1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ji Y, Li R, Tang G, Wang W, Chen C, Yang Q. The interrelated roles of RAB family proteins in the advancement of neoplastic growth. Front Oncol 2025; 15:1513360. [PMID: 40196733 PMCID: PMC11974252 DOI: 10.3389/fonc.2025.1513360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Rab Proteins, A Subfamily Of The Ras Superfamily Of Small Gtpases, Are Critical Regulators Of Intracellular Vesicular Trafficking, Which Is Intricately Linked To Various Cellular Processes. These Proteins Play Essential Roles Not Only In Maintaining Cellular Homeostasis But Also In Mediating The Complex Interplay Between Cancer Cells and Their Microenvironment. Rab Proteins Can Act As Either Oncogenic Factors Or Tumor Suppressors, With Their Functions Highly Dependent On The Cellular Context. Mechanistic Studies Have Revealed That Rab Proteins Are Involved In A Variety Of Processes, Including Vesicular Transport, Tumor Microenvironment Regulation, Autophagy, Drug Resistance, and Metabolic Regulation, and Play Either A Promotional Or Inhibitory Role In Cancer Development. Consequently, Targeting Rab Gtpases To Restore Dysregulated Vesicular Transport Systems May Offer A Promising Therapeutic Strategy To Inhibit Cancer Progression. However, It Is Equally Important To Consider The Potential Risks Of Disrupting Rab Functions, As Their Roles Are Highly Context-Dependent and May Have Opposing Effects In Different Malignancies. This Review Focuses On The Multifaceted Involvement Of Rab Family Proteins In Cancer Progression Underscores Their Importance As Potential Therapeutic Targets and Underscores The Need For A Deeper Understanding Of Their Complex Roles In Tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Wenrui Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Changjie Chen
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qingling Yang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
3
|
Simsek Papur O, Glatz JFC, Luiken JJFP. Protein kinase-D1 and downstream signaling mechanisms involved in GLUT4 translocation in cardiac muscle. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119748. [PMID: 38723678 DOI: 10.1016/j.bbamcr.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Molecular Medicine, Institute of Health Science, Dokuz Eylül University, Izmir, Turkey
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands.
| |
Collapse
|
4
|
Garneau L, Mulvihill EE, Smith SR, Sparks LM, Aguer C. Myokine Secretion following an Aerobic Exercise Intervention in Individuals with Type 2 Diabetes with or without Exercise Resistance. Int J Mol Sci 2024; 25:4889. [PMID: 38732106 PMCID: PMC11084395 DOI: 10.3390/ijms25094889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1β, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.
Collapse
Affiliation(s)
- Léa Garneau
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Erin E. Mulvihill
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Lauren M. Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Céline Aguer
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
- Faculty of Medicine and Health Sciences, Department of Physiology, McGill University–Campus Outaouais, Gatineau, QC J8V 3T4, Canada
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Ducharme JB, McKenna ZJ, Specht JW, Fennel ZJ, Berkemeier QN, Deyhle MR. Divergent mechanisms regulate TLR4 expression on peripheral blood mononuclear cells following workload-matched exercise in normoxic and hypoxic environments. J Appl Physiol (1985) 2024; 136:33-42. [PMID: 37994415 DOI: 10.1152/japplphysiol.00626.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Exercise in hypoxia increases immune responses compared with normoxic exercise, and while Toll-like receptor 4 (TLR4) is implicated in these responses, its regulation remains undefined. The purpose of this study was to 1) investigate TLR4 regulation during workload-matched endurance exercise in normoxic and hypoxic conditions in vivo and 2) determine the independent effects of hypoxia and muscle contractions on TLR4 expression in vitro. Eight recreationally active men cycled for 1 h at 65% of their V̇o2max in normoxia (630 mmHg) and in hypobaric hypoxia (440 mmHg). Exercise in normoxia decreased TLR4 expressed on peripheral blood mononuclear cells (PBMCs), had no effect on the expression of inhibitor of κBα (IκBα), and increased the concentration of soluble TLR4 (sTLR4) in circulation. In contrast, exercise in hypoxia decreased the expression of TLR4 and IκBα in PBMCs, and sTLR4 in circulation. Markers of physiological stress were higher during exercise in hypoxia, correlating with markers of intestinal barrier damage, circulating lipopolysaccharides (LPS), and a concurrent decrease in circulating sTLR4, suggesting heightened TLR4 activation, internalization, and degradation in response to escalating physiological strain. In vitro, both hypoxia and myotube contractions independently, and in combination, reduced TLR4 expressed on C2C12 myotubes, and these effects were dependent on hypoxia-inducible factor 1 (HIF-1). In summary, the regulation of TLR4 varies depending on the physiological stress during exercise. To our knowledge, our study provides the first evidence of exercise-induced effects on sTLR4 in vivo and highlights the essential role of HIF-1 in the reduction of TLR4 during contraction and hypoxia in vitro.NEW & NOTEWORTHY We provide the first evidence of exercise affecting soluble Toll-like receptor 4 (sTLR4), a TLR4 ligand decoy receptor. We found that the degree of exercise-induced physiological stress influences TLR4 regulation on peripheral blood mononuclear cells (PBMCs). Moderate-intensity exercise reduces PBMC TLR4 and increases circulating sTLR4. Conversely, workload-matched exercise in hypoxia induces greater physiological stress, intestinal barrier damage, circulating lipopolysaccharides, and reduces both TLR4 and sTLR4, suggesting heightened TLR4 activation, internalization, and degradation under increased strain.
