1
|
Two independent modes of kidney stone suppression achieved by AIM/CD5L and KIM-1. Commun Biol 2022; 5:783. [PMID: 35922481 PMCID: PMC9349198 DOI: 10.1038/s42003-022-03750-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
The prevalence of kidney stones is increasing and its recurrence rate within the first 5 years is over 50%. No treatments that prevent the occurrence/recurrence of stones have reached the clinic. Here, we show that AIM (also called CD5L) suppresses stone development and improves stone-associated physical damages. The N-terminal domain of AIM associates with calcium oxalate crystals via charge-based interaction to impede the development of stones, whereas the 2nd and C-terminal domains capture the inflammatory DAMPs to promote their phagocytic removal. Accordingly, when stones were induced by glyoxylate in mice, recombinant AIM (rAIM) injection dramatically reduced stone development. Expression of injury molecules and inflammatory cytokines in the kidney and overall renal dysfunction were abrogated by rAIM. Among various negatively charged substances, rAIM was most effective in stone prevention due to its high binding affinity to crystals. Furthermore, only AIM was effective in improving the physical complaints including bodyweight-loss through its DAMPs removal effect. We also found that tubular KIM-1 may remove developed stones. Our results could be the basis for the development of a comprehensive therapy against kidney stone disease. The circulating protein apoptosis inhibitor of macrophage (AIM) reduces kidney stone development and prevents build up, providing the basis for kidney stone disease therapy.
Collapse
|
2
|
Huck BC, Thiyagarajan D, Bali A, Boese A, Besecke KFW, Hozsa C, Gieseler RK, Furch M, Carvalho‐Wodarz C, Waldow F, Schwudke D, Metelkina O, Titz A, Huwer H, Schwarzkopf K, Hoppstädter J, Kiemer AK, Koch M, Loretz B, Lehr C. Nano-in-Microparticles for Aerosol Delivery of Antibiotic-Loaded, Fucose-Derivatized, and Macrophage-Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery. Adv Healthc Mater 2022; 11:e2102117. [PMID: 35112802 PMCID: PMC11468583 DOI: 10.1002/adhm.202102117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/14/2022] [Indexed: 12/12/2022]
Abstract
Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco-regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline-encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP-1 cells as well as peripheral blood monocyte- and lung-tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry-powder microparticles of spray-dried bedaquiline-loaded liposomes display a high fine particle fraction of >70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP-1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections.
Collapse
Affiliation(s)
- Benedikt C. Huck
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| | - Durairaj Thiyagarajan
- Department of Anti‐infective Drug DiscoveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8 1Saarbrücken66123Germany
| | - Aghiad Bali
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| | - Annette Boese
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Karen F. W. Besecke
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Solmic BioTech GmbHDüsseldorf40225Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Siegfried AG HamelnHameln31789Germany
| | - Robert K. Gieseler
- Rodos Biotarget GmbHHannover30625Germany
- Laboratory of Immunology and Molecular Biologyand Department of Internal MedicineUniversity HospitalKnappschaftskrankenhaus BochumRuhr University BochumBochum44892Germany
| | - Marcus Furch
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Biolife Holding AGHeidelberg69126Germany
| | - Cristiane Carvalho‐Wodarz
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Franziska Waldow
- Research Center BorstelLeibniz Lung CenterBorstel23845Germany
- German Center for Infection ResearchThematic Translational Unit TuberculosisPartner Site Hamburg‐Lübeck‐Borstel‐RiemsBraunschweig38124Germany
| | - Dominik Schwudke
- Research Center BorstelLeibniz Lung CenterBorstel23845Germany
- German Center for Infection ResearchThematic Translational Unit TuberculosisPartner Site Hamburg‐Lübeck‐Borstel‐RiemsBraunschweig38124Germany
- German Center for Lung Research (DZL)Airway Research Center North (ARCN)Kiel NanoSurface and Interface Science KiNSISKiel UniversityKiel24118Germany
| | - Olga Metelkina
- Chemical Biology of Carbohydrates (CBCH)Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection ResearchSaarbrücken66123Germany
- Department of ChemistrySaarland UniversitySaarbrücken66123Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH)Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection ResearchSaarbrücken66123Germany
- Department of ChemistrySaarland UniversitySaarbrücken66123Germany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover‐Braunschweig siteBraunschweig38124Germany
| | - Hanno Huwer
- Cardiothoracic SurgeryHeart Center VoelklingenVölklingen66333Germany
| | - Konrad Schwarzkopf
- Department of Anaesthesia and Intensive CareKlinikum Saarbrücken gGmbHSaarbrücken66119Germany
| | | | | | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Brigitta Loretz
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Claus‐Michael Lehr
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| |
Collapse
|
3
|
Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol 2022; 322:G405-G420. [PMID: 35170355 PMCID: PMC8917926 DOI: 10.1152/ajpgi.00316.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.
Collapse
Affiliation(s)
- Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Kim E Barrett
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
4
|
Arroyo R, Kingma PS. Surfactant protein D and bronchopulmonary dysplasia: a new way to approach an old problem. Respir Res 2021; 22:141. [PMID: 33964929 PMCID: PMC8105703 DOI: 10.1186/s12931-021-01738-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Surfactant protein D (SP-D) is a collectin protein synthesized by alveolar type II cells in the lungs. SP-D participates in the innate immune defense of the lungs by helping to clear infectious pathogens and modulating the immune response. SP-D has shown an anti-inflammatory role by down-regulating the release of pro-inflammatory mediators in different signaling pathways such as the TLR4, decreasing the recruitment of inflammatory cells to the lung, and modulating the oxidative metabolism in the lungs. Recombinant human SP-D (rhSP-D) has been successfully produced mimicking the structure and functions of native SP-D. Several in vitro and in vivo experiments using different animal models have shown that treatment with rhSP-D reduces the lung inflammation originated by different insults, and that rhSP-D could be a potential treatment for bronchopulmonary dysplasia (BPD), a rare disease for which there is no effective therapy up to date. BPD is a complex disease in preterm infants whose incidence increases with decreasing gestational age at birth. Lung inflammation, which is caused by different prenatal and postnatal factors like infections, lung hyperoxia and mechanical ventilation, among others, is the key player in BPD. Exacerbated inflammation causes lung tissue injury that results in a deficient gas exchange in the lungs of preterm infants and frequently leads to long-term chronic lung dysfunction during childhood and adulthood. In addition, low SP-D levels and activity in the first days of life in preterm infants have been correlated with a worse pulmonary outcome in BPD. Thus, SP-D mediated functions in the innate immune response could be critical aspects of the pathogenesis in BPD and SP-D could inhibit lung tissue injury in this preterm population. Therefore, administration of rhSP-D has been proposed as promising therapy that could prevent BPD.
Collapse
Affiliation(s)
- Raquel Arroyo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA. .,Airway Therapeutics Inc, Cincinnati, OH, 45249, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
5
|
Tao G, Chityala PK. Epidermal growth factor receptor inhibitor-induced diarrhea: clinical incidence, toxicological mechanism, and management. Toxicol Res (Camb) 2021; 10:476-486. [PMID: 34141161 PMCID: PMC8201561 DOI: 10.1093/toxres/tfab026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family is a class of receptor tyrosine kinase playing a central role in carcinogenesis and cancer progression. The members of this family, particularly EGFR and human epidermal growth factor receptor 2 (HER2), are the most extensively studied drug targets for malignancy. Today, numerous tyrosine kinase inhibitors targeting EGFR family have been developed to combat non-small-cell lung cancer and breast cancer. However, severe gastrointestinal (GI) toxicity leading to dose reduction and treatment discontinuation hampers the therapeutic outcome of EGFR inhibitors. Diarrhea is one of the most frequent GI side effects, especially when it comes to second-generation EGFR inhibitors. Enterocytes apoptosis and increased inflammation accompany with many oral EGFR inhibitors. Loperamide and budesonide are the first-line treatment to manage such adverse effects. However, current prophylaxis and management are all empirical interventions to relieve the symptom. They do not specifically target the toxicological mechanism of EGFR inhibitors. Hereby, those anti-diarrhea agents do not work well when used in cancer patients experiencing EGFR inhibitor-induced diarrhea. On the other hand, the toxicological mechanism of EGFR inhibitor-induced diarrhea is poorly understood. Thus, determining the mechanism behind such diarrhea is urgently in need for developing genuinely effective anti-diarrhea agents. This review aims to call attention to EGFR inhibitor-induced diarrhea, a highly occurring and devastating cancer drug toxicity.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Pavan Kumar Chityala
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Yazici O, Narter F, Erbin A, Aydin K, Kafkasli A, Sarica K. Effect of endothelial dysfunction on the pathogenesis of urolithiasis in patients with metabolic syndrome. Aging Male 2020; 23:1082-1087. [PMID: 31596163 DOI: 10.1080/13685538.2019.1675151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The aim of the present prospective clinical study was to investigate the possible effect of endothelial dysfunction in urolithiasis. METHODS The study included 92 patients older than 18 years. The patients were divided into 4 groups with 23 patients each as group 1: metabolic sydrome (MetS) (-) stone disease (SD) (-), group 2: MetS (-) SD (+), group 3: MetS (+) SD (-) and group 4: MetS (+) SD (+). C-reactive protein, homocysteine, uric acid, and creatinine levels were evaluated between the groups. Endothelial (dys)function was evaluated based on the brachial artery flow-mediated dilation (FMD) measurement. RESULTS The mean age was 41.9 ± 10.2 (range, 18-62) years. Mean FMD value was 15.9 ± 18.2% (range, 24.0-68.5%). A strong significant difference was found between group 1 and 2 (p < .001); group 1 and 3 (p < .001) and group 1 and 4 (p < .001) with regard to FMD. CONCLUSION These results suggest that endothelial dysfunction plays an important role in the pathogenesis of urolithiasis in patients with MetS.
