1
|
Kamran SA, Moghnieh H, Hossain KF, Bartlett A, Tavakkoli A, Drumm BT, Sanders KM, Baker SA. Automated denoising software for calcium imaging signals using deep learning. Heliyon 2024; 10:e39574. [PMID: 39524741 PMCID: PMC11546308 DOI: 10.1016/j.heliyon.2024.e39574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Dynamic Ca2+ signaling is crucial for cell survival and death, and Ca2+ imaging approaches are commonly used to study and measure cellular Ca2+ patterns within cells. However, the presence of image noise from instrumentation and experimentation protocols can impede the accurate extraction of Ca2+ signals. Removing noise from Ca2+ Spatio-Temporal Maps (STMaps) is essential for precisely analyzing Ca2+ datasets. Current methods for denoising STMaps can be time-consuming and subjective and rely mainly on image processing protocols. To address this, we developed CalDenoise, an automated software that employs robust image processing and deep learning models to remove noise and enhance Ca2+ signals in STMaps effectively. CalDenoise integrates four pipelines capable of efficiently removing salt-and-pepper, impulsive, and periodic noise and detecting and removing background noise. Comprising both an image-processing-based pipeline and three generative-adversarial-network-based (GAN) deep learning models, CalDenoise proficiently removes complex noise patterns. The software features adjustable parameters to enhance accuracy and is integrated into a user-friendly graphical interface for easy access and streamlined usage. CalDenoise can serve as a robust platform for denoising complex dynamic fluorescence signal images across diverse cell types, including Ca2+, voltage, ions, and pH signals.
Collapse
Affiliation(s)
- Sharif Amit Kamran
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
- Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA
| | - Hussein Moghnieh
- Department of Electrical and Computer Engineering], McGill University, Montréal, Québec, H3A 0E9, Canada
| | | | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Alireza Tavakkoli
- Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA
| | - Bernard T. Drumm
- Department of Life & Health Science, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Salah A. Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
2
|
Yuan Y, Arige V, Saito R, Mu Q, Brailoiu GC, Pereira GJS, Bolsover SR, Keller M, Bracher F, Grimm C, Brailoiu E, Marchant JS, Yule DI, Patel S. Two-pore channel-2 and inositol trisphosphate receptors coordinate Ca 2+ signals between lysosomes and the endoplasmic reticulum. Cell Rep 2024; 43:113628. [PMID: 38160394 PMCID: PMC10931537 DOI: 10.1016/j.celrep.2023.113628] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Lysosomes and the endoplasmic reticulum (ER) are Ca2+ stores mobilized by the second messengers NAADP and IP3, respectively. Here, we establish Ca2+ signals between the two sources as fundamental building blocks that couple local release to global changes in Ca2+. Cell-wide Ca2+ signals evoked by activation of endogenous NAADP-sensitive channels on lysosomes comprise both local and global components and exhibit a major dependence on ER Ca2+ despite their lysosomal origin. Knockout of ER IP3 receptor channels delays these signals, whereas expression of lysosomal TPC2 channels accelerates them. High-resolution Ca2+ imaging reveals elementary events upon TPC2 opening and signals coupled to IP3 receptors. Biasing TPC2 activation to a Ca2+-permeable state sensitizes local Ca2+ signals to IP3. This increases the potency of a physiological agonist to evoke global Ca2+ signals and activate a downstream target. Our data provide a conceptual framework to understand how Ca2+ release from physically separated stores is coordinated.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Ryo Saito
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK; Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Qianru Mu
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Gabriela C Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, 901 Walnut Street, Philadelphia, PA 19107, USA
| | - Gustavo J S Pereira
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Stephen R Bolsover
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Marco Keller
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilian University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Franz Bracher
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilian University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Nussbaumstrasse 26, 80336 Munich, Germany; Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Eugen Brailoiu
- Department of Neural Sciences and Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|
3
|
Zhong L, Gleason EL. Adenylate Cyclase 1 Links Calcium Signaling to CFTR-Dependent Cytosolic Chloride Elevations in Chick Amacrine Cells. Front Cell Neurosci 2021; 15:726605. [PMID: 34456687 PMCID: PMC8385318 DOI: 10.3389/fncel.2021.726605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
The strength and sign of synapses involving ionotropic GABA and glycine receptors are dependent upon the Cl- gradient. We have shown that nitric oxide (NO) elicits the release of Cl- from internal acidic stores in retinal amacrine cells (ACs); temporarily altering the Cl- gradient and the strength or even sign of incoming GABAergic or glycinergic synapses. The underlying mechanism for this effect of NO requires the cystic fibrosis transmembrane regulator (CFTR) but the link between NO and CFTR activation has not been determined. Here, we test the hypothesis that NO-dependent Ca2+ elevations activate the Ca2+-dependent adenylate cyclase 1 (AdC1) leading to activation of protein kinase A (PKA) whose activity is known to open the CFTR channel. Using the reversal potential of GABA-gated currents to monitor cytosolic Cl-, we established the requirement for Ca2+ elevations. Inhibitors of AdC1 suppressed the NO-dependent increases in cytosolic Cl- whereas inhibitors of other AdC subtypes were ineffective suggesting that AdC1 is involved. Inhibition of PKA also suppressed the action of NO. To address the sufficiency of this pathway in linking NO to elevations in cytosolic Cl-, GABA-gated currents were measured under internal and external zero Cl- conditions to isolate the internal Cl- store. Activators of the cAMP pathway were less effective than NO in producing GABA-gated currents. However, coupling the cAMP pathway activators with the release of Ca2+ from stores produced GABA-gated currents indistinguishable from those stimulated with NO. Together, these results demonstrate that cytosolic Ca2+ links NO to the activation of CFTR and the elevation of cytosolic Cl-.
Collapse
Affiliation(s)
- Li Zhong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Evanna L Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
4
|
Cripps SM, Mattiske DM, Pask AJ. Erectile Dysfunction in Men on the Rise: Is There a Link with Endocrine Disrupting Chemicals? Sex Dev 2021; 15:187-212. [PMID: 34134123 DOI: 10.1159/000516600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
Erectile dysfunction (ED) is one of the most prevalent chronic conditions affecting men. ED can arise from disruptions during development, affecting the patterning of erectile tissues in the penis and/or disruptions in adulthood that impact sexual stimuli, neural pathways, molecular changes, and endocrine signalling that are required to drive erection. Sexual stimulation activates the parasympathetic system which causes nerve terminals in the penis to release nitric oxide (NO). As a result, the penile blood vessels dilate, allowing the penis to engorge with blood. This expansion subsequently compresses the veins surrounding the erectile tissue, restricting venous outflow. As a result, the blood pressure localised in the penis increases dramatically to produce a rigid erection, a process known as tumescence. The sympathetic pathway releases noradrenaline (NA) which causes detumescence: the reversion of the penis to the flaccid state. Androgen signalling is critical for erectile function through its role in penis development and in regulating the physiological processes driving erection in the adult. Interestingly, estrogen signalling is also implicated in penis development and potentially in processes which regulate erectile function during adulthood. Given that endocrine signalling has a prominent role in erectile function, it is likely that exposure to endocrine disrupting chemicals (EDCs) is a risk factor for ED, although this is an under-researched field. Thus, our review provides a detailed description of the underlying biology of erectile function with a focus on the role of endocrine signalling, exploring the potential link between EDCs and ED based on animal and human studies.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Cheshchevik VT, Krylova NG, Сheshchevik NG, Lapshina EA, Semenkova GN, Zavodnik IB. Role of mitochondrial calcium in hypochlorite induced oxidative damage of cells. Biochimie 2021; 184:104-115. [PMID: 33607241 DOI: 10.1016/j.biochi.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
Hypochlorite (HOCl) is one of the most important mediators of inflammatory processes. Recent evidence demonstrates that changes in intracellular calcium pool play a significant role in the damaging effects of hypochlorite and other oxidants. Mitochondria are shown to be one of the intracellular targets of hypochlorite. But little is known about the mitochondrial calcium pool changes in HOCl-induced mitochondrial dysfunction. Using isolated rat liver mitochondria, we showed the oxidative damage of mitochondria (GSH oxidation and mixed protein-glutathione formation without membrane lipid peroxidation) and alterations in the mitochondrial functional parameters (decrease of respiratory activity and efficiency of oxidative phosphorylation, NADH and FADH coenzyme levels, and membrane potential) under hypochlorite action (50-300 μM). Simultaneously, the mitochondrial calcium release and swelling were demonstrated. In the presence of EGTA, the damaging effects of HOCl were less pronounced, reflecting direct involvement of mitochondrial Ca2+ in mechanisms of oxidant-induced injury. Furthermore, exposure of HeLa cells to hypochlorite resulted in a considerable increase in cytoplasmic calcium concentrations and a decrease in mitochondrial ones. Applying specific inhibitors of calcium transfer systems, we demonstrated that mitochondria play a key role in the redistribution of cytoplasmic Ca2+ ions under hypochlorite action and act as mediators of calcium release from the endoplasmic reticulum into the cytoplasm.
