC, Sunil V, Reddy A, Sadasivuni M, Aparna K, Verma MK, Moolemath Y, Anup MO, Venkataranganna MV, Somesh BP, Jagannath MR. Treatment with CNX-011-67, a novel GPR40 agonist, delays onset and progression of diabetes and improves beta cell preservation and function in male ZDF rats. BMC Pharmacol Toxicol 2013; 14:28. [PMID: 23692921 PMCID: PMC3668190 DOI: 10.1186/2050-6511-14-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/15/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of G protein-coupled receptor (GPR40), which is highly expressed in pancreatic beta cells, has been studied extensively in the amelioration of beta cell dysfunction in T2D using rat and mouse islets, beta cell lines and in animal models of diabetes. But its potential as a therapeutic target has not been fully explored. This aim of the study is to evaluate the therapeutic potential of CNX-011-67, a highly selective, potent and orally bioavailable GPR40 agonist, in controlling diabetes and other metabolic parameters. METHODS Seven week old male ZDF rats were treated with either vehicle or CNX-011-67, 5 mg/kg twice daily, for seven weeks. The animals were subjected to oral glucose tolerance and insulin tolerance tests. Plasma glucose, insulin, triglyceride, HbA1c, fructosamine and free fatty acids were measured at selected time points. Pancreas from control and treated animals were subjected to insulin and pancreatic and duodenal homeobox 1 (PDX1) immunohistochemistry and were also evaluated by electron microscopy. Also the potential impact of CNX-011-67 on islet insulin secretion, content, ATP levels and markers of both glucose oxidation, beta cell health in rat islets under chronic glucolipotoxic conditions was evaluated. RESULTS Treatment of male ZDF rats with CNX-011-67 for 7 weeks significantly enhanced insulin secretion in response to oral glucose load, delayed the onset of fasting hyperglycemia by 3 weeks, reduced nonfasting glucose excursions, fasting free fatty acids and triglyceride levels. A significant increase in PDX1 expression and insulin content and reduction in plasma fructosamine, HOMA-IR, and beta cell apoptosis were observed. CNX-011-67 improves glucose mediated insulin secretion, insulin gene transcription and islet insulin content in cultured rat islets under chronic glucolipotoxic condition. Also enhanced glucose oxidation in the form of increased islet ATP content and overall improvement in beta cell health in the form of reduced expression of stress markers (TXNIP and CHOP mRNA) were observed. CONCLUSIONS These findings, suggest that long-term oral therapy with CNX-011-67 could be of clinical value to provide good glycemic control and improve islet beta cell function.
Collapse
|
43
|
Klangjorhor J, Nimkingratana P, Settakorn J, Pruksakorn D, Leerapun T, Arpornchayanon O, Rojanasthien S, Kongtawelert P, Pothacharoen P. Hyaluronan production and chondrogenic properties of primary human chondrocyte on gelatin based hematostatic spongostan scaffold. J Orthop Surg Res 2012; 7:40. [PMID: 23253362 PMCID: PMC3554561 DOI: 10.1186/1749-799x-7-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/05/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Autologous chondrocyte transplantation is a promising technique for treatment of cartilage defects. Three dimensional chondrocyte cultures on a scaffold are widely used to retain the chondrogenic phenotype. Using a biodegradable gelatin scaffold is one option for the cell delivery system, but molecular and histological studies of the method have not yet been done. METHODS We evaluated the chondrogenic property of the primary human chondrocyte on a gelatin scaffold as compared to a collagen scaffold over a period of 21 days. We examined the production of glycosaminoglycan by quantitative and histological analysis. Gene expression of cartilage-associated molecules was assessed by quantitative RT-PCR. RESULTS The gelatin scaffold showed the ability to promote chondrocyte expansion, chondrogenic phenotype retention at molecular and mRNA levels. CONCLUSIONS This scaffold is thus suitable for use as an in vitro model for chondrocyte 3D culture.