Collapse
Affiliation(s)
- Jeremy B Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jonathan W Specht
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Quint N Berkemeier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
6
|
Ray A, Wen J, Yammine L, Culver J, Parida IS, Garren J, Xue L, Hales K, Xiang Q, Birnbaum MJ, Zhang BB, Monetti M, McGraw TE. Regulated dynamic subcellular GLUT4 localization revealed by proximal proteome mapping in human muscle cells. J Cell Sci 2023; 136:jcs261454. [PMID: 38126809 PMCID: PMC10753500 DOI: 10.1242/jcs.261454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Regulation of glucose transport, which is central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter (also known as SLC2A4) in the plasma membrane (PM) of fat and muscle cells. Physiologic signals [such as activated insulin receptor or AMP-activated protein kinase (AMPK)] increase PM GLUT4. Here, we show that the distribution of GLUT4 between the PM and interior of human muscle cells is dynamically maintained, and that AMPK promotes PM redistribution of GLUT4 by regulating exocytosis and endocytosis. Stimulation of exocytosis by AMPK is mediated by Rab10 and the Rab GTPase-activating protein TBC1D4. APEX2 proximity mapping reveals that GLUT4 traverses both PM-proximal and PM-distal compartments in unstimulated muscle cells, further supporting retention of GLUT4 by a constitutive retrieval mechanism. AMPK-stimulated translocation involves GLUT4 redistribution among the same compartments traversed in unstimulated cells, with a significant recruitment of GLUT4 from the Golgi and trans-Golgi network compartments. Our comprehensive proximal protein mapping provides an integrated, high-density, whole-cell accounting of the localization of GLUT4 at a resolution of ∼20 nm that serves as a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in a physiologically relevant cell type.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lucie Yammine
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeff Culver
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | | | - Jeonifer Garren
- Global Biometrics and Data Management, Global Product Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - Liang Xue
- Early Clinical Development Biomedicine AI, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Qing Xiang
- Target Sciences, Pfizer Inc., New York, NY 10016, USA
| | - Morris J. Birnbaum
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Bei B. Zhang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Mara Monetti
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
7
|
Tanimoto A, Yamaguchi Y, Kadowaki T, Sakai E, Oyakawa S, Ono Y, Yoshida N, Tsukuba T. Rab44 negatively regulates myoblast differentiation by controlling fusogenic protein transport and mTORC1 signaling. J Cell Biochem 2023; 124:1486-1502. [PMID: 37566644 DOI: 10.1002/jcb.30457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Skeletal muscle is composed of multinucleated myotubes formed by the fusion of mononucleated myoblasts. Skeletal muscle differentiation, termed as myogenesis, have been investigated using the mouse skeletal myoblast cell line C2C12. It has been reported that several "small" Rab proteins, major membrane-trafficking regulators, possibly regulate membrane protein transport in C2C12 cells; however, the role of Rab proteins in myogenesis remains unexplored. Rab44, a member of "large" Rab GTPases, has recently been identified as a negative regulator of osteoclast differentiation. In this study, using C2C12 cells, we found that Rab44 expression was upregulated during myoblast differentiation into myotubes. Knockdown of Rab44 enhanced myoblast differentiation and myotube formation. Consistent with these results, Rab44 knockdown in myoblasts increased expression levels of several myogenic marker genes. Rab44 knockdown increased the surface accumulation of myomaker and myomixer, two fusogenic proteins required for multinucleation, implying enhanced cell fusion. Conversely, Rab44 overexpression inhibited myoblast differentiation and tube formation, accompanied by decreased expression of some myogenic markers. Furthermore, Rab44 was found to be predominantly localized in lysosomes, and Rab44 overexpression altered the number and size of lysosomes. Considering the underlying molecular mechanism, Rab44 overexpression impaired the signaling pathway of the mechanistic target of rapamycin complex1 (mTORC1) in C2C12 cells. Namely, phosphorylation levels of mTORC1 and downstream mTORC1 substrates, such as S6 and P70-S6K, were notably lower in Rab44 overexpressing cells than those in control cells. These results indicate that Rab44 negatively regulates myoblast differentiation into myotubes by controlling fusogenic protein transport and mTORC1 signaling.