Collapse
Affiliation(s)
- Vitali T Cheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus.
| | - Nina G Krylova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Nina G Сheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| | - Galina N Semenkova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| |
Collapse
|
7
|
Li XQ, Zheng YM, Reyes-García J, Wang YX. Diversity of ryanodine receptor 1-mediated Ca 2+ signaling in systemic and pulmonary artery smooth muscle cells. Life Sci 2021; 270:119016. [PMID: 33515564 DOI: 10.1016/j.lfs.2021.119016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/26/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
AIMS Ryanodine receptor-1 (RyR1) is essential for skeletal muscle cell functions. However, its roles in vascular smooth muscle cells (SMCs) are well recognized. This study aims to determine the potential physiological importance and difference in systemic and pulmonary artery SMCs (SASMCs and PASMCs). METHODS Local and global Ca2+ release were measured using a laser scanning confocal microscope and wide-field fluorescence microscope; membrane currents were recorded using a patch clamp recording; muscle contraction was determined using an organ bath system; RyR protein expression was assessed using immunofluorescence staining. Homozygous and heterozygous RyR1 gene knockout (RyR1-/- and RyR1+/-) mice were used to determine its specific functions. KEY FINDINGS Ca2+ sparks were more prominently decreased in RyR1-/- ASMCs than in PASMCs. Caffeine induced a smaller increase in [Ca2+]i in both RyR1+/+ and RyR1-/- ASMCs than in PASMCs. High K+ produced a reduced [Ca2+]i increase in RyR1-/- PASMCs and ASMCs as well as a reduced contraction in RyR1+/- pulmonary artery and aortic tissues. ATP elicited a smaller increase in [Ca2+]i in RyR1-/- ASMCs and PASMCs with a greater inhibition in ASMCs. Norepinephrine-elicited muscle contraction was reduced in RyR1+/- aortic and pulmonary arteries. IP3 dialysis-induced Ca2+ release was much smaller in RyR1+/- ASMCs and PASMCs. Hypoxia-induced large Ca2+ and contractile responses were inhibited in RyR1+/- PASMCs. However, hypoxic exposure did not evoke a notable increase in [Ca2+]i in ASMCs. SIGNIFICANCE Our findings for the first time provide clear genetic evidence for the functional importance and difference of RyR1 in systemic and pulmonary artery SMCs.
Collapse
Affiliation(s)
- Xiao-Qiang Li
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | - Yun-Min Zheng
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Yong-Xiao Wang
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America.
| |
Collapse
|
8
|
Leigh WA, Del Valle G, Kamran SA, Drumm BT, Tavakkoli A, Sanders KM, Baker SA. A high throughput machine-learning driven analysis of Ca 2+ spatio-temporal maps. Cell Calcium 2020; 91:102260. [PMID: 32795721 PMCID: PMC7530121 DOI: 10.1016/j.ceca.2020.102260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022]
Abstract
High-resolution Ca2+ imaging to study cellular Ca2+ behaviors has led to the creation of large datasets with a profound need for standardized and accurate analysis. To analyze these datasets, spatio-temporal maps (STMaps) that allow for 2D visualization of Ca2+ signals as a function of time and space are often used. Methods of STMap analysis rely on a highly arduous process of user defined segmentation and event-based data retrieval. These methods are often time consuming, lack accuracy, and are extremely variable between users. We designed a novel automated machine-learning based plugin for the analysis of Ca2+ STMaps (STMapAuto). The plugin includes optimized tools for Ca2+ signal preprocessing, automated segmentation, and automated extraction of key Ca2+ event information such as duration, spatial spread, frequency, propagation angle, and intensity in a variety of cell types including the Interstitial cells of Cajal (ICC). The plugin is fully implemented in Fiji and able to accurately detect and expeditiously quantify Ca2+ transient parameters from ICC. The plugin's speed of analysis of large-datasets was 197-fold faster than the commonly used single pixel-line method of analysis. The automated machine-learning based plugin described dramatically reduces opportunities for user error and provides a consistent method to allow high-throughput analysis of STMap datasets.
Collapse
Affiliation(s)
- Wesley A Leigh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Guillermo Del Valle
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sharif Amit Kamran
- Department of Computer Science and Engineering, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Bernard T Drumm
- Department of Life & Health Science, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Alireza Tavakkoli
- Department of Computer Science and Engineering, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
9
|
Evans AM. On a Magical Mystery Tour with 8-Bromo-Cyclic ADP-Ribose: From All-or-None Block to Nanojunctions and the Cell-Wide Web. Molecules 2020; 25:E4768. [PMID: 33081414 PMCID: PMC7587525 DOI: 10.3390/molecules25204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
A plethora of cellular functions are controlled by calcium signals, that are greatly coordinated by calcium release from intracellular stores, the principal component of which is the sarco/endooplasmic reticulum (S/ER). In 1997 it was generally accepted that activation of various G protein-coupled receptors facilitated inositol-1,4,5-trisphosphate (IP3) production, activation of IP3 receptors and thus calcium release from S/ER. Adding to this, it was evident that S/ER resident ryanodine receptors (RyRs) could support two opposing cellular functions by delivering either highly localised calcium signals, such as calcium sparks, or by carrying propagating, global calcium waves. Coincidentally, it was reported that RyRs in mammalian cardiac myocytes might be regulated by a novel calcium mobilising messenger, cyclic adenosine diphosphate-ribose (cADPR), that had recently been discovered by HC Lee in sea urchin eggs. A reputedly selective and competitive cADPR antagonist, 8-bromo-cADPR, had been developed and was made available to us. We used 8-bromo-cADPR to further explore our observation that S/ER calcium release via RyRs could mediate two opposing functions, namely pulmonary artery dilation and constriction, in a manner seemingly independent of IP3Rs or calcium influx pathways. Importantly, the work of others had shown that, unlike skeletal and cardiac muscles, smooth muscles might express all three RyR subtypes. If this were the case in our experimental system and cADPR played a role, then 8-bromo-cADPR would surely block one of the opposing RyR-dependent functions identified, or the other, but certainly not both. The latter seemingly implausible scenario was confirmed. How could this be, do cells hold multiple, segregated SR stores that incorporate different RyR subtypes in receipt of spatially segregated signals carried by cADPR? The pharmacological profile of 8-bromo-cADPR action supported not only this, but also indicated that intracellular calcium signals were delivered across intracellular junctions formed by the S/ER. Not just one, at least two. This article retraces the steps along this journey, from the curious pharmacological profile of 8-bromo-cADPR to the discovery of the cell-wide web, a diverse network of cytoplasmic nanocourses demarcated by S/ER nanojunctions, which direct site-specific calcium flux and may thus coordinate the full panoply of cellular processes.
Collapse
Grants
- 01/A/S/07453 Biotechnology and Biological Sciences Research Council
- WT046374 , WT056423, WT070772, WT074434, WT081195AIA, WT212923, WT093147 Wellcome Trust
- PG/10/95/28657 British Heart Foundation
- FS/03/033/15432, FS/05/050, PG/05/128/19884, RG/12/14/29885, PG/10/95/28657 British Heart Foundation
- RG/12/14/29885 British Heart Foundation
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
10
|
Abstract
Vascular smooth muscle cells (VSMCs) of small peripheral arteries contribute to blood pressure control by adapting their contractile state. These adaptations depend on the VSMC cytosolic Ca2+ concentration, regulated by complex local elementary Ca2+ signaling pathways. Ca2+ sparks represent local, transient, rapid calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial SMCs, Ca2+ sparks activate nearby calcium-dependent potassium channels, cause membrane hyperpolarization and thus decrease the global intracellular [Ca2+] to oppose vasoconstriction. Arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux through RyRs. Cav3.2 T-type channels contribute to a minor extend to Ca2+ spark generation in certain types of arteries. Their localization within cell membrane caveolae is essential. We summarize present data on local elementary calcium signaling (Ca2+ sparks) in arterial SMCs with focus on RyR isoforms, large-conductance calcium-dependent potassium (BKCa) channels, and cell membrane-bound calcium channels (Cav1.2 and Cav3.2), particularly in caveolar microdomains.
Collapse
Affiliation(s)
- Gang Fan
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Mario Kassmann
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
11
|
Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:197-264. [PMID: 32138900 DOI: 10.1016/bs.ircmb.2019.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sarco/endoplasmic reticulum is an extensive, dynamic and heterogeneous membranous network that fulfills multiple homeostatic functions. Among them, it compartmentalizes, stores and releases calcium within the intracellular space. In the case of muscle cells, calcium released from the sarco/endoplasmic reticulum in the vicinity of the contractile machinery induces cell contraction. Furthermore, sarco/endoplasmic reticulum-derived calcium also regulates gene transcription in the nucleus, energy metabolism in mitochondria and cytosolic signaling pathways. These diverse and overlapping processes require a highly complex fine-tuning that the sarco/endoplasmic reticulum provides by means of its numerous tubules and cisternae, specialized domains and contacts with other organelles. The sarco/endoplasmic reticulum also possesses a rich calcium-handling machinery, functionally coupled to both contraction-inducing stimuli and the contractile apparatus. Such is the importance of the sarco/endoplasmic reticulum for muscle cell physiology, that alterations in its structure, function or its calcium-handling machinery are intimately associated with the development of cardiometabolic diseases. Cardiac hypertrophy, insulin resistance and arterial hypertension are age-related pathologies with a common mechanism at the muscle cell level: the accumulation of damaged proteins at the sarco/endoplasmic reticulum induces a stress response condition termed endoplasmic reticulum stress, which impairs proper organelle function, ultimately leading to pathogenesis.