Collapse
Affiliation(s)
- Ozgur Yazici
- Department of Urology, Haseki Traning and Research Hospital, Istanbul, Turkey
| | - Fehmi Narter
- Department of Urology, Acibadem Mehmet Aydinlar University Medical Faculty, Istanbul, Turkey
| | - Akif Erbin
- Department of Urology, Haseki Traning and Research Hospital, Istanbul, Turkey
| | - Kadriye Aydin
- Department of Endocrinology and Metabolic Disease, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
| | - Alper Kafkasli
- Department of Urology, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
| | - Kemal Sarica
- Department of Urology, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Barrett KE. Epithelial transport in digestive diseases: mice, monolayers, and mechanisms. Am J Physiol Cell Physiol 2020; 318:C1136-C1143. [PMID: 32293934 PMCID: PMC7311737 DOI: 10.1152/ajpcell.00015.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/26/2023]
Abstract
The transport of electrolytes and fluid by the intestinal epithelium is critical in health to maintain appropriate levels of fluidity of the intestinal contents. The transport mechanisms that underlie this physiological process are also subject to derangement in various digestive disease states, such as diarrheal illnesses. This article summarizes the 2019 Hans Ussing Lecture of the Epithelial Transport Group of the American Physiological Society and discusses some pathways by which intestinal transport is dysregulated, particularly in the setting of infection with the diarrheal pathogen, Salmonella, and in patients treated with small-molecule inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor (EGFr-TKI). The burdensome diarrhea in patients infected with Salmonella may be attributable to decreased expression of the chloride-bicarbonate exchanger downregulated in adenoma (DRA) that participates in electroneutral NaCl absorption. This outcome is possibly secondary to increased epithelial proliferation and/or decreased epithelial differentiation that occurs following infection. Conversely, the diarrheal side effects of cancer treatment with EGFr-TKI may be related to the known ability of EGFr-associated signaling to reduce calcium-dependent chloride secretion. Overall, the findings described may suggest targets for therapeutic intervention in a variety of diarrheal disease states.
Collapse
Affiliation(s)
- Kim E Barrett
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
8
|
Han J, Guo D, Sun XY, Wang JM, Ouyang JM, Gui BS. Comparison of the adhesion and endocytosis of calcium oxalate dihydrate to HK-2 cells before and after repair by Astragalus polysaccharide. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:1164-1177. [PMID: 32082438 PMCID: PMC7006660 DOI: 10.1080/14686996.2019.1697857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
This work investigated the effects of repairing injured renal proximal tubular epithelial (HK-2) cells by using three Astragalus polysaccharides (APS) with different molecular weights and the adhesion and endocytosis of HK-2 cells to the calcium oxalate dihydrate (COD) nanocrystals before and after repair to develop new products that can protect against kidney stones. HK-2 cells cultured in vitro were injured with 2.6 mmol/L oxalic acid to establish a damaged cell model. Three kinds of APS (APS0, APS1, and APS2 with molecular weights of 11.03, 4.72, and 2.60 kDa, respectively) were used to repair the damaged cells. The changes in the adhesion and endocytosis of 100 nm COD crystals to cells before and after the repair were detected. After the repair of HK-2 cells by the APS, the speed of wound healing of the damaged HK-2 cells increased, and the amount of phosphatidylserine (PS) ectropion decreased. In addition, the proportion of cells with adhered COD crystals decreased, whereas the proportion of cells with internalized crystals increased. As a result of the repair activity, APS can inhibit the adhesion and promote the endocytosis of COD nanocrystals to damaged cells. APS1, which had a moderate molecular weight, displayed the strongest abilities to repair the cells, inhibit adhesion, and promote endocytosis. Thus, APS, particularly APS1, may serve as potential green drugs for preventing kidney stones.
Collapse
Affiliation(s)
- Jin Han
- Department of Nephrology, the Second Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Bao-Song Gui
- Department of Nephrology, the Second Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Barreiro E, Wang X, Tang J. COPD: preclinical models and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:829-838. [DOI: 10.1080/14728222.2019.1667976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Xuejie Wang
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jun Tang
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Keating N, Dev K, Hynes AC, Quinlan LR. Mechanism of luminal ATP activated chloride secretion in a polarized epithelium. J Physiol Sci 2019; 69:85-95. [PMID: 29949063 PMCID: PMC10717936 DOI: 10.1007/s12576-018-0623-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
Abstract
There are both secretory and absorptive pathways working in tandem to support ionic movement driving fluid secretion across epithelia. The mechanisms exerting control of fluid secretion in the oviduct is yet to be fully determined. This study explored the role of apical or luminal extracellular ATP (ATPe)-stimulated ion transport in an oviduct epithelium model, using the Ussing chamber short-circuit current (Isc) technique. Basal Isc in oviduct epithelium in response to apical ATPe comprises both chloride secretion and sodium absorption and has distinct temporal phases. A rapid transient peak followed by a sustained small increase above baseline. Both phases of the apical ATPe Isc response are sensitive to anion (HCO3-, Cl-) and cation (Na+) replacement. Additionally, the role of apical chloride channels, basolateral potassium channels and intracellular calcium in supporting the peak Isc current was confirmed. The role of ATP breakdown to adenosine resulting in the activation of P2 receptors was supported by examining the effects of non-hydrolyzable forms of ATP. A P2YR2 potency profile of ATP = UTP > ADP was generated for the apical membrane, suggesting the involvement of the P2YR2 subtype of purinoceptor. A P2X potency profile of ATP = 2MeSATP > alpha,beta-meATP > BzATP was also generated for the apical membrane. In conclusion, these results provide strong evidence that purinergic activation of apical P2YR2 promotes chloride secretion and is thus an important factor in fluid formation by the oviduct.
Collapse
Affiliation(s)
- N Keating
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | - K Dev
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | - A C Hynes
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | - L R Quinlan
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland.
- CÚRAM, Centre for Research in Medical Devices, NUI Galway, University Road, Galway, Ireland.
| |
Collapse
|
11
|
Khamchun S, Thongboonkerd V. Cell cycle shift from G0/G1 to S and G2/M phases is responsible for increased adhesion of calcium oxalate crystals on repairing renal tubular cells at injured site. Cell Death Discov 2018; 4:106. [PMID: 30774989 PMCID: PMC6374384 DOI: 10.1038/s41420-018-0123-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Renal tubular cell injury can enhance calcium oxalate monohydrate (COM) crystal adhesion at the injured site and thus may increase the stone risk. Nevertheless, underlying mechanism of such enhancement remained unclear. In the present study, confluent MDCK renal tubular cell monolayers were scratched to allow cells to proliferate and repair the injured site. At 12-h post-scratch, the repairing cells had significant increases in crystal adhesion capacity and cell proliferation as compared to the control. Cell cycle analysis using flow cytometry demonstrated that the repairing cells underwent cell cycle shift from G0/G1 to S and G2/M phases. Cyclosporin A (CsA) and hydroxyurea (HU) at sub-toxic doses caused cell cycle shift mimicking that observed in the repairing cells. Crystal-cell adhesion assay confirmed the increased crystal adhesion capacity of the CsA-treated and HU-treated cells similar to that of the repairing cells. These findings provide evidence indicating that cell cycle shift from G0/G1 to S and G2/M phases is responsible, at least in part, for the increased adhesion of COM crystals on repairing renal tubular cells at the injured site.
Collapse
Affiliation(s)
- Supaporn Khamchun
- 1Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,2Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- 1Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,3Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Yu L, Gan X, Liu X, An R. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway. Ren Fail 2017; 39:440-451. [PMID: 28335665 PMCID: PMC6014313 DOI: 10.1080/0886022x.2017.1305968] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin–Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.