Collapse
Affiliation(s)
- Ayuko Tanimoto
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shun Oyakawa
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Kumamoto University, Kumamoto, Japan
| | - Noriaki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Baek CH, Kim H, Moon SY, Yang WS. AMPK boosts ADAM10 shedding activity in human aortic endothelial cells by promoting Rab14-dependent ADAM10 cell surface translocation. Biochem Biophys Res Commun 2023; 675:54-60. [PMID: 37451218 DOI: 10.1016/j.bbrc.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
A disintegrin and metalloprotease 10 (ADAM10) regulates the expression of cell surface receptors such as tumor necrosis factor receptor 1, toll-like receptor 4, and the receptor for advanced glycation end products (RAGE) by cleaving their extracellular regions. To function as a sheddase, ADAM10 should translocate from the intracellular compartments to the cell surface, but the translocation mechanism remains unclear. In this study, we explored the possible role of adenosine monophosphate-activated protein kinase (AMPK) in the induction of ADAM10 shedding activity. In cultured human aortic endothelial cells (HAECs), 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator, boosted ADAM10 cell surface translocation and ectodomain shedding of RAGE. ADAM10 inhibition with GI 254023X and ADAM10 siRNA silencing both prevented AICAR-induced RAGE ectodomain shedding. AICAR increased AMPK phosphorylation as well. Both Compound C-mediated AMPK inhibition and AMPKα1-siRNA-mediated AMPK depletion suppressed AICAR-induced ADAM10 cell surface translocation and RAGE ectodomain shedding. On the other hand, siRNA knockdown of Rab14, a small GTPase that facilitates the intracellular trafficking of transmembrane proteins, prevented AICAR-induced ADAM10 cell surface translocation and RAGE ectodomain shedding. In conclusion, AMPK activation is an obvious inducer of ADAM10 shedding activity. Our findings suggest that AMPK boosts ADAM10 shedding activity in HAECs by promoting Rab14-dependent ADAM10 cell surface translocation.
Collapse
Affiliation(s)
- Chung Hee Baek
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyosang Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Young Moon
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Ray A, Wen J, Yammine L, Culver J, Garren J, Xue L, Hales K, Xiang Q, Birnbaum MJ, Zhang BB, Monetti M, McGraw TE. GLUT4 dynamic subcellular localization is controlled by AMP kinase activation as revealed by proximal proteome mapping in human muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543897. [PMID: 37333333 PMCID: PMC10274730 DOI: 10.1101/2023.06.06.543897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Regulation of glucose transport into muscle and adipocytes, central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter in the plasma membrane ( PM ). Physiologic signals (activated insulin receptor or AMP kinase [ AMPK ]), acutely increase PM GLUT4 to enhance glucose uptake. Here we show in kinetic studies that intracellular GLUT4 is in equilibrium with the PM in unstimulated cultured human skeletal muscle cells, and that AMPK promotes GLUT4 redistribution to the PM by regulating both exocytosis and endocytosis. AMPK-stimulation of exocytosis requires Rab10 and Rab GTPase activating protein TBC1D4, requirements shared with insulin control of GLUT4 in adipocytes. Using APEX2 proximity mapping, we identify, at high-density and high-resolution, the GLUT4 proximal proteome, revealing GLUT4 traverses both PM proximal and distal compartments in unstimulated muscle cells. These data support intracellular retention of GLUT4 in unstimulated muscle cells by a dynamic mechanism dependent on the rates of internalization and recycling. AMPK promoted GLUT4 translocation to the PM involves redistribution of GLUT4 among the same compartments traversed in unstimulated cells, with a significant redistribution of GLUT4 from the PM distal Trans Golgi Network Golgi compartments. The comprehensive proximal protein mapping provides an integrated, whole cell accounting of GLUT4's localization at a resolution of ∼20 nm, a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in physiologically relevant cell type and as such, sheds new light on novel key pathways and molecular components as potential therapeutic approaches to modulate muscle glucose uptake.