Collapse
|
12
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
13
|
Eid AH, El-Yazbi AF, Zouein F, Arredouani A, Ouhtit A, Rahman MM, Zayed H, Pintus G, Abou-Saleh H. Inositol 1,4,5-Trisphosphate Receptors in Hypertension. Front Physiol 2018; 9:1018. [PMID: 30093868 PMCID: PMC6071574 DOI: 10.3389/fphys.2018.01018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic hypertension remains a major cause of global mortality and morbidity. It is a complex disease that is the clinical manifestation of multiple genetic, environmental, nutritional, hormonal, and aging-related disorders. Evidence supports a role for vascular aging in the development of hypertension involving an impairment in endothelial function together with an alteration in vascular smooth muscle cells (VSMCs) calcium homeostasis leading to increased myogenic tone. Changes in free intracellular calcium levels ([Ca2+] i ) are mediated either by the influx of Ca2+ from the extracellular space or release of Ca2+ from intracellular stores, mainly the sarcoplasmic reticulum (SR). The influx of extracellular Ca2+ occurs primarily through voltage-gated Ca2+ channels (VGCCs), store-operated Ca2+ channels (SOC), and Ca2+ release-activated channels (CRAC), whereas SR-Ca2+ release occurs through inositol trisphosphate receptor (IP3R) and ryanodine receptors (RyRs). IP3R-mediated SR-Ca2+ release, in the form of Ca2+ waves, not only contributes to VSMC contraction and regulates VGCC function but is also intimately involved in structural remodeling of resistance arteries in hypertension. This involves a phenotypic switch of VSMCs as well as an alteration of cytoplasmic Ca2+ signaling machinery, a phenomena tightly related to the aging process. Several lines of evidence implicate changes in expression/function levels of IP3R isoforms in the development of hypertension, VSMC phenotypic switch, and vascular aging. The present review discusses the current knowledge of these mechanisms in an integrative approach and further suggests potential new targets for hypertension management and treatment.
Collapse
Affiliation(s)
- Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fouad Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdelilah Arredouani
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md M. Rahman
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Drumm BT, Rembetski BE, Cobine CA, Baker SA, Sergeant GP, Hollywood MA, Thornbury KD, Sanders KM. Ca 2+ signalling in mouse urethral smooth muscle in situ: role of Ca 2+ stores and Ca 2+ influx mechanisms. J Physiol 2018; 596:1433-1466. [PMID: 29383731 PMCID: PMC5899989 DOI: 10.1113/jp275719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Contraction of urethral smooth muscle cells (USMCs) contributes to urinary continence. Ca2+ signalling in USMCs was investigated in intact urethral muscles using a genetically encoded Ca2+ sensor, GCaMP3, expressed selectively in USMCs. USMCs were spontaneously active in situ, firing intracellular Ca2+ waves that were asynchronous at different sites within cells and between adjacent cells. Spontaneous Ca2+ waves in USMCs were myogenic but enhanced by adrenergic or purinergic agonists and decreased by nitric oxide. Ca2+ waves arose from inositol trisphosphate type 1 receptors and ryanodine receptors, and Ca2+ influx by store-operated calcium entry was required to maintain Ca2+ release events. Ca2+ release and development of Ca2+ waves appear to be the primary source of Ca2+ for excitation-contraction coupling in the mouse urethra, and no evidence was found that voltage-dependent Ca2+ entry via L-type or T-type channels was required for responses to α adrenergic responses. ABSTRACT Urethral smooth muscle cells (USMCs) generate myogenic tone and contribute to urinary continence. Currently, little is known about Ca2+ signalling in USMCs in situ, and therefore little is known about the source(s) of Ca2+ required for excitation-contraction coupling. We characterized Ca2+ signalling in USMCs within intact urethral muscles using a genetically encoded Ca2+ sensor, GCaMP3, expressed selectively in USMCs. USMCs fired spontaneous intracellular Ca2+ waves that did not propagate cell-to-cell across muscle bundles. Ca2+ waves increased dramatically in response to the α1 adrenoceptor agonist phenylephrine (10 μm) and to ATP (10 μm). Ca2+ waves were inhibited by the nitric oxide donor DEA NONOate (10 μm). Ca2+ influx and release from sarcoplasmic reticulum stores contributed to Ca2+ waves, as Ca2+ free bathing solution and blocking the sarcoplasmic Ca2+ -ATPase abolished activity. Intracellular Ca2+ release involved cooperation between ryanadine receptors and inositol trisphosphate receptors, as tetracaine and ryanodine (100 μm) and xestospongin C (1 μm) reduced Ca2+ waves. Ca2+ waves were insensitive to L-type Ca2+ channel modulators nifedipine (1 μm), nicardipine (1 μm), isradipine (1 μm) and FPL 64176 (1 μm), and were unaffected by the T-type Ca2+ channel antagonists NNC-550396 (1 μm) and TTA-A2 (1 μm). Ca2+ waves were reduced by the store operated Ca2+ entry blocker SKF 96365 (10 μm) and by an Orai antagonist, GSK-7975A (1 μm). The latter also reduced urethral contractions induced by phenylephrine, suggesting that Orai can function effectively as a receptor-operated channel. In conclusion, Ca2+ waves in mouse USMCs are a source of Ca2+ for excitation-contraction coupling in urethral muscles.
Collapse
Affiliation(s)
- Bernard T. Drumm
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Benjamin E. Rembetski
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Caroline A. Cobine
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Salah A. Baker
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Gerard P. Sergeant
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Mark A. Hollywood
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Keith D. Thornbury
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Kenton M. Sanders
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| |
Collapse
|
15
|
Importance of Altered Levels of SERCA, IP 3R, and RyR in Vascular Smooth Muscle Cell. Biophys J 2017; 112:265-287. [PMID: 28122214 DOI: 10.1016/j.bpj.2016.11.3206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Calcium cycling between the sarcoplasmic reticulum (SR) and the cytosol via the sarco-/endoplasmic reticulum Ca-ATPase (SERCA) pump, inositol-1,4,5-triphosphate receptor (IP3R), and Ryanodine receptor (RyR), plays a major role in agonist-induced intracellular calcium ([Ca2+]cyt) dynamics in vascular smooth muscle cells (VSMC). Levels of these calcium handling proteins in SR get altered under disease conditions. We have developed a mathematical model to understand the significance of altered levels of SERCA, IP3R, and RyR on the intracellular calcium dynamics of VSMC and to understand how variation in protein levels that arise due to diabetes contribute to different VSMC behavior and thus vascular disease. SR is modeled as a single continuous entity with homogeneous intra-SR calcium. Model results show that agonist-induced intracellular calcium dynamics can be modified by changing the levels of SERCA, IP3R, and/or RyR. Lowering SERCA level will enable intracellular calcium oscillations at low agonist concentrations whereas lowered levels of IP3R and RyR need higher agonist concentration for intracellular calcium oscillations. This research suggests that reduced SERCA level is the main factor responsible for the reduced intracellular calcium transients and contractility in VSMCs.
Collapse
|
16
|
Toussay X, Morel JL, Biendon N, Rotureau L, Legeron FP, Boutonnet MC, Cho YH, Macrez N. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries. Neurobiol Aging 2017; 58:201-212. [PMID: 28753475 DOI: 10.1016/j.neurobiolaging.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.
Collapse
Affiliation(s)
- Xavier Toussay
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - Jean-Luc Morel
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Biendon
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Lolita Rotureau
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - François-Pierre Legeron
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Nathalie Macrez
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| |
Collapse
|
17
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves-Cintrón M, Navedo MF. Calcium Channels in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:49-87. [PMID: 28212803 DOI: 10.1016/bs.apha.2016.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium (Ca2+) plays a central role in excitation, contraction, transcription, and proliferation of vascular smooth muscle cells (VSMs). Precise regulation of intracellular Ca2+ concentration ([Ca2+]i) is crucial for proper physiological VSM function. Studies over the last several decades have revealed that VSMs express a variety of Ca2+-permeable channels that orchestrate a dynamic, yet finely tuned regulation of [Ca2+]i. In this review, we discuss the major Ca2+-permeable channels expressed in VSM and their contribution to vascular physiology and pathology.