Collapse
Affiliation(s)
- Lei Yu
- a Department of Urology , the First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , P.R. China
| | - Xiuguo Gan
- a Department of Urology , the First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , P.R. China
| | - Xukun Liu
- b Department of General Surgery , the People's Hospital of Jixi , Jixi , Heilongjiang Province , P.R. China
| | - Ruihua An
- a Department of Urology , the First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang Province , P.R. China
| |
Collapse
|
13
|
Manissorn J, Fong-Ngern K, Peerapen P, Thongboonkerd V. Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Sci Rep 2017; 7:1798. [PMID: 28496123 PMCID: PMC5431959 DOI: 10.1038/s41598-017-01953-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Abstract
Urine pH has been thought to be an important factor that can modulate kidney stone formation. Nevertheless, there was no systematic evaluation of such pH effect. Our present study thus addressed effects of differential urine pH (4.0–8.0) on calcium oxalate (CaOx) crystallization, crystal-cell adhesion, crystal internalization into renal tubular cells, and binding of apical membrane proteins to the crystals. Microscopic examination revealed that CaOx monohydrate (COM), the pathogenic form, was crystallized with greatest size, number and total mass at pH 4.0 and least crystallized at pH 8.0, whereas COD was crystallized with the vice versa order. Fourier-transform infrared (FT-IR) spectroscopy confirmed such morphological study. Crystal-cell adhesion assay showed the greatest degree of crystal-cell adhesion at the most acidic pH and least at the most basic pH. Crystal internalization assay using fluorescein isothiocyanate (FITC)-labelled crystals and flow cytometry demonstrated that crystal internalization into renal tubular cells was maximal at the neutral pH (7.0). Finally, there were no significant differences in binding capacity of the crystals to apical membrane proteins at different pH. We concluded that the acidic urine pH may promote CaOx kidney stone formation, whereas the basic urine pH (i.e. by alkalinization) may help to prevent CaOx kidney stone disease.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
15
|
Mulay SR, Anders HJ. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat Rev Nephrol 2017; 13:226-240. [DOI: 10.1038/nrneph.2017.10] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Sun XY, Gan QZ, Ouyang JM. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells. Sci Rep 2017; 7:41949. [PMID: 28150811 PMCID: PMC5288769 DOI: 10.1038/srep41949] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Department of Chemistry, Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Qiong-Zhi Gan
- Department of Chemistry, Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Department of Chemistry, Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Robertson WG. Do "inhibitors of crystallisation" play any role in the prevention of kidney stones? A critique. Urolithiasis 2016; 45:43-56. [PMID: 27900407 DOI: 10.1007/s00240-016-0953-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/09/2023]
Abstract
A critical examination of data in the literature and in as yet unpublished laboratory records on the possible role of so-called inhibitors of crystallisation in preventing the formation of calcium-containing kidney stones leads to the following conclusions. So-called inhibitors of spontaneous "self-nucleation" are unlikely to play any role in the initiation of the crystallisation of CaOx or CaP in urine because excessive urinary supersaturation of urine with respect to these salts dominates the onset of "self-nucleation" within the normal time frame of the transit of tubular fluid through the nephron (3-4 min). Inhibitors of the crystal growth of CaOx crystals may or may not play a significant role in the prevention of CaOx stone-formation since once again excessive supersaturation of urine can overwhelm any potential effect of the inhibitors on the growth process. However, they may play a role as inhibitors of crystal growth at lower levels of metastable supersaturation when the balance between supersaturation and inhibitors is more equal. Inhibitors of CaOx crystal aggregation may play a significant role in the prevention of stones, since they do not appear to be strongly affected by excessive supersaturation, either in vitro or in vivo. Inhibitors of CaOx crystal binding to renal tubular epithelium may exist but further studies are necessary to elucidate their importance in reducing the risk of initiating stones in the renal tubules. Inhibitors of CaOx crystal binding to Randall's Plaques and Randall's Plugs may exist but further studies are necessary to elucidate their importance in reducing the risk of initiating stones on renal papillae. There may be an alternative explanation other than a deficiency in the excretion of inhibitors for the observations that there is a difference between CaOx crystal size and degree of aggregation in the fresh, warm urines of normal subjects compared those in urine from patients with recurrent CaOx stones. This difference may depend more on the site of "self-nucleation" of CaOx crystals in the renal tubule rather than on a deficiency in the excretion of so-called inhibitors of crystallisation by patients with CaOx stones. The claim that administration of potassium citrate, potassium magnesium citrate or magnesium hydroxide reduces the rate of stone recurrence may be due to the effect of these forms of medication on the supersaturation of urine with respect to CaOx and CaP rather than to any increase in "inhibitory activity" attributed to these forms of treatment. In summary, there is a competition between supersaturation and so-called inhibitors of crystallisation which ultimately determines the pattern of crystalluria in stone-formers and normals. If the supersaturation of urine with respect to CaOx reaches or exceeds the 3-4 min formation product of that salt, then it dominates the crystallisation process both in terms of "self-nucleation" and crystal growth but appears to have little or no effect on the degree of aggregation of the crystals produced. At supersaturation levels of urine with respect to CaOx well below the 3-4 min formation product of that salt, the influence of inhibitors increases and some may affect not only the degree of aggregation but also the crystal growth of any pre-formed crystals of CaOx at these lower levels of metastability.
Collapse
Affiliation(s)
- William G Robertson
- Visiting Professor at the University of Oxford, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
18
|
Khan SR. Histological aspects of the "fixed-particle" model of stone formation: animal studies. Urolithiasis 2016; 45:75-87. [PMID: 27896391 DOI: 10.1007/s00240-016-0949-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/22/2016] [Indexed: 01/25/2023]
Abstract
Crystallization by itself is not harmful as long as the crystals are not retained in the kidneys and are allowed to pass freely down the renal tubules to be excreted in the urine. A number of theories have been proposed, and studies performed, to determine the mechanisms involved in crystal retention within the kidneys. It has been suggested that urinary transit through the nephron is too fast for crystals to grow large enough to be retained. Thus, free particle mechanism alone cannot lead to stone formation, and there must be a mechanism for crystal fixation within the kidneys. Animal model studies suggest that crystal retention is possible through both the free- and fixed-particle mechanisms. Crystal-cell interaction leads to pathological changes which promote crystal attachment to either epithelial cells or their basement membrane. Alternatively, crystals aggregate and produce large enough particles to block the tubules particularly at sites, where urinary flow is affected because of changes in the luminal diameter of the tubule. Crystal deposits plugging the openings of the ducts of Bellini may be the result of such a phenomenon. Intratubular crystals translocating to renal interstitium may produce osteogenic changes in the epithelial or endothelial cells resulting in the formation of the Randall's plaques. Thus, fixation appears to be either through the formation of Randall's plugs, crystal plugs clogging the openings of the ducts of Bellini or sub-epithelial crystal deposits, and the Randall's plaques.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Investigation, College of Medicine, University of Florida, Gainesville, FL, USA. .,Department of Urology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Fong-Ngern K, Thongboonkerd V. Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor. Sci Rep 2016; 6:36103. [PMID: 27796334 PMCID: PMC5086859 DOI: 10.1038/srep36103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/10/2016] [Indexed: 12/16/2022] Open
Abstract
To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.
Collapse
Affiliation(s)
- Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Moran AP, Khamri W, Walker MM, Thursz MR. Role of surfactant protein D (SP-D) in innate immunity in the gastric mucosa: evidence of interaction with Helicobacter pylori lipopolysaccharide. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110061101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surfactant protein D (SP-D) is a collagenous glycoprotein, a collectin, which functions as a pathogen-associated molecular pattern (PAMP) recognition receptor in the innate immune response. Although originally identified in the lung as a component of surfactant, SP-D also occurs in the gastric mucosa at the luminal surface and within gastric pits of mucus-secreting cells. Infection with the gastroduodenal pathogen Helicobacter pylori up-regulates expression of SP-D in human patients with gastritis, and its influence on colonization has been demonstrated in a Helicobacter SP-D-deficient (SP-D—/ —) mouse model. SP-D binds and agglutinates H. pylori cells in a lectin-specific manner, and has been shown to bind H. pylori lipopolysaccharide. Furthermore, evidence indicates that H. pylori varies LPS O-chain structure to evade SP-D binding which is speculated aids persistence of this chronic infection.