Collapse
Affiliation(s)
- Jeerawan Klangjorhor
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Puwapong Nimkingratana
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Jongkolnee Settakorn
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Taninnit Leerapun
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Olarn Arpornchayanon
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Sattaya Rojanasthien
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| |
Collapse
|
44
|
Caron MMJ, Emans PJ, Coolsen MME, Voss L, Surtel DAM, Cremers A, van Rhijn LW, Welting TJM. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage 2012; 20:1170-8. [PMID: 22796508 DOI: 10.1016/j.joca.2012.06.016] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/07/2012] [Accepted: 06/30/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Three-dimensional (3D) cultures are widely used to redifferentiate chondrocytes. However, the rationale behind the choice for 3D above two-dimensional (2D) cultures is poorly systematically investigated and mainly based on mRNA expression and glycosaminoglycan (GAG) content. The objective was to determine the differential redifferentiation characteristics of human articular chondrocytes (HACs) in monolayer, alginate beads and pellet culture by investigating mRNA expression, protein expression, GAG content and cell proliferation. DESIGN Dedifferentiated HACs from six individuals were redifferentiated in identical medium conditions for 7 days in monolayer, alginate beads or pellet culture. Read-out parameters were expression of chondrogenic and hypertrophic mRNAs and proteins, GAG content and cell proliferation. RESULTS 3D cultures specifically expressed chondrogenic mRNAs [collagen type II (COL2A1), SRY (sex determining region Y)-box 9 (SOX9), aggrecan (ACAN)), whereas 2D cultures did not. Hypertrophic mRNAs (collagen type X (COL10A1), runt-related transcription factor 2 (RUNX2), matrix metalloproteinase 13 (MMP13), vascular endothelial growth factor A (VEGFA), osteopontin (OPN), alkaline phosphatase (ALP)) were highly increased in 2D cultures and lower in 3D cultures. Collagen type I (COL1A1) mRNA expression was highest in 3D cultures. Protein expression supports most of the mRNA data, although an important discrepancy was found between mRNA and protein expression of COL2A1 and SOX9 in monolayer culture, stressing on the importance of protein expression analysis. GAG content was highest in 3D cultures, whereas chondrocyte proliferation was almost specific for 2D cultures. CONCLUSIONS For redifferentiation of dedifferentiated HACs, 3D cultures exhibit the most potent chondrogenic potential, whereas a hypertrophic phenotype is best achieved in 2D cultures. This is the first human study that systematically evaluates the differences between proliferation, GAG content, protein expression and mRNA expression of commonly used 2D and 3D chondrocyte culture techniques.
Collapse
Affiliation(s)
- M M J Caron
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chawla K, Yu TB, Stutts L, Yen M, Guan Z. Modulation of chondrocyte behavior through tailoring functional synthetic saccharide-peptide hydrogels. Biomaterials 2012; 33:6052-60. [PMID: 22672831 DOI: 10.1016/j.biomaterials.2012.04.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/30/2012] [Indexed: 01/22/2023]
Abstract
Tailoring three-dimensional (3D) biomaterial environments to provide specific cues in order to modulate function of encapsulated cells could potentially eliminate the need for addition of exogenous cues in cartilage tissue engineering. We recently developed saccharide-peptide copolymer hydrogels for cell culture and tissue engineering applications. In this study, we aim to tailor our saccharide-peptide hydrogel for encapsulating and culturing chondrocytes in 3D and examine the effects of changing single amino acid moieties differing in hydrophobicity/hydrophilicity (valine (V), cysteine (C), tyrosine (Y)) on modulation of chondrocyte function. Encapsulated chondrocytes remained viable over 21 days in vitro. Glycosaminoglycan and collagen content was significantly higher in Y-functionalized hydrogels compared to V-functionalized hydrogels. Extensive matrix accumulation and concomitant increase in mechanical properties was evident over time, particularly with the presence of Y amino acid. After 21 days in vitro, Y-functionalized hydrogels attained a modulus of 193 ± 46 kPa, compared to 44 ± 21 kPa for V-functionalized hydrogels. Remarkably, mechanical and biochemical properties of chondrocyte-laden hydrogels were modulated by change in a single amino acid moiety. This unique property, combined with the versatility and biocompatibility, makes our saccharide-peptide hydrogels promising candidates for further investigation of combinatorial effects of multiple functional groups on controlling chondrocyte and other cellular function and behavior.