Collapse
Affiliation(s)
- D Ghosh
- University of California, Davis, CA, United States
| | - A U Syed
- University of California, Davis, CA, United States
| | - M P Prada
- University of California, Davis, CA, United States
| | - M A Nystoriak
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - L F Santana
- University of California, Davis, CA, United States
| | | | - M F Navedo
- University of California, Davis, CA, United States.
| |
Collapse
|
19
|
Drumm BT, Large RJ, Hollywood MA, Thornbury KD, Baker SA, Harvey BJ, McHale NG, Sergeant GP. The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra. J Physiol 2015; 593:3333-50. [PMID: 26046824 DOI: 10.1113/jp270883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Tonic contractions of rabbit urethra are associated with spontaneous electrical slow waves that are thought to originate in pacemaker cells termed interstitial cells of Cajal (ICC). ICC pacemaker activity results from their ability to generate propagating Ca(2+) waves, although the exact mechanisms of propagation are not understood. In this study, we have identified spontaneous localised Ca(2+) events for the first time in urethral ICC; these were due to Ca(2+) release from the endoplasmic reticulum (ER) via ryanodine receptors (RyRs) and, while they often remained localised, they sometimes initiated propagating Ca(2+) waves. We show that propagation of Ca(2+) waves in urethral ICC is critically dependent upon Ca(2+) influx via reverse mode NCX. Our data provide a clearer understanding of the intracellular mechanisms involved in the generation of ICC pacemaker activity. Interstitial cells of Cajal (ICC) are putative pacemaker cells in the rabbit urethra. Pacemaker activity in ICC results from spontaneous propagating Ca(2+) waves that are modulated by [Ca(2+)]o and whose propagation is inhibited by inositol tri-phosphate receptor (IP3 R) blockers. The purpose of this study was to further examine the role of Ca(2+) influx and Ca(2+) release in the propagation of Ca(2+) waves. Intracellular Ca(2+) was measured in Fluo-4-loaded ICC using a Nipkow spinning disc confocal microscope at fast acquisition rates (50 fps). We identified previously undetected localised Ca(2+) events originating from ryanodine receptors (RyRs). Inhibiting Ca(2+) influx by removing [Ca(2+)]o or blocking reverse mode sodium-calcium exchange (NCX) with KB-R 7943 or SEA-0400 abolished Ca(2+) waves, while localised Ca(2+) events persisted. Stimulating RyRs with 1 mm caffeine restored propagation. Propagation was also inhibited when Ca(2+) release sites were uncoupled by buffering intracellular Ca(2+) with EGTA-AM. This was reversed when Ca(2+) influx via NCX was increased by reducing [Na(+)]o to 13 mm. Low [Na(+)]o also increased the frequency of Ca(2+) waves and this effect was blocked by tetracaine and ryanodine but not 2-aminoethoxydiphenyl borate (2-APB). RT-PCR revealed that isolated ICC expressed both RyR2 and RyR3 subtypes. We conclude: (i) RyRs are required for the initiation of Ca(2+) waves, but wave propagation normally depends on activation of IP3 Rs; (ii) under resting conditions, propagation by IP3 Rs requires sensitisation by influx of Ca(2+) via reverse mode NCX; (iii) propagation can be maintained by RyRs if they have been sensitised to Ca(2+).
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.,Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, 89557, USA
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, 89557, USA
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| |
Collapse
|
20
|
Sukhanova KY, Bouryi VA, Gordienko DV. Convergence of Ionotropic and Metabotropic Signal Pathways upon Activation of P2X Receptors in Vascular Smooth Muscle Cells. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
22
|
Osmond JM, Gonzalez Bosc LV, Walker BR, Kanagy NL. Endothelin-1-induced vasoconstriction does not require intracellular Ca²⁺ waves in arteries from rats exposed to intermittent hypoxia. Am J Physiol Heart Circ Physiol 2014; 306:H667-73. [PMID: 24414066 PMCID: PMC3949067 DOI: 10.1152/ajpheart.00643.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/30/2013] [Indexed: 11/22/2022]
Abstract
Sleep apnea is associated with cardiovascular disease, and patients with sleep apnea have elevated plasma endothelin (ET)-1 concentrations. Rats exposed to intermittent hypoxia (IH), a model of sleep apnea, also have increased plasma ET-1 concentrations and heightened constriction to ET-1 in mesenteric arteries without an increase in global vascular smooth muscle cell Ca(2+) concentration ([Ca(2+)]). Because ET-1 has been shown to increase the occurrence of propagating Ca(2+) waves, we hypothesized that ET-1 increases Ca(2+) wave activity in mesenteric arteries, rather than global [Ca(2+)], to mediate enhanced vasoconstriction after IH exposure. Male Sprague-Dawley rats were exposed to sham or IH conditions for 7 h/day for 2 wk. Mesenteric arteries from sham- and IH-exposed rats were isolated, cannulated, and pressurized to 75 mmHg to measure ET-1-induced constriction as well as changes in global [Ca(2+)] and Ca(2+) wave activity. A low concentration of ET-1 (1 nM) elicited similar vasoconstriction and global Ca(2+) responses in the two groups. Conversely, ET-1 had no effect on Ca(2+) wave activity in arteries from sham rats but significantly increased wave frequency in arteries from IH-exposed rats. The ET-1-induced increase in Ca(2+) wave frequency in arteries from IH rats was dependent on phospholipase C and inositol 1,4,5-trisphosphate receptor activation, yet inhibition of phospholipase C and the inositol 1,4,5-trisphosphate receptor did not prevent ET-1-mediated vasoconstriction. These results suggest that although ET-1 elevates Ca(2+) wave activity after IH exposure, increases in wave activity are not associated with increased vasoconstriction.
Collapse
Affiliation(s)
- Jessica M Osmond
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | | | | |
Collapse
|
23
|
Amberg GC, Navedo MF. Calcium dynamics in vascular smooth muscle. Microcirculation 2013; 20:281-9. [PMID: 23384444 DOI: 10.1111/micc.12046] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022]
Abstract
Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells. These signals vary with respect to their mechanisms of generation, temporal properties, and spatial distributions. The calcium signals discussed include calcium waves, junctional calcium transients, calcium sparks, calcium puffs, and L-type calcium channel sparklets. For each calcium signal we address underlying mechanisms, general properties, physiological importance, and regulation.
Collapse
Affiliation(s)
- Gregory C Amberg
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | | |
Collapse
|
24
|
Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats. Pflugers Arch 2013; 466:1517-28. [DOI: 10.1007/s00424-013-1387-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/02/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
25
|
Ortiz-Capisano MC, Reddy M, Mendez M, Garvin JL, Beierwaltes WH. Juxtaglomerular cell CaSR stimulation decreases renin release via activation of the PLC/IP(3) pathway and the ryanodine receptor. Am J Physiol Renal Physiol 2012; 304:F248-56. [PMID: 23220722 DOI: 10.1152/ajprenal.00451.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is a G-coupled protein expressed in renal juxtaglomerular (JG) cells. Its activation stimulates calcium-mediated decreases in cAMP content and inhibits renin release. The postreceptor pathway for the CaSR in JG cells is unknown. In parathyroids, CaSR acts through G(q) and/or G(i). Activation of G(q) stimulates phospholipase C (PLC), and inositol 1,4,5-trisphosphate (IP(3)), releasing calcium from intracellular stores. G(i) stimulation inhibits cAMP formation. In afferent arterioles, the ryanodine receptor (RyR) enhances release of stored calcium. We hypothesized JG cell CaSR activation inhibits renin via the PLC/IP(3) and also RyR activation, increasing intracellular calcium, suppressing cAMP formation, and inhibiting renin release. Renin release from primary cultures of isolated mouse JG cells (n = 10) was measured. The CaSR agonist cinacalcet decreased renin release 56 ± 7% of control (P < 0.001), while the PLC inhibitor U73122 reversed cinacalcet inhibition of renin (104 ± 11% of control). The IP(3) inhibitor 2-APB also reversed inhibition of renin from 56 ± 6 to 104 ± 11% of control (P < 0.001). JG cells were positively labeled for RyR, and blocking RyR reversed CaSR-mediated inhibition of renin from 61 ± 8 to 118 ± 22% of control (P < 0.01). Combining inhibition of IP(3) and RyR was not additive. G(i) inhibition with pertussis toxin plus cinacalcet did not reverse renin inhibition (65 ± 12 to 41 ± 8% of control, P < 0.001). We conclude stimulating JG cell CaSR activates G(q), initiating the PLC/IP(3) pathway, activating RyR, increasing intracellular calcium, and resulting in calcium-mediated renin inhibition.
Collapse
Affiliation(s)
- M Cecilia Ortiz-Capisano
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
26
|
Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Dominguez JM, Muller-Delp JM, Delp MD. Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice. FASEB J 2012; 27:399-409. [PMID: 23099650 DOI: 10.1096/fj.12-218503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Following exposure to microgravity, there is a reduced ability of astronauts to augment peripheral vascular resistance, often resulting in orthostatic hypotension. The purpose of this study was to test the hypothesis that mesenteric arteries and veins will exhibit diminished vasoconstrictor responses after spaceflight. Mesenteric arteries and veins from female mice flown on the Space Transportation System (STS)-131 (n=11), STS-133 (n=6), and STS-135 (n=3) shuttle missions and respective ground-based control mice (n=30) were isolated for in vitro experimentation. Vasoconstrictor responses were evoked in arteries via norepinephrine (NE), potassium chloride (KCl), and caffeine, and in veins through NE across a range of intraluminal pressures (2-12 cmH(2)O). Vasoconstriction to NE was also determined in mesenteric arteries at 1, 5, and 7 d postlanding. In arteries, maximal constriction to NE, KCl, and caffeine were reduced immediately following spaceflight and 1 d postflight. Spaceflight also reduced arterial ryanodine receptor-3 mRNA levels. In mesenteric veins, there was diminished constriction to NE after flight. The results indicate that the impaired vasoconstriction following spaceflight occurs through the ryanodine receptor-mediated intracellular Ca(2+) release mechanism. Such vascular changes in astronauts could compromise the maintenance of arterial pressure during orthostatic stress.