Collapse
Affiliation(s)
- Anthony P. Moran
- Department of Microbiology, National University of Ireland, Galway, Ireland,
| | - Wafa Khamri
- Faculty of Medicine, Imperial College, St Mary's Campus, London, UK
| | | | - Mark R. Thursz
- Faculty of Medicine, Imperial College, St Mary's Campus, London, UK
| |
Collapse
|
21
|
Lung epithelium and myeloid cells cooperate to clear acute pneumococcal infection. Mucosal Immunol 2016; 9:1288-302. [PMID: 26627460 PMCID: PMC4990776 DOI: 10.1038/mi.2015.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/01/2015] [Indexed: 02/04/2023]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae causes life-threatening infections, especially among immunocompromised patients. The host's immune system senses S. pneumoniae via different families of pattern recognition receptors, in particular the Toll-like receptor (TLR) family that promotes immune cell activation. Yet, while single TLRs are dispensable for initiating inflammatory responses against S. pneumoniae, the central TLR adapter protein myeloid differentiation factor 88 (MyD88) is of vital importance, as MyD88-deficient mice succumb rapidly to infection. Since MyD88 is ubiquitously expressed in hematopoietic and non-hematopoietic cells, the extent to which MyD88 signaling is required in different cell types to control S. pneumoniae is unknown. Therefore, we used novel conditional knockin mice to investigate the necessity of MyD88 signaling in distinct lung-resident myeloid and epithelial cells for the initiation of a protective immune response against S. pneumoniae. Here, we show that MyD88 signaling in lysozyme M (LysM)- and CD11c-expressing myeloid cells, as well as in pulmonary epithelial cells, is critical to restore inflammatory cytokine and antimicrobial peptide production, leading to efficient neutrophil recruitment and enhanced bacterial clearance. Overall, we show a novel synergistic requirement of compartment-specific MyD88 signaling in S. pneumoniae immunity.
Collapse
|
22
|
Barrett KE. Endogenous and exogenous control of gastrointestinal epithelial function: building on the legacy of Bayliss and Starling. J Physiol 2016; 595:423-432. [PMID: 27284010 DOI: 10.1113/jp272227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
Transport of fluid and electrolytes in the intestine allows for appropriate adjustments in luminal fluidity while reclaiming water used in digesting and absorbing a meal, and is closely regulated. This article discusses various endogenous and exogenous mechanisms whereby transport is controlled in the gut, placing these in the context of the ideas about the neurohumoral control of alimentary physiology that were promulgated by William Bayliss and Ernest Starling. The article considers three themes. First, mechanisms that intrinsically regulate chloride secretion, centred on the epidermal growth factor receptor (EGFr), are discussed. These may be important in ensuring that excessive chloride secretion, with the accompanying loss of fluid, is not normally stimulated by intestinal distension as the meal passes through the gastrointestinal tract. Second, mechanisms whereby probiotic microorganisms can impart beneficial effects on the gut are described, with a focus on targets at the level of the epithelium. These findings imply that the commensal microbiota exert important influences on the epithelium in health and disease. Finally, mechanisms that lead to diarrhoea in patients infected with an invasive pathogen, Salmonella, are considered, based on recent studies in a novel mouse model. Diarrhoea is most likely attributable to reduced expression of absorptive transporters and may not require the influx of neutrophils that accompanies infection. Overall, the goal of the article is to highlight the many ways in which critical functions of the intestinal epithelium are regulated under physiological and pathophysiological conditions, and to suggest possible targets for new therapies for digestive disease states.
Collapse
Affiliation(s)
- Kim E Barrett
- Department of Medicine and Biomedical Sciences Ph.D. Program, School of Medicine, University of California, La Jolla, San Diego, CA, USA
| |
Collapse
|
23
|
Miroddi M, Sterrantino C, Simonelli I, Ciminata G, Phillips RS, Calapai G. Risk of grade 3-4 diarrhea and mucositis in colorectal cancer patients receiving anti-EGFR monoclonal antibodies regimens: A meta-analysis of 18 randomized controlled clinical trials. Crit Rev Oncol Hematol 2015; 96:355-71. [PMID: 26160607 DOI: 10.1016/j.critrevonc.2015.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/07/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022] Open
|
24
|
Immune ageing and susceptibility to Streptococcus pneumoniae. Biogerontology 2015; 17:449-65. [DOI: 10.1007/s10522-015-9614-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022]
|
25
|
Calcium oxalate calculi-induced clusterin expression in kidney. Urolithiasis 2015; 43:411-8. [PMID: 25993895 DOI: 10.1007/s00240-015-0785-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 05/12/2015] [Indexed: 12/30/2022]
Abstract
The aim of the study was to investigate clusterin expression in the kidney and evaluate the urine clusterin level in the kidney stone formers. (1) In vitro, we treated the Madin-Darby canine kidney (MDCK) cell line with different concentrations of calcium oxalate (CaOx), and then the clusterin protein expression in the cells was evaluated by Western blotting. (2) Kidney stone patients who received percutaneous nephrolithotomy were enrolled in our study. Urine samples were collected before surgery, the kidney punctured to obtain kidney tissue guided by ultrasound intraoperatively. Clusterin expression in the human kidney tissue was evaluated by immunochemistry. The urine clusterin level was determined by enzyme-linked immunosorbent assay. Non-kidney disease subjects were chosen as controls. In vitro, the clusterin expression was up-regulated in the MDCK cells induced by CaOx. The study included 49 patients and 41 non-kidney disease subjects. All calculi were composed of calcium oxalate monohydrate or calcium oxalate dihydrate and a few also contained protein or uric acid. Mean ± SD urine clusterin level was 17.47 ± 18.61 μg/ml in patients, and 3.31 ± 5.42 μg/ml in non-kidney disease subjects, respectively (p < 0.001). Immunohistochemistry revealed the clusterin was located in the cytoplasm of the renal distal and collecting tubular epithelial cells. Also the tissue clusterin expression increased significantly in the kidney stone formers compared to the control groups (p = 0.001). CaOx could induce clusterin expression in renal tubular cells, and increase clusterin levels in the kidney and urine from the kidney stone formers.
Collapse
|
26
|
Robertson WG. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function. Urolithiasis 2014; 43 Suppl 1:93-107. [PMID: 25407799 DOI: 10.1007/s00240-014-0737-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
This article describes an updated computer model which attempts to simulate known renal reabsorption and secretion activity through the nephron (NEPHROSIM) and its possible relevance to the initiation of calcium-containing renal stones. The model shows that, under certain conditions of plasma composition, de novo nucleation of both calcium oxalate (CaOx) and calcium phosphate (CaP) can take place at the end of the descending limb of the Loop of Henle (DLH), particularly in untreated, recurrent idiopathic CaOx stone-formers (RSF). The model incorporates a number of hydrodynamic factors that may influence the subsequent growth of crystals nucleated at the end of the DLH as they progress down the renal tubules. These include the fact that (a) crystals of either CaOx or CaP nucleated at the end of the DLH and travelling close to the walls of the tubule travel at slower velocities than the fluid flowing at the central axis of the tubule, (b) the transit of CaOx crystals travelling close to the tubule walls may be delayed for up to at least 25 min, during which time the crystals may continue to grow if the relative supersaturation with respect to CaOx (RSS CaOx) is high enough and (c) such CaOx crystals may stop moving or even fall back in upward-draining collecting ducts (CD) owing to the Stokes gravitational effect. The model predicts, firstly, that for small, transient increases in plasma oxalate concentration, crystallisation only takes place in the CD and leads to the formation of small crystals which are comfortably passed in the urine and, secondly, that for slightly greater increases in the filtered load of oxalate, spontaneous and/or heterogeneous nucleation of CaOx may occur both at the end of the DLH and in the CD. This latter situation leads to the passage in the final urine of a mixture of large crystals of CaOx (arising from nucleation at the end of the DLH) and small crystals of CaOx (as a result of nucleation originating in the CD). As a result of the higher calcium and oxalate concentrations in the urine of RSF, these patients have an increased probability of initiating CaOx crystallisation in the DLH and so of going on to form the large crystals and aggregates found in their fresh urines, but not in the fresh urines from normal subjects (N). These predictions are supported by evidence from clinical studies on six RSF and six normal controls (NC) who were maintained for 4 days on a fixed basal diet. Their patterns of CaOx crystalluria were measured on the second day of the basal diet and after a small dose of sodium oxalate was given before breakfast on the fourth day of the study. The model also shows that the tubular fluid of RSF is more likely than that of N to reach the conditions necessary for de novo nucleation of CaP at the end of the DLH. This may occur following either a small increase in ultrafiltrable phosphate, as a result of ingestion of a high phosphate-containing meal, or a small decrease in the proximal tubular reabsorption of phosphate resulting, for example, from increased parathyroid activity. CaP crystals initiated at this point may heterogeneously nucleate the crystallisation of CaOx under the high metastable conditions of RSS CaOx which frequently exist in the urines of RSF. Under certain conditions, it is predicted that CaP crystals, initiated at the end of the DLH and travelling close to the tubular walls where their transit time is increased, might also be able to grow and agglomerate sufficiently to become trapped at some point in the CD and lead to the formation of Randall's Plugs in the Ducts of Bellini. Currently, work is under way to incorporate data on the growth and aggregation of crystals of CaP into NEPHROSIM to confirm the likelihood of this phenomenon occurring. The model shows that an increase in plasma calcium is unlikely to lead to spontaneous nucleation of either CaOx or CaP at the end of the DLH unless the concentration of plasma calcium reaches values usually associated with the cases of primary hyperparathyroidism. The most likely cause of spontaneous CaOx crystal formation at the end of the DLH is a small increase in plasma oxalate; the most likely cause of spontaneous CaP crystal formation at the end of the DLH is either an increase in plasma phosphate or a decrease in the fractional reabsorption of phosphate in the proximal tubule. The model predicts that the maximum volume of CaOx crystalluria that is likely to occur in a given urine is a function of both the RSS CaOx and the oxalate/calcium ratio in the final urine. These data explain why the volume of CaOx crystalluria is in the order UK normals < UK recurrent stone-formers < Saudi Arabian recurrent stone-formers which, in turn, probably accounts for the very high incidence of CaOx-containing stones found in Saudi Arabia compared with that in the UK.