Collapse
|
10
|
Antonescu CN, Ishikura S, Bilan PJ, Klip A. Measurement of GLUT4 Traffic to and from the Cell Surface in Muscle Cells. Curr Protoc 2023; 3:e803. [PMID: 37367531 DOI: 10.1002/cpz1.803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Elevated blood glucose following a meal is cleared by insulin-stimulated glucose entry into muscle and fat cells. The hormone increases the amount of the glucose transporter GLUT4 at the plasma membrane in these tissues at the expense of preformed intracellular pools. In addition, muscle contraction also increases glucose uptake via a gain in GLUT4 at the plasma membrane. Regulation of GLUT4 levels at the cell surface could arise from alterations in the rate of its exocytosis, endocytosis, or both. Hence, methods that can independently measure these traffic parameters for GLUT4 are essential to understanding the mechanism of regulation of membrane traffic of the transporter. Here, we describe cell population-based assays to measure the steady-state levels of GLUT4 at the cell surface, as well as to separately measure the rates of GLUT4 endocytosis and endocytosis. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Measuring steady-state cell surface GLUT4myc Basic Protocol 2: Measuring steady-state cell surface GLUT4-HA Basic Protocol 3: Measuring GLUT4myc endocytosis Basic Protocol 4: Measuring GLUT4myc exocytosis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | | | - Philip J Bilan
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Glucose Uptake Is Increased by Estradiol Dipropionate in L6 Skeletal Muscle Cells. Pharmaceuticals (Basel) 2022; 16:ph16010025. [PMID: 36678522 PMCID: PMC9866800 DOI: 10.3390/ph16010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
GLUT4 is an important glucose transporter, which is closely related to insulin resistance and type 2 diabetes. In this study, we investigated the mechanism of Estradiol Dipropionate (EDP) on uptake of glucose in L6 skeletal muscle cells. In our study, we confirmed that EDP promoted uptake of glucose in L6 skeletal muscle cells in both normal and insulin resistant models. Western blot indicated that EDP accelerated GLUT4 expression and significantly activated AMPK and PKC phosphorylation; the expression of GLUT4 was significantly inhibited by AMPK inhibitor compound C and PKC inhibitor Gö6983, but not by Wortmannin (Akt inhibitor). Meanwhile, EDP boosted GLUT4 expression, and also increased intracellular Ca2+ levels. In the presence of 2 mM, 0 mM extracellular Ca2+ and 0 mM extracellular Ca2+ + BAPTA-AM, the involvement of intracellular Ca2+ levels contribute to EDP-induced GLUT4 expression and fusion with plasma membrane. Therefore, this study investigated whether EDP promoted GLUT4 expression through AMPK and PKC signaling pathways, thereby enhancing GLUT4 uptake of glucose and fusion into plasma membrane in L6 skeletal muscle cells. In addition, both EDP induced GLUT4 translocation and uptake of glucose were Ca2+ dependent. These findings suggested that EDP may be potential drug for the treatment of type 2 diabetes.