Collapse
Affiliation(s)
- Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Stabley JN, Dominguez JM, Dominguez CE, Mora Solis FR, Ahlgren J, Behnke BJ, Muller-Delp JM, Delp MD. Spaceflight reduces vasoconstrictor responsiveness of skeletal muscle resistance arteries in mice. J Appl Physiol (1985) 2012; 113:1439-45. [PMID: 22984246 DOI: 10.1152/japplphysiol.00772.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular adaptations to microgravity undermine the physiological capacity to respond to orthostatic challenges upon return to terrestrial gravity. The purpose of the present study was to investigate the influence of spaceflight on vasoconstrictor and myogenic contractile properties of mouse gastrocnemius muscle resistance arteries. We hypothesized that vasoconstrictor responses acting through adrenergic receptors [norepinephrine (NE)], voltage-gated Ca(2+) channels (KCl), and stretch-activated (myogenic) mechanisms would be diminished following spaceflight. Feed arteries were isolated from gastrocnemius muscles, cannulated on glass micropipettes, and physiologically pressurized for in vitro experimentation. Vasoconstrictor responses to intraluminal pressure changes (0-140 cmH(2)O), KCl (10-100 mM), and NE (10(-9)-10(-4) M) were measured in spaceflown (SF; n = 11) and ground control (GC; n = 11) female C57BL/6 mice. Spaceflight reduced vasoconstrictor responses to KCl and NE; myogenic vasoconstriction was unaffected. The diminished vasoconstrictor responses were associated with lower ryanodine receptor-2 (RyR-2) and ryanodine receptor-3 (RyR-3) mRNA expression, with no difference in sarcoplasmic/endoplasmic Ca(2+) ATPase 2 mRNA expression. Vessel wall thickness and maximal intraluminal diameter were unaffected by spaceflight. The data indicate a deficit in intracellular calcium release via RyR-2 and RyR-3 in smooth muscle cells as the mechanism of reduced contractile activity in skeletal muscle after spaceflight. Furthermore, the results suggest that impaired end-organ vasoconstrictor responsiveness of skeletal muscle resistance arteries contributes to lower peripheral vascular resistance and less tolerance of orthostatic stress in humans after spaceflight.
Collapse
Affiliation(s)
- John N Stabley
- Department of Applied Physiology and Kinesiology and Center for Exercise Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
McCarron JG, Chalmers S, Olson ML, Girkin JM. Subplasma membrane Ca2+ signals. IUBMB Life 2012; 64:573-85. [PMID: 22653514 PMCID: PMC3638344 DOI: 10.1002/iub.1032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/24/2012] [Indexed: 12/03/2022]
Abstract
Ca2+ may selectively activate various processes in part by the cell's ability to localize changes in the concentration of the ion to specific subcellular sites. Interestingly, these Ca2+ signals begin most often at the plasma membrane space so that understanding subplasma membrane signals is central to an appreciation of local signaling. Several experimental procedures have been developed to study Ca2+ signals near the plasma membrane, but probably the most prevalent involve the use of fluorescent Ca2+ indicators and fall into two general approaches. In the first, the Ca2+ indicators themselves are specifically targeted to the subplasma membrane space to measure Ca2+ only there. Alternatively, the indicators are allowed to be dispersed throughout the cytoplasm, but the fluorescence emanating from the Ca2+ signals at the subplasma membrane space is selectively measured using high resolution imaging procedures. Although the targeted indicators offer an immediate appeal because of selectivity and ease of use, their limited dynamic range and slow response to changes in Ca2+ are a shortcoming. Use of targeted indicators is also largely restricted to cultured cells. High resolution imaging applied with rapidly responding small molecule Ca2+ indicators can be used in all cells and offers significant improvements in dynamic range and speed of response of the indicator. The approach is technically difficult, however, and realistic calibration of signals is not possible. In this review, a brief overview of local subplasma membrane Ca2+ signals and methods for their measurement is provided. © 2012 IUBMB IUBMB Life, 64(7): 573–585, 2012
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | |
Collapse
|
29
|
McCarron JG, Olson ML, Chalmers S. Mitochondrial regulation of cytosolic Ca²⁺ signals in smooth muscle. Pflugers Arch 2012; 464:51-62. [PMID: 22555917 DOI: 10.1007/s00424-012-1108-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/11/2012] [Indexed: 11/25/2022]
Abstract
The cytosolic Ca²⁺ concentration ([Ca²⁺]c) controls virtually every activity of smooth muscle, including contraction, migration, transcription, division and apoptosis. These processes may be activated by large (>10 μM) amplitude [Ca²⁺]c increases, which occur in small restricted regions of the cell or by smaller (<1 μM) amplitude changes throughout the bulk cytoplasm. Mitochondria contribute to the regulation of these signals by taking up Ca²⁺. However, mitochondria's reported low affinity for Ca²⁺ is thought to require the organelle to be positioned close to ion channels and within a microdomain of high [Ca²⁺]. In cultured smooth muscle, mitochondria are highly dynamic structures but in native smooth muscle mitochondria are immobile, apparently strategically positioned organelles that regulate the upstroke and amplitude of IP₃-evoked Ca²⁺ signals and IP₃ receptor (IP₃R) cluster activity. These observations suggest mitochondria are positioned within the high [Ca²⁺] microdomain arising from an IP₃R cluster to exert significant local control of channel activity. On the other hand, neither the upstroke nor amplitude of voltage-dependent Ca²⁺ entry is modulated by mitochondria; rather, it is the declining phase of the transient that is regulated by the organelle. Control of the declining phase of the transient requires a high mitochondrial affinity for Ca²⁺ to enable uptake to occur over the normal physiological Ca²⁺ range (<1 μM). Thus, in smooth muscle, mitochondria regulate Ca²⁺ signals exerting effects over a large range of [Ca²⁺] (∼200 nM to at least tens of micromolar) to provide a wide dynamic range in the control of Ca²⁺ signals.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 161 Cathedral Street, Glasgow, G4 0NR, UK.
| | | | | |
Collapse
|
30
|
Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302:H2190-210. [PMID: 22447942 DOI: 10.1152/ajpheart.01146.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
31
|
Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 2011; 3:a004549. [PMID: 21709182 DOI: 10.1101/cshperspect.a004549] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).
Collapse
Affiliation(s)
- David C Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
32
|
Abstract
This minireview discusses vasomotion, which is the oscillation in tone of blood vessels leading to flowmotion. We will briefly discuss the prevalence of vasomotion and its potential physiological and pathophysiological relevance. We will also discuss the models that have been suggested to explain how a coordinated oscillatory activity of the smooth muscle tone can occur and emphasize the role of the endothelium, the handling of intracellular Ca(2+) and the role of smooth muscle cell ion conductances. It is concluded that vasomotion is likely to enhance tissue dialysis, although this concept still requires more experimental verification, and that an understanding at the molecular level for the pathways leading to vasomotion is beginning to emerge.
Collapse
Affiliation(s)
- C Aalkjær
- Department of Physiology and Biophysics, The Water and Salt Centre, Aarhus University, Denmark.
| | | | | |
Collapse
|
33
|
Logantha SJRJ, Cruickshank SF, Rowan EG, Drummond RM. Spontaneous and electrically evoked Ca2+ transients in cardiomyocytes of the rat pulmonary vein. Cell Calcium 2011; 48:150-60. [PMID: 20817251 DOI: 10.1016/j.ceca.2010.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The pulmonary vein is surrounded by an external sleeve of cardiomyocytes that are widely recognised to play an important role in atrial fibrillation. While intracellular Ca(2+) is thought to influence the electrical activity of cardiomyocytes, there have been relatively few studies examining Ca(2+) signalling in these cells. Therefore, using fluo-4 and fluorescence imaging microscopy, we have investigated Ca(2+) signalling in an intact section of the rat pulmonary vein. Under resting conditions cardiomyocytes displayed spontaneous Ca(2+) transients, which were variable in amplitude and had a frequency of 1.6±0.03Hz. The Ca(2+) transients were asynchronous amongst neighbouring cardiomyocytes and tended to propagate throughout the cell as a wave. Removing extracellular Ca(2+) produced a slight reduction in the amplitude and frequency of the spontaneous Ca(2+) transients; however, ryanodine (20μM) had a much greater effect on the amplitude and reduced the frequency by 94±2%. Blocking IP(3) receptors with 2-aminoethoxydiphenyl borate (20μM) also reduced the amplitude and frequency (by 73±11%) of these events, indicating the importance of Ca(2+) release from the SR. Electrical field stimulation of the pulmonary vein produced Ca(2+) transients in cardiomyocytes that were significantly reduced by either voltage-gated Ca(2+) channel blockers or ryanodine.