Collapse
Affiliation(s)
- W G Robertson
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK,
| |
Collapse
|
27
|
Protein modeling and molecular dynamics simulation of the two novel surfactant proteins SP-G and SP-H. J Mol Model 2014; 20:2513. [PMID: 25381619 PMCID: PMC7101549 DOI: 10.1007/s00894-014-2513-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/21/2014] [Indexed: 11/14/2022]
Abstract
Surfactant proteins are well known from the human lung where they are responsible for the stability and flexibility of the pulmonary surfactant system. They are able to influence the surface tension of the gas–liquid interface specifically by directly interacting with single lipids. This work describes the generation of reliable protein structure models to support the experimental characterization of two novel putative surfactant proteins called SP-G and SP-H. The obtained protein models were complemented by predicted posttranslational modifications and placed in a lipid model system mimicking the pulmonary surface. Molecular dynamics simulations of these protein-lipid systems showed the stability of the protein models and the formation of interactions between protein surface and lipid head groups on an atomic scale. Thereby, interaction interface and strength seem to be dependent on orientation and posttranslational modification of the protein. The here presented modeling was fundamental for experimental localization studies and the simulations showed that SP-G and SP-H are theoretically able to interact with lipid systems and thus are members of the surfactant protein family.
Collapse
|
28
|
Xie R, Dong X, Wong C, Vallon V, Tang B, Sun J, Yang S, Dong H. Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. J Biol Chem 2014; 289:34642-53. [PMID: 25331955 DOI: 10.1074/jbc.m114.592774] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca(2+) signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca(2+) signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca(2+) ([Ca(2+)]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca(2+)]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd(3+), two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca(2+)-activated K(+) channels but not chromanol 293B, a selective blocker of cAMP-activated K(+) channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 (-) fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 (-) fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca(2+)]cyt, which was abolished in Ca(2+)-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca(2+)-dependent DBS, likely through the ROC, intermediate conductance Ca(2+)-activated K(+) channels, and CFTR channels. This study not only reveals that [Ca(2+)]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca(2+)-induced DBS.
Collapse
Affiliation(s)
- Rui Xie
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, the Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi 563003, China, and
| | - Xiao Dong
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Chase Wong
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Volker Vallon
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093, the Veterans Affairs San Diego Healthcare System, La Jolla, California 92161
| | - Bo Tang
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jun Sun
- the Departments of Biochemistry, Internal Medicine (GI), and Microbiology/Immunology, Rush University, Chicago, Illinois 60612
| | - Shiming Yang
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China,
| | - Hui Dong
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, the Department of Medicine, University of California, San Diego, La Jolla, California 92093,
| |
Collapse
|
29
|
Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE. Mechanisms of human kidney stone formation. Urolithiasis 2014; 43 Suppl 1:19-32. [PMID: 25108546 DOI: 10.1007/s00240-014-0701-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 01/08/2023]
Abstract
The precise mechanisms of kidney stone formation and growth are not completely known, even though human stone disease appears to be one of the oldest diseases known to medicine. With the advent of the new digital endoscope and detailed renal physiological studies performed on well phenotyped stone formers, substantial advances have been made in our knowledge of the pathogenesis of the most common type of stone former, the idiopathic calcium oxalate stone former as well as nine other stone forming groups. The observations from our group on human stone formers and those of others on model systems have suggested four entirely different pathways for kidney stone formation. Calcium oxalate stone growth over sites of Randall's plaque appear to be the primary mode of stone formation for those patients with hypercalciuria. Overgrowths off the ends of Bellini duct plugs have been noted in most stone phenotypes, do they result in a clinical stone? Micro-lith formation does occur within the lumens of dilated inner medullary collecting ducts of cystinuric stone formers and appear to be confined to this space. Lastly, cystinuric stone formers also have numerous small, oval, smooth yellow appearing calyceal stones suggestive of formation in free solution. The scientific basis for each of these four modes of stone formation are reviewed and used to explore novel research opportunities.
Collapse
Affiliation(s)
- Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 5055, Indianapolis, IN, 46220, USA,
| | | | | | | | | |
Collapse
|
30
|
Singhto N, Sintiprungrat K, Thongboonkerd V. Alterations in Macrophage Cellular Proteome Induced by Calcium Oxalate Crystals: The Association of HSP90 and F-Actin Is Important for Phagosome Formation. J Proteome Res 2013; 12:3561-72. [DOI: 10.1021/pr4004097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nilubon Singhto
- Medical Proteomics
Unit, Office
for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology and
Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kitisak Sintiprungrat
- Medical Proteomics
Unit, Office
for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology and
Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics
Unit, Office
for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center for Research in Complex
Systems Science, Mahidol University, Bangkok,
Thailand
| |
Collapse
|
31
|
Macropinocytosis is the Major Mechanism for Endocytosis of Calcium Oxalate Crystals into Renal Tubular Cells. Cell Biochem Biophys 2013; 67:1171-9. [DOI: 10.1007/s12013-013-9630-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Laver JR, McLean S, Bowman LAH, Harrison LJ, Read RC, Poole RK. Nitrosothiols in bacterial pathogens and pathogenesis. Antioxid Redox Signal 2013; 18:309-22. [PMID: 22768799 DOI: 10.1089/ars.2012.4767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The formation and degradation of S-nitrosothiols (SNOs) are important mechanisms of post-translational protein modification and appear to be ubiquitous in biology. These processes play well-characterized roles in eukaryotic cells, including a variety of pathologies and in relation to chronic conditions. We know little of the roles of these processes in pathogenic and other bacteria. RECENT ADVANCES It is clear, mostly from growth and transcriptional studies, that bacteria sense and respond to exogenous SNOs. These responses are phenotypically and mechanistically distinct from the responses of bacteria to nitric oxide (NO) and NO-releasing agents, as well as peroxynitrite. Small SNOs, such as S-nitrosoglutathione (GSNO), are accumulated by bacteria with the result that intracellular S-nitrosoproteins (the 'S-nitrosoproteome') are detectable. Recently, conditions for endogenous SNO formation in enterobacteria have been described. CRITICAL ISSUES The propensity of intracellular proteins to form SNOs is presumably constrained by the same rules of selectivity that have been discovered in eukaryotic systems, but is also influenced by uniquely bacterial NO detoxification systems, exemplified by the flavohemoglobin Hmp in enterobacteria and NO reductase of meningococci. Furthermore, the bacterial expression of such proteins impacts upon the formation of SNOs in mammalian hosts. FUTURE DIRECTIONS The impairment during bacterial infections of specific SNO events in the mammalian host is of considerable interest in the context of proteins involved in innate immunity and intracellular signalling. In bacteria, numerous mechanisms of S-nitrosothiol degradation have been reported (e.g., GSNO reductase); others are thought to operate, based on consideration of their mammalian counterparts. The nitrosothiols of bacteria and particularly of pathogens warrant more intensive investigation.