Collapse
|
12
|
Liu S, Qi R, Zhang J, Zhang C, Chen L, Yao Z, Niu W. Kalirin mediates Rac1 activation downstream of calcium/calmodulin-dependent protein kinase II to stimulate glucose uptake during muscle contraction. FEBS Lett 2022; 596:3159-3175. [PMID: 35716086 DOI: 10.1002/1873-3468.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023]
Abstract
In this study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in contraction-stimulated glucose uptake in skeletal muscle. C2C12 myotubes were contracted by electrical pulse stimulation (EPS), and treadmill running was used to exercise mice. The activities of CaMKII, the small G protein Rac1, and the Rac1 effector kinase PAK1 were elevated in muscle by running exercise or EPS, while they were lowered by the CaMKII inhibitor KN-93 and/or small interfering RNA (siRNA)-mediated knockdown. EPS induced the mRNA and protein expression of the Rac1-GEF Kalirin in a CaMKII-dependent manner. EPS-induced Rac1 activation was lowered by the Kalirin inhibitor ITX3 or siRNA-mediated Kalirin knockdown. KN-93, ITX3, and siRNA-mediated Kalirin knockdown reduced EPS-induced glucose uptake. These findings define a CaMKII-Kalirin-Rac1 signaling pathway that contributes to contraction-stimulated glucose uptake in skeletal muscle myotubes and tissue.
Collapse
Affiliation(s)
- Sasa Liu
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Rui Qi
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Juan Zhang
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Chang Zhang
- Department of Pharmacy, General Hospital, Tianjin Medical University, China
| | - Liming Chen
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Zhi Yao
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Wenyan Niu
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| |
Collapse
|
13
|
Characteristics of the Protocols Used in Electrical Pulse Stimulation of Cultured Cells for Mimicking In Vivo Exercise: A Systematic Review, Meta-Analysis, and Meta-Regression. Int J Mol Sci 2022; 23:ijms232113446. [PMID: 36362233 PMCID: PMC9657802 DOI: 10.3390/ijms232113446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
While exercise benefits a wide spectrum of diseases and affects most tissues and organs, many aspects of its underlying mechanistic effects remain unsolved. In vitro exercise, mimicking neuronal signals leading to muscle contraction in vitro, can be a valuable tool to address this issue. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for this systematic review and meta-analysis, we searched EMBASE and PubMed (from database inception to 4 February 2022) for relevant studies assessing in vitro exercise using electrical pulse stimulation to mimic exercise. Meta-analyses of mean differences and meta-regression analyses were conducted. Of 985 reports identified, 41 were eligible for analysis. We observed variability among existing protocols of in vitro exercise and heterogeneity among protocols of the same type of exercise. Our analyses showed that AMPK, Akt, IL-6, and PGC1a levels and glucose uptake increased in stimulated compared to non-stimulated cells, following the patterns of in vivo exercise, and that these effects correlated with the duration of stimulation. We conclude that in vitro exercise follows motifs of exercise in humans, allowing biological parameters, such as the aforementioned, to be valuable tools in defining the types of in vitro exercise. It might be useful in transferring obtained knowledge to human research.
Collapse
|
14
|
Stocks B, Zierath JR. Post-translational Modifications: The Signals at the Intersection of Exercise, Glucose Uptake, and Insulin Sensitivity. Endocr Rev 2022; 43:654-677. [PMID: 34730177 PMCID: PMC9277643 DOI: 10.1210/endrev/bnab038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/19/2022]
Abstract
Diabetes is a global epidemic, of which type 2 diabetes makes up the majority of cases. Nonetheless, for some individuals, type 2 diabetes is eminently preventable and treatable via lifestyle interventions. Glucose uptake into skeletal muscle increases during and in recovery from exercise, with exercise effective at controlling glucose homeostasis in individuals with type 2 diabetes. Furthermore, acute and chronic exercise sensitizes skeletal muscle to insulin. A complex network of signals converge and interact to regulate glucose metabolism and insulin sensitivity in response to exercise. Numerous forms of post-translational modifications (eg, phosphorylation, ubiquitination, acetylation, ribosylation, and more) are regulated by exercise. Here we review the current state of the art of the role of post-translational modifications in transducing exercise-induced signals to modulate glucose uptake and insulin sensitivity within skeletal muscle. Furthermore, we consider emerging evidence for noncanonical signaling in the control of glucose homeostasis and the potential for regulation by exercise. While exercise is clearly an effective intervention to reduce glycemia and improve insulin sensitivity, the insulin- and exercise-sensitive signaling networks orchestrating this biology are not fully clarified. Elucidation of the complex proteome-wide interactions between post-translational modifications and the associated functional implications will identify mechanisms by which exercise regulates glucose homeostasis and insulin sensitivity. In doing so, this knowledge should illuminate novel therapeutic targets to enhance insulin sensitivity for the clinical management of type 2 diabetes.