Collapse
Affiliation(s)
- Sunil Jit R J Logantha
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
34
|
Povstyan OV, Harhun MI, Gordienko DV. Ca2+ entry following P2X receptor activation induces IP3 receptor-mediated Ca2+ release in myocytes from small renal arteries. Br J Pharmacol 2011; 162:1618-38. [PMID: 21175582 PMCID: PMC3057298 DOI: 10.1111/j.1476-5381.2010.01169.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 11/04/2010] [Accepted: 11/25/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca(2+) concentration ([Ca(2+) ](i) ). Although it is well-appreciated that the myocyte Ca(2+) signalling system is composed of microdomains, little is known about the structure of the [Ca(2+) ](i) responses induced by P2X receptor stimulation in vascular myocytes. EXPERIMENTAL APPROACHES Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca(2+) signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP). KEY RESULTS RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP(3) R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca(2+) ](i) transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L(-1) αβ-meATP triggered an abrupt Ca(2+) release from sub-plasmalemmal ('junctional') sarcoplasmic reticulum enriched with IP(3) Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca(2+) channels (VGCCs) or IP(3) Rs suppressed the sub-plasmalemmal [Ca(2+) ](i) upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP(3) R inhibition on the sub-plasmalemmal [Ca(2+) ](i) upstroke was attenuated following block of VGCCs. CONCLUSIONS AND IMPLICATIONS Depolarization of RVSMCs following P2X receptor activation induces IP(3) R-mediated Ca(2+) release from sub-plasmalemmal ('junctional') sarcoplasmic reticulum, which is activated mainly by Ca(2+) influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kidney/blood supply
- Male
- Muscle Cells/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Purinergic P2X Receptor Agonists/pharmacology
- Rats
- Rats, Inbred WKY
- Receptors, Purinergic P2X/metabolism
- Renal Artery/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Sarcoplasmic Reticulum/metabolism
Collapse
Affiliation(s)
- Oleksandr V Povstyan
- Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | | | | |
Collapse
|
35
|
Pradhan RK, Chakravarthy VS. Informational dynamics of vasomotion in microvascular networks: a review. Acta Physiol (Oxf) 2011; 201:193-218. [PMID: 20887358 DOI: 10.1111/j.1748-1716.2010.02198.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vasomotion refers to spontaneous oscillation of small vessels observed in many microvascular beds. It is an intrinsic phenomenon unrelated to cardiac rhythm or neural and hormonal regulation. Vasomotion is found to be particularly prominent under conditions of metabolic stress. In spite of a significant existent literature on vasomotion, its physiological and pathophysiological roles are not clear. It is thought that modulation of vasomotion by vasoactive substances released by metabolizing tissue plays a role in ensuring optimal delivery of nutrients to the tissue. Vasomotion rhythms exhibit a great variety of temporal patterns from regular oscillations to chaos. The nature of vasomotion rhythm is believed to be significant to its function, with chaotic vasomotion offering several physiological advantages over regular, periodic vasomotion. In this article, we emphasize that vasomotion is best understood as a network phenomenon. When there is a local metabolic demand in tissue, an ideal vascular response should extend beyond local microvasculature, with coordinated changes over multiple vascular segments. Mechanisms of information transfer over a vessel network have been discussed in the literature. The microvascular system may be regarded as a network of dynamic elements, interacting, either over the vascular anatomical network via gap junctions, or physiologically by exchange of vasoactive substances. Drawing analogies with spatiotemporal patterns in neuronal networks of central nervous system, we ask if properties like synchronization/desynchronization of vasomotors have special significance to microcirculation. Thus the contemporary literature throws up a novel view of microcirculation as a network that exhibits complex, spatiotemporal and informational dynamics.
Collapse
Affiliation(s)
- R K Pradhan
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226-6509, USA.
| | | |
Collapse
|
36
|
Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia. Respir Physiol Neurobiol 2010; 174:221-9. [PMID: 20801238 DOI: 10.1016/j.resp.2010.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 02/07/2023]
Abstract
In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries constrict in response to hypoxia. The mechanisms underlying this unique response have been the subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20 years, there has emerged a general consensus that both increases in intracellular calcium concentration and changes in reactive oxygen species (ROS) generation play key roles in the pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling during exposure to acute hypoxia.
Collapse
|
37
|
Mufti RE, Brett SE, Tran CHT, Abd El-Rahman R, Anfinogenova Y, El-Yazbi A, Cole WC, Jones PP, Chen SRW, Welsh DG. Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves. J Physiol 2010; 588:3983-4005. [PMID: 20736418 DOI: 10.1113/jphysiol.2010.193300] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study examined whether elevated intravascular pressure stimulates asynchronous Ca(2+) waves in cerebral arterial smooth muscle cells and if their generation contributes to myogenic tone development. The endothelium was removed from rat cerebral arteries, which were then mounted in an arteriograph, pressurized (20-100 mmHg) and examined under a variety of experimental conditions. Diameter and membrane potential (V(M)) were monitored using conventional techniques; Ca(2+) wave generation and myosin light chain (MLC(20))/MYPT1 (myosin phosphatase targeting subunit) phosphorylation were assessed by confocal microscopy and Western blot analysis, respectively. Elevating intravascular pressure increased the proportion of smooth muscle cells firing asynchronous Ca(2+) waves as well as event frequency. Ca(2+) wave augmentation occurred primarily at lower intravascular pressures (<60 mmHg) and ryanodine, a plant alkaloid that depletes the sarcoplasmic reticulum (SR) of Ca(2+), eliminated these events. Ca(2+) wave generation was voltage insensitive as Ca(2+) channel blockade and perturbations in extracellular [K(+)] had little effect on measured parameters. Ryanodine-induced inhibition of Ca(2+) waves attenuated myogenic tone and MLC(20) phosphorylation without altering arterial V(M). Thapsigargin, an SR Ca(2+)-ATPase inhibitor also attenuated Ca(2+) waves, pressure-induced constriction and MLC(20) phosphorylation. The SR-driven component of the myogenic response was proportionally greater at lower intravascular pressures and subsequent MYPT1 phosphorylation measures revealed that SR Ca(2+) waves facilitated pressure-induced MLC(20) phosphorylation through mechanisms that include myosin light chain phosphatase inhibition. Cumulatively, our findings show that mechanical stimuli augment Ca(2+) wave generation in arterial smooth muscle and that these transient events facilitate tone development particularly at lower intravascular pressures by providing a proportion of the Ca(2+) required to directly control MLC(20) phosphorylation.
Collapse
Affiliation(s)
- Rania E Mufti
- Hotchkiss Brain Institute, Libin Cardiovascular Institute, Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McCarron JG, Chalmers S, MacMillan D, Olson ML. Agonist-evoked Ca(2+) wave progression requires Ca(2+) and IP(3). J Cell Physiol 2010; 224:334-44. [PMID: 20432430 PMCID: PMC3947531 DOI: 10.1002/jcp.22103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smooth muscle responds to IP(3)-generating agonists by producing Ca(2+) waves. Here, the mechanism of wave progression has been investigated in voltage-clamped single smooth muscle cells using localized photolysis of caged IP(3) and the caged Ca(2+) buffer diazo-2. Waves, evoked by the IP(3)-generating agonist carbachol (CCh), initiated as a uniform rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) over a single though substantial length (approximately 30 microm) of the cell. During regenerative propagation, the wave-front was about 1/3 the length (approximately 9 microm) of the initiation site. The wave-front progressed at a relatively constant velocity although amplitude varied through the cell; differences in sensitivity to IP(3) may explain the amplitude changes. Ca(2+) was required for IP(3)-mediated wave progression to occur. Increasing the Ca(2+) buffer capacity in a small (2 microm) region immediately in front of a CCh-evoked Ca(2+) wave halted progression at the site. However, the wave front does not progress by Ca(2+)-dependent positive feedback alone. In support, colliding [Ca(2+)](c) increases from locally released IP(3) did not annihilate but approximately doubled in amplitude. This result suggests that local IP(3)-evoked [Ca(2+)](c) increases diffused passively. Failure of local increases in IP(3) to evoke waves appears to arise from the restricted nature of the IP(3) increase. When IP(3) was elevated throughout the cell, a localized increase in Ca(2+) now propagated as a wave. Together, these results suggest that waves initiate over a surprisingly large length of the cell and that both IP(3) and Ca(2+) are required for active propagation of the wave front to occur.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, Glasgow, UK.
| | | | | | | |
Collapse
|
39
|
Modulation of Ca(2+) release through ryanodine receptors in vascular smooth muscle by protein kinase Calpha. Pflugers Arch 2010; 460:791-802. [PMID: 20571823 DOI: 10.1007/s00424-010-0850-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/15/2010] [Accepted: 05/11/2010] [Indexed: 01/23/2023]
Abstract
The role of protein kinase C (PKC) in Ca(2+) release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) of vascular smooth muscle cells (SMCs) is not well understood. Caffeine was used to activate RyRs and the intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in both freshly isolated and cultured mouse aortic SMCs (ASMCs). Pre-activation of PKC with 1,2-dioctanoyl-sn-glycerol (DOG) prevented caffeine-induced [Ca(2+)](i) transients. Application of the PKC inhibitor calphostin C caused [Ca(2+)](i) transients which were not blocked by nifedipine or by removing extracellular Ca(2+) but were abolished after inhibition of the SR Ca(2+)-ATPase with thapsigargin or after inhibition of RyRs with ryanodine. In addition, chelerythrine and GF109203X also elevated resting [Ca(2+)](i) but no further [Ca(2+)](i) increase was seen with subsequent application of caffeine. Selective inhibition of PKCalpha with safingol blocked caffeine-induced [Ca(2+)](i) transients, but the PKCepsilon inhibitory peptide V1-2 did not. In cells expressing a EGFP-tagged PKCalpha, caffeine-induced [Ca(2+)](i) transients were associated with a rapid focal translocation near the cell periphery, while application of ionomycin and DOG caused translocation to the plasma membrane. Western blot showed that caffeine increased the relative amount of PKCalpha in the particulate fraction in a time-dependent manner. Co-immunoprecipitation of RyRs and PKCalpha indicated that they interact. In conclusion, our studies suggest that PKC activation can inhibit the gating activity of RyRs in the SR of ASMCs, and this regulation is most likely mediated by the Ca(2+)-dependent PKCalpha isoform.