Collapse
Affiliation(s)
- Jay R Laver
- Department of Infection and Immunity, The University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Schleh C, Holzwarth U, Hirn S, Wenk A, Simonelli F, Schäffler M, Möller W, Gibson N, Kreyling WG. Biodistribution of inhaled gold nanoparticles in mice and the influence of surfactant protein D. J Aerosol Med Pulm Drug Deliv 2012; 26:24-30. [PMID: 22856532 DOI: 10.1089/jamp.2011.0951] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The pulmonary route is very promising for drug delivery by inhalation. In this regard, nanoparticulate drug delivery systems are discussed, and one very promising nano carrier example is gold nanoparticles (Au NP). Directly after their deposition, inhaled Au NP come into contact with pulmonary surfactant protein D (SP-D). SP-D can agglomerate Au NP in vitro, and this may influence the clearance as well as the systemic translocation in vivo. The aim of the present study was to investigate the clearance and translocation of Au NP at a very early time point after inhalation, as well as the influence of SP-D. METHODS Aerosolized 20-nm radioactively labeled Au NP were inhaled by healthy adult female mice. One group of mice received dissolved 10 μg of SP-D by intratracheal instillation prior to the Au NP inhalation. After a 2-hr Au NP inhalation period, the mice were killed immediately, and the clearance and translocation to the blood stream were investigated. RESULTS The highest amount of Au NP was associated with the lung tissue. In the bronchoalveolar lavage fluid (BALF), more Au NP remained free compared with the amount associated with the BALF cells. The amount of Au NP cleared by the mucociliary escalator was low, probably because of this very early time point. Instillation of SP-D prior to Au NP inhalation had no statistically significant effect on the biodistribution of the Au NP. CONCLUSION Our data show that inhaled Au NP are retained in the mouse lungs and are translocated after a short time, and that SP-D has only a minor effect on Au NP translocation and clearance at a very early time point.
Collapse
Affiliation(s)
- Carsten Schleh
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease and Focus Network NP and Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstäädter Landstraße 1, Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chaiyarit S, Thongboonkerd V. Changes in Mitochondrial Proteome of Renal Tubular Cells Induced by Calcium Oxalate Monohydrate Crystal Adhesion and Internalization Are Related to Mitochondrial Dysfunction. J Proteome Res 2012; 11:3269-80. [PMID: 22512661 DOI: 10.1021/pr300018c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office
for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center for Research in Complex
Systems Science, Mahidol University, Bangkok,
Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office
for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center for Research in Complex
Systems Science, Mahidol University, Bangkok,
Thailand
| |
Collapse
|
35
|
Manshian BB, Jenkins GJS, Williams PM, Wright C, Barron AR, Brown AP, Hondow N, Dunstan PR, Rickman R, Brady K, Doak SH. Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology 2012; 7:144-56. [DOI: 10.3109/17435390.2011.647928] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Human umbilical vein endothelial cells accelerate oxalate-induced apoptosis of human renal proximal tubule epithelial cells in co-culture system which is prevented by pyrrolidine dithiocarbamate. ACTA ACUST UNITED AC 2012; 40:461-6. [PMID: 22223028 DOI: 10.1007/s00240-011-0450-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/20/2011] [Indexed: 12/25/2022]
Abstract
Oxalate is the most common component of kidney stones and elevated urinary levels induce renal tubular cell toxicity and death which is essential for crystal attachment. Endothelial cells, in some studies have been shown to regulate certain functions of renal proximal tubule cells. The aim of this study was to evaluate the effect of endothelial cells on tubular cell apoptosis in a co-culture system mimicking the in vivo renal physiological settings. The human umbilical vein endothelial cells (HUVEC) and human renal proximal tubule epithelial cells (RPTEC) were exposed to increasing concentrations (0-1.0 mM) of oxalate with or without 10 μM PDTC pretreatment for 24 h. In HUVEC, RPTEC and HUVEC-RPTEC co-cultures, the cell viability was measured using the WST-1 assay and cell death with the TUNEL analysis using the flow cytometry. The treatment of RPTECs with oxalate lead to 8.9-26.2% cell death which was reduced to 0-1.6% with the PDTC pretreatment. The death rate of RPTECs was significantly increased by 15-19% at different oxalate concentrations when co-cultured with HUVECs. In contrast, cell viability was not substantially altered in PDTC pretreated RPTECs that were co-cultured with HUVECs. Apoptosis was the way of cell death as similar rate of apoptosis was observed in cell culture systems. Although cell viability of RPTECs was further reduced when co-cultured with HUVECs, it was restored with the pretreatment of PDTC. This is the first study focusing on the role of endothelial cells on RPTEC apoptosis following hyperoxaluria.
Collapse
|
37
|
Paul G, Marchelletta RR, McCole DF, Barrett KE. Interferon-γ alters downstream signaling originating from epidermal growth factor receptor in intestinal epithelial cells: functional consequences for ion transport. J Biol Chem 2011; 287:2144-55. [PMID: 22069319 DOI: 10.1074/jbc.m111.318139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFr) regulates many cellular functions, such as proliferation, apoptosis, and ion transport. Our aim was to investigate whether long term treatment with interferon-γ (IFN-γ) modulates EGF activation of downstream signaling pathways in intestinal epithelial cells and if this contributes to dysregulation of epithelial ion transport in inflammation. Polarized monolayers of T(84) and HT29/cl.19A colonocytes were preincubated with IFN-γ prior to stimulation with EGF. Basolateral potassium transport was studied in Ussing chambers. We also studied inflamed colonic mucosae from C57BL/6 mice treated with dextran sulfate sodium or mdr1a knock-out mice and controls. IFN-γ increased intestinal epithelial EGFr expression without increasing its phosphorylation. Conversely, IFN-γ caused a significant decrease in EGF-stimulated phosphorylation of specific EGFr tyrosine residues and activation of ERK but not Akt-1. In IFNγ-pretreated cells, the inhibitory effect of EGF on carbachol-stimulated K(+) channel activity was lost. In inflamed colonic tissues, EGFr expression was significantly increased, whereas ERK phosphorylation was reduced. Thus, although it up-regulates EGFr expression, IFN-γ causes defective EGFr activation in colonic epithelial cells via reduced phosphorylation of specific EGFr tyrosine residues. This probably accounts for altered downstream signaling consequences. These observations were corroborated in the setting of colitis. IFN-γ also abrogates the ability of EGF to inhibit carbachol-stimulated basolateral K(+) currents. Our data suggest that, in the setting of inflammation, the biological effect of EGF, including the inhibitory effect of EGF on Ca(2+)-dependent ion transport, is altered, perhaps contributing to diarrheal and other symptoms in vivo.
Collapse
Affiliation(s)
- Gisela Paul
- Division of Gastroenterology, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
38
|
Crouch E, Nikolaidis N, McCormack FX, McDonald B, Allen K, Rynkiewicz MJ, Cafarella TM, White M, Lewnard K, Leymarie N, Zaia J, Seaton BA, Hartshorn KL. Mutagenesis of surfactant protein D informed by evolution and x-ray crystallography enhances defenses against influenza A virus in vivo. J Biol Chem 2011; 286:40681-92. [PMID: 21965658 DOI: 10.1074/jbc.m111.300673] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recognition of influenza A virus (IAV) by surfactant protein D (SP-D) is mediated by interactions between the SP-D carbohydrate recognition domains (CRD) and glycans displayed on envelope glycoproteins. Although native human SP-D shows potent antiviral and aggregating activity, trimeric recombinant neck+CRDs (NCRDs) show little or no capacity to influence IAV infection. A mutant trimeric NCRD, D325A/R343V, showed marked hemagglutination inhibition and viral neutralization, with viral aggregation and aggregation-dependent viral uptake by neutrophils. D325A/R343V exhibited glucose-sensitive binding to Phil82 hemagglutinin trimer (HA) by surface plasmon resonance. By contrast, there was very low binding to the HA trimer from another virus (PR8) that lacks glycans on the HA head. Mass spectrometry demonstrated the presence of high mannose glycans on the Phil82 HA at positions known to contribute to IAV binding. Molecular modeling predicted an enhanced capacity for bridging interactions between HA glycans and D325A/R343V. Finally, the trimeric D325A/R343V NCRD decreased morbidity and increased viral clearance in a murine model of IAV infection using a reassortant A/WSN/33 virus with a more heavily glycosylated HA. The combined data support a model in which altered binding by a truncated mutant SP-D to IAV HA glycans facilitates viral aggregation, leading to significant viral neutralization in vitro and in vivo. These studies demonstrate the potential utility of homology modeling and protein structure analysis for engineering effective collectin antivirals as in vivo therapeutics.