Collapse
Affiliation(s)
- Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Liu S, Zhang J, Qi R, Deng B, Ni Y, Zhang C, Niu W. CaMKII and Kalirin, a Rac1-GEF, regulate Akt phosphorylation involved in contraction-induced glucose uptake in skeletal muscle cells. Biochem Biophys Res Commun 2022; 610:170-175. [DOI: 10.1016/j.bbrc.2022.03.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 12/22/2022]
|
16
|
Vepkhvadze TF, Vorotnikov AV, Popov DV. Electrical Stimulation of Cultured Myotubes in vitro as a Model of Skeletal Muscle Activity: Current State and Future Prospects. BIOCHEMISTRY (MOSCOW) 2021; 86:597-610. [PMID: 33993862 DOI: 10.1134/s0006297921050084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscles comprise more than a third of human body mass and critically contribute to regulation of body metabolism. Chronic inactivity reduces metabolic activity and functional capacity of muscles, leading to metabolic and other disorders, reduced life quality and duration. Cellular models based on progenitor cells isolated from human muscle biopsies and then differentiated into mature fibers in vitro can be used to solve a wide range of experimental tasks. The review discusses the aspects of myogenesis dynamics and regulation, which might be important in the development of an adequate cell model. The main function of skeletal muscle is contraction; therefore, electrical stimulation is important for both successful completion of myogenesis and in vitro modeling of major processes induced in the skeletal muscle by acute or regular physical exercise. The review analyzes the drawbacks of such cellular model and possibilities for its optimization, as well as the prospects for its further application to address fundamental aspects of muscle physiology and biochemistry and explore cellular and molecular mechanisms of metabolic diseases.
Collapse
Affiliation(s)
- Tatiana F Vepkhvadze
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Alexander V Vorotnikov
- National Medical Research Center of Cardiology, Ministry of Healthcare of the Russian Federation, Moscow, 121552, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia. .,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
17
|
Nakamura T, Takagi S, Okuzaki D, Matsui S, Fujisato T. Hypoxia transactivates cholecystokinin gene expression in 3D-engineered muscle. J Biosci Bioeng 2021; 132:64-70. [PMID: 33840593 DOI: 10.1016/j.jbiosc.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
At high altitudes, the hypoxic atmosphere decreases the oxygen partial pressure in the body, inducing several metabolic changes in tissues and cells. Furthermore, it exerts potent anorectic effects, thus causing an energy deficit. Two decades ago, a marked increase in the resting level of plasma cholecystokinin (CCK) was observed in humans at the Mt. Kanchenjunga basecamp, located at 5100 m above the sea level, compared to sea-level control values. Interestingly, acute exercise also raises plasma CCK and exerts potent anorectic effects under normoxic conditions. However, the transcriptional regulations of Cck gene underlying these effects have not yet been established. Here, we employed acute electrical pulse stimulation (EPS) followed by microarray analysis to discover novel myokines in 3D-engineered muscle. Acute EPS affects the contractile function, inducing a decline in the contractile force. Surprisingly, microarray analysis revealed an EPS-induced activation of cholecystokinin receptor (CCKR)-mediated signaling. Furthermore, Cck was constitutively upregulated in 3D-engineered muscle, and its expression increased under hypoxic conditions. Notably, a hypoxia-responsive element was detected in the Cck promoters of mice and humans. Our results suggested that hypoxia transactivated Cck expression in 3D-engineered muscle. Furthermore, the elevation in plasma CCK levels following acute exercise or at high altitude might be partly attributed to myogenic cells.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| | - Shunya Takagi
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Seika Matsui
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| | - Toshia Fujisato
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan.
| |
Collapse
|
18
|
AKT2 regulates development and metabolic homeostasis via AMPK-depedent pathway in skeletal muscle. Clin Sci (Lond) 2021; 134:2381-2398. [PMID: 32880392 DOI: 10.1042/cs20191320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial. The present study aims to investigate whether AKT2 deficiency causes deficits in skeletal muscle development and metabolism, we analyzed the expression of molecules related to skeletal muscle development, glucose uptake and metabolism in mice of 3- and 8-months old. We found that AMP-activated protein kinase (AMPK) phosphorylation and myocyte enhancer factor 2 (MEF2) A (MEF2A) expression were down-regulated in AKT2 knockout (KO) mice, which can be inverted by AMPK activation. We also observed reduced mitochondrial DNA (mtDNA) abundance and reduced expression of genes involved in mitochondrial biogenesis in the skeletal muscle of AKT2 KO mice, which was prevented by AMPK activation. Moreover, AKT2 KO mice exhibited impaired AMPK signaling in response to insulin stimulation compared with WT mice. Our study establishes a new and important function of AKT2 in regulating skeletal muscle development and glucose metabolism via AMPK-dependent signaling.