Collapse
|
40
|
Gonzales AL, Amberg GC, Earley S. Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2010; 299:C279-88. [PMID: 20427713 DOI: 10.1152/ajpcell.00550.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The melastatin transient receptor potential (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. Activation of the channel is Ca(2+)-dependent, but prolonged exposure to high (>1 microM) levels of intracellular Ca(2+) causes rapid (within approximately 2 min) desensitization of TRPM4 currents under conventional whole cell and inside-out patch-clamp conditions. The goal of the present study was to establish a novel method to record sustained TRPM4 currents in smooth muscle cells under near-physiological conditions. Using the amphotericin B-perforated patch-clamp technique, we recorded and characterized sustained (up to 30 min) transient inward cation currents (TICCs) in freshly isolated cerebral artery myocytes. In symmetrical cation solutions, TICCs reversed at 0 mV and had an apparent unitary conductance of 25 pS. Replacement of extracellular Na(+) with the nonpermeable cation N-methyl-d-glucamine abolished the current. TICC activity was attenuated by the TRPM4 blockers fluflenamic acid and 9-phenanthrol. Selective silencing of TRPM4 expression using small interfering RNA diminished TICC activity, suggesting that the molecular identity of the responsible ion channel is TRPM4. We used the perforated patch-clamp method to test the hypothesis that TRPM4 is activated by intracellular Ca(2+) signaling events. We found that TICC activity is independent of Ca(2+) influx and ryanodine receptor activity but is attenuated by sarco(endo)plasmic reticulum Ca(2+)-ATPase inhibition and blockade of inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release from the sarcoplasmic reticulum. Our findings suggest that TRPM4 channels in cerebral artery myocytes are regulated by Ca(2+) release from inositol 1,4,5-trisphosphate receptor on the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, USA
| | | | | |
Collapse
|
41
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
42
|
The sarcoplasmic reticulum Ca2+ store arrangement in vascular smooth muscle. Cell Calcium 2009; 46:313-22. [DOI: 10.1016/j.ceca.2009.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 08/28/2009] [Accepted: 09/03/2009] [Indexed: 01/01/2023]
|
43
|
Borisova L, Wray S, Eisner DA, Burdyga T. How Structure, Ca Signals, and Cellular Communications Underlie Function in Precapillary Arterioles. Circ Res 2009; 105:803-10. [DOI: 10.1161/circresaha.109.202960] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale
:
Precapillary arterioles control blood flow to tissues and their correct function is vital. However, their small size has limited study and little is known concerning the calcium signals in their endothelial and muscle cells and how these relate to function.
Objective
:
We aimed to investigate whether these small vessels are specialized in terms of structure and calcium signaling.
Methods and Results
:
Using in situ confocal imaging we have studied the ultrastructure, Ca signaling and coordination of contraction in precapillary arterioles in ureter and vas deferens. We have compared the data to that from a small mesenteric artery. In the precapillary arteriole, 1 myocyte covers a ≈10-μm length, and contraction of this single cell can decrease the diameter of this segment. In the mesenteric artery, more than 20 myocytes are required for this. In the precapillary arteriole, Ca signals arise solely from Ca release from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate-induced Ca release and not via ryanodine receptors. Agonist-induced Ca signals do not require Ca entry into the cell, do not spread or synchronize with neighboring cells, and are unaffected by endothelial stimulation, thereby allowing local control. This contrasts with the mesenteric artery, where Ca entry and ryanodine receptors are important and stimulation of the endothelium inhibits myocyte Ca signals and contraction.
Conclusions
:
These data reveal the structural and signaling specializations underlying how blood flow is locally regulated, provide new insight into control of microcirculation, and provide a framework to explain its vulnerability to disease.
Collapse
Affiliation(s)
- Lyudmyla Borisova
- From the Physiology Department (L.B., S.W., T.B.), School of Biomedical Sciences, University of Liverpool; and Unit of Cardiac Physiology (D.E.), University of Manchester, United Kingdom
| | - Susan Wray
- From the Physiology Department (L.B., S.W., T.B.), School of Biomedical Sciences, University of Liverpool; and Unit of Cardiac Physiology (D.E.), University of Manchester, United Kingdom
| | - David A. Eisner
- From the Physiology Department (L.B., S.W., T.B.), School of Biomedical Sciences, University of Liverpool; and Unit of Cardiac Physiology (D.E.), University of Manchester, United Kingdom
| | - Theodor Burdyga
- From the Physiology Department (L.B., S.W., T.B.), School of Biomedical Sciences, University of Liverpool; and Unit of Cardiac Physiology (D.E.), University of Manchester, United Kingdom
| |
Collapse
|
44
|
Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle. Proc Natl Acad Sci U S A 2009; 106:11418-23. [PMID: 19549818 DOI: 10.1073/pnas.0813307106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane depolarization activates voltage-dependent Ca(2+) channels (VDCCs) inducing Ca(2+) release via ryanodine receptors (RyRs), which is obligatory for skeletal and cardiac muscle contraction and other physiological responses. However, depolarization-induced Ca(2+) release and its functional importance as well as underlying signaling mechanisms in smooth muscle cells (SMCs) are largely unknown. Here we report that membrane depolarization can induce RyR-mediated local Ca(2+) release, leading to a significant increase in the activity of Ca(2+) sparks and contraction in airway SMCs. The increased Ca(2+) sparks are independent of VDCCs and the associated extracellular Ca(2+) influx. This format of local Ca(2+) release results from a direct activation of G protein-coupled, M(3) muscarinic receptors in the absence of exogenous agonists, which causes activation of Gq proteins and phospholipase C, and generation of inositol 1,4,5-triphosphate (IP(3)), inducing initial Ca(2+) release through IP(3) receptors and then further Ca(2+) release via RyR2 due to a local Ca(2+)-induced Ca(2+) release process. These findings demonstrate an important mechanism for Ca(2+) signaling and attendant physiological function in SMCs.
Collapse
|
45
|
Bakker SJL, Gansevoort RT, de Zeeuw D. Albuminuria: what can we expect from the determination of nonimmunoreactive albumin? Curr Hypertens Rep 2009; 11:111-7. [PMID: 19278600 DOI: 10.1007/s11906-009-0021-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Albuminuria is an early marker for diabetic nephropathy in patients with diabetes, and has a clear place in patient care. It also predicts cardiovascular events and mortality in diabetic patients and in the general population, and is slowly becoming accepted in population screening for cardiovascular disease and chronic kidney disease. Recently, investigators found that a considerable amount of albumin in urine is nonimmunoreactive and that classic immunochemical assays do not properly measure all albumin in urine. Assays that detect immunoreactive plus nonimmunoreactive albumin may better predict development of diabetic nephropathy, cardiovascular events, and mortality than assays that only detect immunoreactive albumin. Proof of the existence of nonimmunoreactive albumin emerged from the finding that albumin contains urine fragments. In this review, we critically appraise the presence and relevance of albumin fragments and nonimmunoreactive albumin molecules in urine, and the potential additive value of albuminuria detected by assays that assess nonimmunoreactive plus immunoreactive albumin over albuminuria detected by classic immunochemical assays in predicting end points.
Collapse
Affiliation(s)
- Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The nephrology community lacks a unified view of protein sieving through the glomerular capillary wall. The glomerular capillary wall consists of three distinct but closely interacting layers: the fenestrated endothelium, with its glycocalyx; the podocytes, with their interdigitated foot processes and slit diaphragms; and the intervening glomerular basement membrane. Proteinuria is associated with abnormalities in any one layer, suggesting that each contributes to the glomerular filtration barrier (GFB). Proteinuria can also be induced in the context of a normal glomerular capillary wall. Here, we review some classic studies as well as some newer concepts and present competing hypotheses about the GFB. RECENT FINDINGS Two almost forgotten concepts have recently emerged. One group has challenged the exquisite selectivity of the GFB to albumin and suggested that proteinuria is the result of abnormal tubular uptake. There has also been a reemphasis on diffusion through the glomerular basement membrane as the driving force behind macromolecular filtration. New evidence suggests that the endothelial glycocalyx is an important charge-selective barrier. SUMMARY We suggest viewing the GFB as a dynamic rather than as a rigid barrier, requiring three healthy layers and a hemodynamic steady state. Multiple challenges to studying the endothelium, the tubular handling of albumin, and the role of hemodynamic forces will require new tools, new hypotheses, and open minds.