Collapse
Affiliation(s)
- Erika Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thurgood LA, Sørensen ES, Ryall RL. The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells. ACTA ACUST UNITED AC 2011; 40:1-15. [PMID: 21932131 DOI: 10.1007/s00240-011-0423-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/22/2011] [Indexed: 01/12/2023]
Abstract
In vivo, urinary crystals are associated with proteins located within the mineral bulk as well as upon their surfaces. Proteins incarcerated within the mineral phase of retained crystals could act as a defence against urolithiasis by rendering them more vulnerable to destruction by intracellular and interstitial proteases. The aim of this study was to examine the effects of intracrystalline and surface-bound osteopontin (OPN) on the degradation and dissolution of urinary calcium oxalate dihydrate (COD) crystals in cultured Madin Darby canine kidney (MDCK) cells. [(14)C]-oxalate-labelled COD crystals with intracrystalline (IC), surface-bound (SB) and IC + SB OPN, were generated from ultrafiltered (UF) urine containing 0, 1 and 5 mg/L human milk OPN and incubated with MDCKII cells, using UF urine as the binding medium. Crystal size and degradation were assessed using field emission scanning electron microscopy (FESEM) and dissolution was quantified by the release of radioactivity into the culture medium. Crystal size decreased directly with OPN concentration. FESEM examination indicated that crystals covered with SB OPN were more resistant to cellular degradation than those containing IC OPN, whose degree of disruption appeared to be related to OPN concentration. Whether bound to the crystal surface or incarcerated within the mineral interior, OPN inhibited crystal dissolution in direct proportion to its concentration. Under physiological conditions OPN may routinely protect against stone formation by inhibiting the growth of COD crystals, which would encourage their excretion in urine and thereby perhaps partly explain why, compared with calcium oxalate monohydrate crystals, COD crystals are more prevalent in urine, but less common in kidney stones.
Collapse
Affiliation(s)
- Lauren A Thurgood
- Urology Unit, Department of Surgery, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia
| | | | | |
Collapse
|
40
|
Khan SR, Glenton PA. Experimentally induced hyperoxaluria in MCP-1 null mice. UROLOGICAL RESEARCH 2011; 39:253-8. [PMID: 21161647 PMCID: PMC3089659 DOI: 10.1007/s00240-010-0345-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Experimental animal model studies suggest that calcium oxalate (CaOx) crystal deposition in the kidneys is associated with the development of oxidative stress, epithelial injury and inflammation. There is increased production of inflammatory molecules including osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1) and various subunits of inter-alpha-inhibitor such as bikunin. What does the increased production of such molecules suggest? Is it a cause or consequence of crystal deposition? We hypothesized that over-expression and increased production of MCP-1 is a result of the interaction between renal epithelial cells and CaOx crystals after their deposition in the renal tubules. We induced hyperoxaluria in MCP-1 null as well as wild type mice and examined pathological changes in their kidneys and urine. Both wild type and MCP-1 null male mice became hyperoxaluric and demonstrated CaOx crystalluria. Neither of them developed crystal deposits in their kidneys. Both showed some morphological changes in their renal proximal tubules. Significant pathological changes such as cell death and increased urinary excretion of LDH were not seen. Results suggest that at least in mice (1) Increase in oxalate and decrease in citrate excretion can lead to CaOx crystalluria but not CaOx nephrolithiasis; (2) MCP-1 does not play a role in crystal retention within the kidneys; (3) Expression of OPN and MCP-1 is not increased in the kidneys in the absence of crystal deposition; (4) Crystal deposition is necessary for significant pathological changes and movement of monocytes and macrophages into the interstitium.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Investigation, College of Medicine, University of Florida, Box 100275, Gainesville, FL 32610, USA.
| | | |
Collapse
|
41
|
Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2010; 2:2132-57. [PMID: 22069677 PMCID: PMC3153279 DOI: 10.3390/toxins2082132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects.
Collapse
|
42
|
Atochina-Vasserman EN, Beers MF, Gow AJ. Review: Chemical and structural modifications of pulmonary collectins and their functional consequences. Innate Immun 2010; 16:175-82. [PMID: 20423921 PMCID: PMC4361894 DOI: 10.1177/1753425910368871] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The lung is continuously exposed to inhaled pathogens (toxic pollutants, micro-organisms, environmental antigens, allergens) from the external environment. In the broncho-alveolar space, the critical balance between a measured protective response against harmful pathogens and an inappropriate inflammatory response to harmless particles is discerned by the innate pulmonary immune system. Among its many components, the surfactant proteins and specifically the pulmonary collectins (surfactant proteins A [SP-A] and D [SP-D]) appear to provide important contributions to the modulation of host defense and inflammation in the lung. Many studies have shown that multimerization of SP-A and SP-D are important for efficient local host defense including neutralization and opsonization of influenza A virus, binding Pneumocystis murina and inhibition of LPS-induced inflammatory cell responses. These observations strongly imply that oligomerization of collectins is a critical feature of its function. However, during the inflammatory state, despite normal pool sizes, chemical modification of collectins can result in alteration of their structure and function. Both pulmonary collectins can be altered through proteolytic inactivation, nitration, S-nitrosylation, oxidation and/or crosslinking as a consequence of the inflammatory milieu facilitated by cytokines, nitric oxide, proteases, and other chemical mediators released by inflammatory cells. Thus, this review will summarize recent developments in our understanding of the relationship between post-translational assembly of collectins and their modification by inflammation as an important molecular switch for the regulation of local innate host defense.
Collapse
|
43
|
Hoque KM, Woodward OM, van Rossum DB, Zachos NC, Chen L, Leung GPH, Guggino WB, Guggino SE, Tse CM. Epac1 mediates protein kinase A-independent mechanism of forskolin-activated intestinal chloride secretion. ACTA ACUST UNITED AC 2010; 135:43-58. [PMID: 20038525 PMCID: PMC2806414 DOI: 10.1085/jgp.200910339] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intestinal Cl− secretion is stimulated by cyclic AMP (cAMP) and intracellular calcium ([Ca2+]i). Recent studies show that protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) are downstream targets of cAMP. Therefore, we tested whether both PKA and Epac are involved in forskolin (FSK)/cAMP-stimulated Cl− secretion. Human intestinal T84 cells and mouse small intestine were used for short circuit current (Isc) measurement in response to agonist-stimulated Cl− secretion. FSK-stimulated Cl− secretion was completely inhibited by the additive effects of the PKA inhibitor, H89 (1 µM), and the [Ca2+]i chelator, 1,2-bis-(o-aminophenoxy)-ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM; 25 µM). Both FSK and the Epac activator 8-pCPT-2’-O-Me-cAMP (50 µM) elevated [Ca2+]i, activated Ras-related protein 2, and induced Cl− secretion in intact or basolateral membrane–permeabilized T84 cells and mouse ileal sheets. The effects of 8-pCPT-2’-O-Me-cAMP were completely abolished by BAPTA-AM, but not by H89. In contrast, T84 cells with silenced Epac1 had a reduced Isc response to FSK, and this response was completely inhibited by H89, but not by the phospholipase C inhibitor U73122 or BAPTA-AM. The stimulatory effect of 8-pCPT-2’-O-Me-cAMP on Cl− secretion was not abolished by cystic fibrosis transmembrane conductance (CFTR) inhibitor 172 or glibenclamide, suggesting that CFTR channels are not involved. This was confirmed by lack of effect of 8-pCPT-2’-O-Me-cAMP on whole cell patch clamp recordings of CFTR currents in Chinese hamster ovary cells transiently expressing the human CFTR channel. Furthermore, biophysical characterization of the Epac1-dependent Cl− conductance of T84 cells mounted in Ussing chambers suggested that this conductance was hyperpolarization activated, inwardly rectifying, and displayed a Cl−>Br−>I− permeability sequence. These results led us to conclude that the Epac-Rap-PLC-[Ca2+]i signaling pathway is involved in cAMP-stimulated Cl− secretion, which is carried by a novel, previously undescribed Cl− channel.
Collapse
Affiliation(s)
- Kazi Mirajul Hoque
- Department of Medicine, GI Division, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sawada K, Ariki S, Kojima T, Saito A, Yamazoe M, Nishitani C, Shimizu T, Takahashi M, Mitsuzawa H, Yokota SI, Sawada N, Fujii N, Takahashi H, Kuroki Y. Pulmonary collectins protect macrophages against pore-forming activity of Legionella pneumophila and suppress its intracellular growth. J Biol Chem 2010; 285:8434-43. [PMID: 20056602 DOI: 10.1074/jbc.m109.074765] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), play important roles in innate immunity of the lung. Legionella pneumophila is a bacterial respiratory pathogen that can replicate within macrophages and causes opportunistic infections. L. pneumophila possesses cytolytic activity, resulting from insertion of pores in the macrophage membrane upon contact. We examined whether pulmonary collectins play protective roles against L. pneumophila infection. SP-A and SP-D bound to L. pneumophila and its lipopolysaccharide (LPS) and inhibited the bacterial growth in a Ca(2+)-dependent manner. The addition of LPS in the culture blocked the inhibitory effects on L. pneumophila growth by the collectins, indicating the importance of LPS-collectin interaction. When differentiated THP-1 cells were infected with L. pneumophila in the presence of SP-A and SP-D, the number of permeable cells was significantly decreased, indicating that pulmonary collectins inhibit pore-forming activity of L. pneumophila. The number of live bacteria within the macrophages on days 1-4 after infection was significantly decreased when infection was performed in the presence of pulmonary collectins. The phagocytosis experiments with the pH-sensitive dye-labeled bacteria revealed that pulmonary collectins promoted bacterial localization to an acidic compartment. In addition, SP-A and SP-D significantly increased the number of L. pneumophila co-localized with LAMP-1. These results indicate that pulmonary collectins protect macrophages against contact-dependent cytolytic activity of L. pneumophila and suppress intracellular growth of the phagocytosed bacteria. The promotion of lysosomal fusion with Legionella-containing phagosomes constitutes a likely mechanism of L. pneumophila growth suppression by the collectins.