Collapse
|
19
|
Tamura Y, Kouzaki K, Kotani T, Nakazato K. Electrically stimulated contractile activity-induced transcriptomic responses and metabolic remodeling in C 2C 12 myotubes: twitch vs. tetanic contractions. Am J Physiol Cell Physiol 2020; 319:C1029-C1044. [PMID: 32936700 DOI: 10.1152/ajpcell.00494.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contraction of myotubes using electrical pulse stimulation is a research tool used to mimic muscle contractile activity and exercise in rodents and humans. Most protocols employed in previous work used low-frequency twitch contractions. However, high-frequency tetanus contractions that are more physiologically relevant to muscle contractions in vivo are poorly characterized. In this report, the similarities and differences in acute responses and chronic adaptations with different contractile modes using twitches (2 Hz, continuous, 3 h) and tetanus (66 Hz, on: 5 s/off: 5 s, 3 h) were investigated. RNA sequencing-based transcriptome analysis and subsequent bioinformatics analysis suggest that tetanus may promote bioenergetic remodeling rather than twitch. Based on in silico analyses, metabolic remodeling after three contractile sessions of twitch and tetanus were investigated. Although twitch and tetanus had no significant effect on glycolysis, both types of contraction upregulated glucose oxidation capacity. Both twitch and tetanus qualitatively caused mitochondrial adaptations (increased content, respiratory chain enzyme activity, and respiratory function). The magnitude of adaptation was much greater under tetanus conditions. Our findings indicate that the contraction of myotubes by tetanus may be a useful experimental model, especially in the study of metabolic adaptations in C2C12 myotubes.
Collapse
Affiliation(s)
- Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
20
|
Yue Y, Zhang C, Zhao X, Liu S, Lv X, Zhang S, Yang J, Chen L, Duan H, Zhang Y, Yao Z, Niu W. Tiam1 mediates Rac1 activation and contraction-induced glucose uptake in skeletal muscle cells. FASEB J 2020; 35:e21210. [PMID: 33225507 DOI: 10.1096/fj.202001312r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022]
Abstract
Contraction-stimulated glucose uptake in skeletal muscle requires Rac1, but the molecular mechanism of its activation is not fully understood. Treadmill running was applied to induce C57BL/6 mouse hind limb skeletal muscle contraction in vivo and electrical pulse stimulation contracted C2C12 myotube cultures in vitro. The protein levels or activities of AMPK or the Rac1-specific GEF, Tiam1, were manipulated by activators, inhibitors, siRNA-mediated knockdown, and adenovirus-mediated expression. Activated Rac1 was detected by a pull-down assay and immunoblotting. Glucose uptake was measured using the 2-NBD-glucose fluorescent analog. Electrical pulse stimulated contraction or treadmill exercise upregulated the expression of Tiam1 in skeletal muscle in an AMPK-dependent manner. Axin1 siRNA-mediated knockdown diminished AMPK activation and upregulation of Tiam1 protein expression by contraction. Tiam1 siRNA-mediated knockdown diminished contraction-induced Rac1 activation, GLUT4 translocation, and glucose uptake. Contraction increased Tiam1 gene expression and serine phosphorylation of Tiam1 protein via AMPK. These findings suggest Tiam1 is part of an AMPK-Tiam1-Rac1 signaling pathway that mediates contraction-stimulated glucose uptake in skeletal muscle cells and tissue.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Chang Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoyun Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sasa Liu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoting Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China.,Clinical Laboratory, Cangzhou People's Hospital, Cangzhou, China
| | - Shitian Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jianming Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hongquan Duan
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Manglani K, Dey CS. Tankyrase inhibition augments neuronal insulin sensitivity and glucose uptake via AMPK-AS160 mediated pathway. Neurochem Int 2020; 141:104854. [PMID: 33002563 DOI: 10.1016/j.neuint.2020.104854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 11/28/2022]
Abstract