Collapse
|
47
|
Lang RJ, Hashitani H, Tonta MA, Bourke JL, Parkington HC, Suzuki H. Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis. Clin Exp Pharmacol Physiol 2009; 37:509-15. [PMID: 19515061 DOI: 10.1111/j.1440-1681.2009.05226.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Peristalsis in the smooth muscle cell (SMC) wall of the pyeloureteric system is unique in physiology in that the primary pacemaker resides in a population of atypical SMCs situated near the border of the renal papilla. 2. Atypical SMCs display high-frequency Ca(2+) transients upon the spontaneous release of Ca(2+) from inositol 1,4,5-trisphosphate (IP(3))-dependent stores that trigger cation-selective spontaneous transient depolarizations (STDs). In the presence of nifedipine, these Ca(2+) transients and STDs seldom propagate > 100 mum. Synchronization of STDs in neighbouring atypical SMCs into an electrical signal that can trigger action potential discharge and contraction in the typical SMC layer involves a coupled oscillator mechanism dependent on Ca(2+) entry through L-type voltage-operated Ca(2+) channels. 3. A population of spindle- or stellate-shaped cells, immunopositive for the tyrosine receptor kinase kit, is sparsely distributed throughout the pyeloureteric system. In addition, Ca(2+) transients and action potentials of long duration occurring at low frequencies have been recorded in a population of fusiform cells, which we have termed interstitial cells of Cajal (ICC)-like cells. 4. The electrical and Ca(2+) signals in ICC-like cells are abolished upon blockade of Ca(2+) release from either IP(3)- or ryanodine-dependent Ca(2+) stores. However, the spontaneous Ca(2+) signals in atypical SMCs or ICC-like cells are little affected in W/W(-v) transgenic mice, which have extensive lesions of their intestinal ICC networks. 5. In summary, we have developed a model of pyeloureteric pacemaking in which atypical SMCs are indeed the primary pacemakers, but the function of ICC-like cells has yet to be determined.
Collapse
Affiliation(s)
- Richard J Lang
- Department of Physiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Syyong HT, Yang HHC, Trinh G, Cheung C, Kuo KH, van Breemen C. Mechanism of asynchronous Ca(2+) waves underlying agonist-induced contraction in the rat basilar artery. Br J Pharmacol 2009; 156:587-600. [PMID: 19154440 DOI: 10.1111/j.1476-5381.2008.00063.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Uridine 5'-triphosphate (UTP) is a potent vasoconstrictor of cerebral arteries and induces Ca(2+) waves in vascular smooth muscle cells (VSMCs). This study aimed to determine the mechanisms underlying UTP-induced Ca(2+) waves in VSMCs of the rat basilar artery. EXPERIMENTAL APPROACH Isometric force and intracellular Ca(2+) ([Ca(2+)](i)) were measured in endothelium-denuded rat basilar artery using wire myography and confocal microscopy respectively. KEY RESULTS Uridine 5'-triphosphate (0.1-1000 micromol.L(-1)) concentration-dependently induced tonic contraction (pEC(50) = 4.34 +/- 0.13), associated with sustained repetitive oscillations in [Ca(2+)](i) propagating along the length of the VSMCs as asynchronized Ca(2+) waves. Inhibition of Ca(2+) reuptake in sarcoplasmic reticulum (SR) by cyclopiazonic acid abolished the Ca(2+) waves and resulted in a dramatic drop in tonic contraction. Nifedipine reduced the frequency of Ca(2+) waves by 40% and tonic contraction by 52%, and the nifedipine-insensitive component was abolished by SKF-96365, an inhibitor of receptor- and store-operated channels, and KB-R7943, an inhibitor of reverse-mode Na(+)/Ca(2+) exchange. Ongoing Ca(2+) waves and tonic contraction were also abolished after blockade of inositol-1,4,5-triphosphate-sensitive receptors by 2-aminoethoxydiphenylborate, but not by high concentrations of ryanodine or tetracaine. However, depletion of ryanodine-sensitive SR Ca(2+) stores prior to UTP stimulation prevented Ca(2+) waves. CONCLUSIONS AND IMPLICATIONS Uridine 5'-triphosphate-induced Ca(2+) waves may underlie tonic contraction and appear to be produced by repetitive cycles of regenerative Ca(2+) release from the SR through inositol-1,4,5-triphosphate-sensitive receptors. Maintenance of Ca(2+) waves requires SR Ca(2+) reuptake from Ca(2+) entry across the plasma membrane via L-type Ca(2+) channels, receptor- and store-operated channels, and reverse-mode Na(+)/Ca(2+) exchange.
Collapse
Affiliation(s)
- H T Syyong
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Sergeant GP, Craven M, Hollywood MA, McHale NG, Thornbury KD. Spontaneous Ca2+ waves in rabbit corpus cavernosum: modulation by nitric oxide and cGMP. J Sex Med 2008; 6:958-966. [PMID: 19138373 DOI: 10.1111/j.1743-6109.2008.01090.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Detumescent tone and subsequent relaxation by nitric oxide (NO) are essential processes that determine the erectile state of the penis. Despite this, the mechanisms involved are incompletely understood. It is often assumed that the tone is associated with a sustained high cytosolic Ca(2+) level in the corpus cavernosum smooth muscle cells, however, an alternative possibility is that oscillatory Ca(2+) signals regulate tone, and erection occurs as a result of inhibition of Ca(2+) oscillations by NO. AIMS The aim of this study is to determine if smooth muscle cells displayed spontaneous Ca(2+) oscillations and, if so, whether these were regulated by NO. METHODS Male New Zealand white rabbits were euthanized and smooth muscle cells were isolated by enzymatic dispersal for confocal imaging of intracellular Ca(2+) (using fluo-4AM) and patch clamp recording of spontaneous membrane currents. Thin tissue slices were also loaded with fluo-4AM for live imaging of Ca(2+). MAIN OUTCOME MEASURE Cytosolic Ca(2+) was measured in isolated smooth muscle cells and tissue slices. Results. Isolated rabbit corpus cavernosum smooth muscle cells developed spontaneous Ca(2+) waves that spread at a mean velocity of 65 microm/s. Dual voltage clamp/confocal recordings revealed that each of the Ca(2+) waves was associated with an inward current typical of the Ca(2+)-activated Cl(-) currents developed by these cells. The waves depended on an intact sarcoplasmic reticulum Ca(2+) store, as they were blocked by cyclopiazonic acid (Calbiochem, San Diego, CA, USA) and agents that interfere with ryanodine receptors and IP(3)-mediated Ca(2+) release. The waves were also inhibited by an NO donor (diethylamine NO; Tocris Bioscience, Bristol, Avon, UK), 3-(5-hydroxymethyl-2-furyl)-1-benzyl indazole (YC-1) (Alexis Biochemicals, Bingham, Notts, UK), 8-bromo-cyclic guanosine mono-phosphate (Tocris), and sildenafil (Viagra, Pfizer, Sandwich, Kent, UK). Regular Ca(2+) oscillations were also observed in whole tissue slices where they were clearly seen to precede contraction. This activity was also markedly inhibited by sildenafil, suggesting that it was under NO regulation. CONCLUSIONS These results provide a new basis for understanding detumescent tone in the corpus cavernosum and its inhibition by NO.
Collapse
Affiliation(s)
- Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Michael Craven
- Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland;.
| |
Collapse
|
50
|
Fritz N, Dabertrand F, Mironneau J, Macrez N, Morel JL. Acetylcholine evokes an InsP3R1-dependent transient Ca2+ signal in rat duodenum myocytes. Can J Physiol Pharmacol 2008; 86:626-32. [PMID: 18758512 DOI: 10.1139/y08-067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In smooth muscle myocytes, agonist-activated release of calcium ions (Ca2+) stored in the sarcoplasmic reticulum (SR) occurs via different but overlapping transduction pathways. Hence, to fully study how SR Ca2+ channels are activated, the simultaneous activation of different Ca2+ signals should be separated. In rat duodenum myocytes, we have previously characterized that acetylcholine (ACh) induces Ca2+ oscillations by binding to its M2 muscarinic receptor and activating the ryanodine receptor subtype 2. Here, we show that ACh simultaneously evokes a Ca2+ signal dependent on activation of inositol 1,4,5-trisphosphate (InsP3) receptor subtype 1. A pharmacologic approach, the use of antisense oligonucleotides directed against InsP3R1, and the expression of a specific biosensor derived from green-fluorescent protein coupled to the pleckstrin homology domain of phospholipase C, suggested that the InsP3R1-dependent Ca2+ signal is transient and due to a transient synthesis of InsP3 via M3 muscarinic receptor. Moreover, we suggest that both M2 and M3 signalling pathways are modulating phosphatidylinositol 4,5-bisphosphate and InsP3 concentration, thus describing closely interacting pathways activated by ACh in duodenum myocytes.
Collapse
Affiliation(s)
- Nicolas Fritz
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|