Collapse
Affiliation(s)
- Kanika Chawla
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92606, USA
| | | | | | | | | |
Collapse
|
46
|
Ueno M, Hiroki T, Takeshita S, Jiang Z, Kim D, Yamaguchi K, Oda T. Comparative study on antioxidative and macrophage-stimulating activities of polyguluronic acid (PG) and polymannuronic acid (PM) prepared from alginate. Carbohydr Res 2012; 352:88-93. [DOI: 10.1016/j.carres.2012.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 02/03/2023]
|
47
|
Kim JS, Ellman MB, An HS, Yan D, van Wijnen AJ, Murphy G, Hoskin DW, Im HJ. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc. J Cell Physiol 2012; 227:1512-20. [PMID: 21678402 DOI: 10.1002/jcp.22867] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactoferricin (LfcinB) antagonizes biological effects mediated by angiogenic and catabolic growth factors, in addition to pro-inflammatory cytokines and chemokines in human endothelial cells and tumor cells. However, the effect of LfcinB on intervertebral disc (IVD) cell metabolism has not yet been investigated. Using bovine nucleus pulposus (NP) cells, we analyzed the effect of LfcinB on proteoglycan (PG) accumulation, PG synthesis, and anabolic gene expression. We assessed expression of genes for matrix-degrading enzymes such as matrix metalloproteases (MMPs) and a disintegrin-like and metalloprotease with thrombospondin motifs (ADAMTS family), as well as their endogenous inhibitors, tissue inhibitor of metalloproteases (TIMPs). In order to understand the specific molecular mechanisms by which LfcinB exerts its biological effects, we investigated intracellular signaling pathways in NP cells. LfcinB increased PG accumulation mainly via PG synthesis in a dose-dependent manner. Simultaneously, LfcinB dose-dependently downregulated catabolic enzymes. LfcinB's anti-catabolic effects were further demonstrated by a dose-dependent increase in multiple TIMP family members. Our results demonstrate that ERK and/or p38 mitogen-activated protein kinase pathways are the key signaling cascades that exert the biological effects of LfcinB in NP cells, regulating transcription of aggrecan, SOX-9, TIMP-1, TIMP-2, TIMP-3, and iNOS. Our results suggest that LfcinB has anabolic and potent anti-catabolic biological effects on bovine IVD cells that may have considerable promise in the treatment of disc degeneration in the future.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Egli RJ, Wernike E, Grad S, Luginbühl R. Physiological cartilage tissue engineering effect of oxygen and biomechanics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 289:37-87. [PMID: 21749898 DOI: 10.1016/b978-0-12-386039-2.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of cartilaginous tissues has been studied for many years, and tissue-engineered constructs are sought to be used clinically for treating articular cartilage defects. Even though there is a plethora of studies and data available, no breakthroughs have been achieved yet that allow for implanting in vivo cultured articular cartilaginous tissues in patients. A review of contributions to cartilage tissue engineering over the past decades emphasizes that most of the studies were performed under environmental conditions neglecting the physiological situation. This is specifically pronounced in the use of bioreactor systems which neither allow for application of near physiomechanical stimulations nor for controlling a hypoxic environment as it is experienced in synovial joints. It is suspected that the negligence of these important parameters has slowed down progress and prevented major breakthroughs in the field. This review focuses on the main aspects of cartilage tissue engineering with emphasis on the relation and understanding of employing physiological conditions.
Collapse
|
49
|
Shao YY, Wang L, Welter JF, Ballock RT. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone 2012; 50:79-84. [PMID: 21930256 PMCID: PMC3246537 DOI: 10.1016/j.bone.2011.08.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Indian hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur.
Collapse
Affiliation(s)
- Yvonne Y Shao
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
50
|
Tay LX, Ahmad RE, Dashtdar H, Tay KW, Masjuddin T, Ab-Rahim S, Chong PP, Selvaratnam L, Kamarul T. Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model. Am J Sports Med 2012; 40:83-90. [PMID: 21917609 DOI: 10.1177/0363546511420819] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) represent a promising alternative form of cell-based therapy for cartilage injury. However, the capacity of MSCs for chondrogenesis has not been fully explored. In particular, there is presently a lack of studies comparing the effectiveness of MSCs to conventional autologous chondrocyte (autoC) treatment for regeneration of full-thickness cartilage defects in vivo. HYPOTHESIS Treatment with allogenic undifferentiated MSCs (alloMSCs) results in superior cartilage tissue regeneration profiles when compared with autoC for repair of focal articular cartilage defects. STUDY DESIGN Controlled laboratory study. METHODS Full-thickness articular cartilage defects were created on the weightbearing surface of the medial femoral condyles in both knees of New Zealand White rabbits (N = 30). Six weeks after the defect was induced, the right knee was treated with either alloMSCs (n = 12) or autoC (n = 18), while the left knee remained untreated (control). The rabbits were sacrificed at 6 months after treatment for assessment of cartilage tissue regeneration, which included the Brittberg morphologic score, histologic grading by O'Driscoll score, and quantitative analysis of glycosaminoglycans per total protein content. RESULTS Apart from significantly higher Brittberg scores in the alloMSC treatment group (8.8 ± 0.8) versus the autoC treatment group (6.6 ± 0.8) (P = .04), both treatments showed similar cartilage regenerative profiles. All outcome measures were significantly higher in the treatment groups compared with their respective controls (P < .05). CONCLUSION AlloMSCs have similar effectiveness as autoC for repair of focal cartilage defects. Both treatments resulted in superior tissue regeneration compared with untreated defects. CLINICAL RELEVANCE The results have an implication of supporting the potential use of MSCs for cartilage repair after sports injuries or diseases, in view of similar efficacy but less patient morbidity and potential cost savings as compared with conventional autoC therapy.
Collapse
Affiliation(s)
- Liang Xin Tay
- Tissue Engineering Group, National Orthopaedic Surgery Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | | | |
Collapse
|