Collapse
Affiliation(s)
- Kaku Sawada
- Departments of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Johnson LN, Koval M. Cross-talk between pulmonary injury, oxidant stress, and gap junctional communication. Antioxid Redox Signal 2009; 11:355-67. [PMID: 18816185 PMCID: PMC2933150 DOI: 10.1089/ars.2008.2183] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 01/11/2023]
Abstract
Gap junction channels interconnect several different types of cells in the lung, ranging from the alveolar epithelium to the pulmonary vasculature, each of which expresses a unique subset of gap junction proteins (connexins). Major lung functions regulated by gap junctional communication include coordination of ciliary beat frequency and inflammation. Gap junctions help enable the alveolus to regulate surfactant secretion as an integrated system, in which type I cells act as mechanical sensors that transmit calcium transients to type II cells. Thus, disruption of epithelial gap junctional communication, particularly during acute lung injury, can interfere with these processes and increase the severity of injury. Consistent with this, connexin expression is altered during lung injury, and connexin-deficiency has a negative impact on the injury response and lung-growth control. It has recently been shown that alcohol abuse is a significant risk factor associated with acute respiratory distress syndrome. Oxidant stress and hormone-signaling cascades in the lung induced by prolonged alcohol ingestion are discussed, as well as the effects of these pathways on connexin expression and function.
Collapse
Affiliation(s)
- Latoya N Johnson
- Division of Pulmonary, Allergy and Critical Care Medicine, and Emory Alcohol and Lung Biology Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
46
|
Crisi GM, Marconi SA, Rockwell GF, Braden GL, Campfield TJ. Immuno-localization of CD44 and osteopontin in developing human kidney. Pediatr Res 2009; 65:79-84. [PMID: 18787423 DOI: 10.1203/pdr.0b013e31818912b7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CD44 is observed in ureteric bud structures and is implicated in branching morphogenesis during early mouse renal development. Healthy adult kidney demonstrates minimal CD44, but CD44 is up-regulated in renal diseases. CD44 may mediate binding of calcium oxalate crystals to tubular epithelia via the ligands osteopontin (OPN) and hyaluronan. Because 15% of premature infants develop nephrocalcinosis, developmental tubular CD44 expression might promote nephrocalcinosis. We studied CD44 and OPN immuno-localization in developing human kidney by immunohistochemical analysis. Human renal tissue between 18 and 40 wk of gestation showed CD44 immuno-localization in ureteric buds, with staining decreasing with increasing gestational age; CD44 was rarely observed in developing renal tubules. OPN was diffusely observed in proximal tubules, rarely observed in distal tubules, ureteric buds or metanephric structures. These data support the role of CD44 in early human nephron formation and branching morphogenesis. Rare CD44 staining in developing tubular epithelium suggests no role for CD44 in promoting calcium oxalate adherence to tubular epithelia in premature infants. Immuno-localization of OPN in tubules supports its role in tubular differentiation, but OPN does not seem to be necessary during early nephron formation.
Collapse
Affiliation(s)
- Giovanna M Crisi
- Department of Pathology, Baystate Medical Center, Springfield, MA 01199, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
47
|
White M, Kingma P, Tecle T, Kacak N, Linders B, Heuser J, Crouch E, Hartshorn K. Multimerization of Surfactant Protein D, but Not Its Collagen Domain, Is Required for Antiviral and Opsonic Activities Related to Influenza Virus. THE JOURNAL OF IMMUNOLOGY 2008; 181:7936-43. [DOI: 10.4049/jimmunol.181.11.7936] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Smith A, Contreras C, Ko KH, Chow J, Dong X, Tuo B, Zhang HH, Chen DB, Dong H. Gender-specific protection of estrogen against gastric acid-induced duodenal injury: stimulation of duodenal mucosal bicarbonate secretion. Endocrinology 2008; 149:4554-66. [PMID: 18499763 PMCID: PMC2553385 DOI: 10.1210/en.2007-1597] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Because human duodenal mucosal bicarbonate secretion (DMBS) protects duodenum against acid-peptic injury, we hypothesize that estrogen stimulates DMBS, thereby attributing to the clinically observed lower incidence of duodenal ulcer in premenopausal women than the age-matched men. We found that basal and acid-stimulated DMBS responses were 1.5 and 2.4-fold higher in female than male mice in vivo, respectively. Acid-stimulated DMBS in both genders was abolished by ICI 182,780 and tamoxifen. Estradiol-17beta (E2) and the selective estrogen receptor (ER) agonists of ERalpha [1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole] and ERbeta [2,3-bis(4-hydroxyphenyl) propionitrile], but not progesterone, rapidly stimulated ER-dependent murine DMBS in vivo. E2 dose dependently stimulated murine DMBS, which was attenuated by a Cl(-)/HCO3(-) anion exchanger inhibitor 4,4'-didsothio- cyanostilbene-2, 2'-disulfonic acid, removal of extracellular Cl(-), and in cystic fibrosis transmembrane conductance regulator knockout female mice. E2 stimulated murine DMBS in vitro in both genders with significantly greater response in female than male mice (female to male ratio = 4.3). ERalpha and ERbeta mRNAs and proteins were detected in murine duodenal epithelium of both genders; however, neither ERalpha nor ERbeta mRNA and protein expression levels differed according to gender. E2 rapidly mobilized intracellular calcium in a duodenal epithelial SCBN cell line that expresses ERalpha and ERbeta, whereas BAPTA-AM abolished E2-stimulated murine DMBS. Thus, our data show that E2 stimulates DMBS via ER dependent mechanisms linked to intracellular calcium, cystic fibrosis transmembrane conductance regulator, and Cl(-)/HCO3(-) anion exchanger. Gender-associated differences in basal, acid- and E2-stimulated DMBS may have offered a reasonable explanation for the clinically observed lower incidence of duodenal ulcer in premenopausal women than age-matched men.
Collapse
Affiliation(s)
- Anders Smith
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V. Altered Proteins in MDCK Renal Tubular Cells in Response to Calcium Oxalate Dihydrate Crystal Adhesion: A Proteomics Approach. J Proteome Res 2008; 7:2889-96. [DOI: 10.1021/pr800113k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Theptida Semangoen
- Medical Proteomics Unit and Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Supachok Sinchaikul
- Medical Proteomics Unit and Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shui-Tein Chen
- Medical Proteomics Unit and Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Visith Thongboonkerd
- Medical Proteomics Unit and Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
Ooi EH, Wormald PJ, Tan LW. Innate immunity in the paranasal sinuses: a review of nasal host defenses. ACTA ACUST UNITED AC 2008; 22:13-9. [PMID: 18284853 DOI: 10.2500/ajr.2008.22.3127] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a common inflammatory disorder of the paranasal sinuses. An abnormal host response to common bacterial or fungal pathogens is thought to be an important factor in the disease process. Host sinonasal epithelium plays an important role in initially recognizing the presence of microbes and responding by increasing production of antimicrobial peptides and cytokines, with recruitment of phagocytes and lymphocytes of the adaptive immune system, to eliminate the infection. Recently, the innate immune system and its complex interplay with the adaptive immune system are increasingly being recognized as important in the pathogenesis of chronic inflammatory diseases such as asthma and CRS. METHODS Review of recent findings on innate immunity in the pathogenesis of CRS. RESULTS New areas of research into potentially novel therapies for CRS are highlighted in this review, with emphasis on toll-like receptors, antimicrobial peptides (cathelicidins and defensins), and surfactant proteins. CONCLUSION This review provides an overview of innate immunity in the sinonasal tract and discusses potential use of innate immune peptides as treatments against fungi, biofilms, and superantigens in CRS.
Collapse
Affiliation(s)
- Eng Hooi Ooi
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, The University of Adelaide, South Australia, Australia
| | | | | |
Collapse
|