Tankyrase, a member of poly (ADP-ribose) polymerase (PARP) family, regulates various cellular pathways including wnt signaling, telomere maintenance and mitosis, has become a prime target for the development of cancer therapeutics. Inhibition of tankyrase, which leads to its increased cellular accumulation, reveal the role of tankyrase in the regulation of Glucose transporter type 4 (GLUT4) translocation and glucose homeostasis in peripheral insulin responsive tissues. While in adipocytes inhibition of tankyrase improves insulin sensitivity and glucose uptake, its inhibition in skeletal muscle leads to development of insulin resistance. Evidently further studies are required to determine the broader perspective of tankyrase in other cellular systems in regulating insulin signaling and insulin resistance. Role of tankyrase in neuronal tissues/cells has not been tested. In the present study, we investigated the effect of tankyrase inhibition in insulin-sensitive and insulin-resistant Neuro-2a cells. Here, we report that XAV939 treatment, a tankyrase inhibitor, improves insulin-stimulated glucose uptake in insulin-sensitive as well as in insulin-resistant neuronal cells via AMP-activated protein kinase (AMPK) - AKT Substrate of 160 kDa (AS160) mediated pathway without affecting the phosphorylation/activation of AKT. AMPK inhibition by Compound C repressed XAV939 treatment mediated increase in glucose uptake, confirming the role of tankyrase in glucose uptake via AMPK. We show for the first time that inhibition of tankyrase significantly improves glucose uptake and insulin sensitivity of insulin-resistant neuronal cells via AMPK-AS160 mediated pathway. Our study demonstrates new mechanistic insights of tankyrase mediated regulation of insulin sensitivity as well as glucose uptake in neuronal cells.
Collapse
Affiliation(s)
- Kapil Manglani
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
22
|
D'Alessandro R, Meldolesi J. News about non-secretory exocytosis: mechanisms, properties, and functions. J Mol Cell Biol 2020; 11:736-746. [PMID: 30605539 PMCID: PMC6821209 DOI: 10.1093/jmcb/mjy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.
Collapse
Affiliation(s)
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele and Vita Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| |
Collapse
|
23
|
Yue Y, Zhang C, Zhang X, Zhang S, Liu Q, Hu F, Lv X, Li H, Yang J, Wang X, Chen L, Yao Z, Duan H, Niu W. An AMPK/Axin1-Rac1 signaling pathway mediates contraction-regulated glucose uptake in skeletal muscle cells. Am J Physiol Endocrinol Metab 2020; 318:E330-E342. [PMID: 31846370 DOI: 10.1152/ajpendo.00272.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Contraction stimulates skeletal muscle glucose uptake predominantly through activation of AMP-activated protein kinase (AMPK) and Rac1. However, the molecular details of how contraction activates these signaling proteins are not clear. Recently, Axin1 has been shown to form a complex with AMPK and liver kinase B1 during glucose starvation-dependent activation of AMPK. Here, we demonstrate that electrical pulse-stimulated (EPS) contraction of C2C12 myotubes or treadmill exercise of C57BL/6 mice enhanced reciprocal coimmunoprecipitation of Axin1 and AMPK from myotube lysates or gastrocnemius muscle tissue. Interestingly, EPS or exercise upregulated total cellular Axin1 levels in an AMPK-dependent manner in C2C12 myotubes and gastrocnemius mouse muscle, respectively. Also, direct activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide treatment of C2C12 myotubes or gastrocnemius muscle elevated Axin1 protein levels. On the other hand, siRNA-mediated Axin1 knockdown lessened activation of AMPK in contracted myotubes. Further, AMPK inhibition with compound C or siRNA-mediated knockdown of AMPK or Axin1 blocked contraction-induced GTP loading of Rac1, p21-activated kinase phosphorylation, and contraction-stimulated glucose uptake. In summary, our results suggest that an AMPK/Axin1-Rac1 signaling pathway mediates contraction-stimulated skeletal muscle glucose uptake.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chang Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- School of Pharmacy, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xuejiao Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shitian Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fang Hu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoting Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hanqi Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jianming Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xinli Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hongquan Duan
- School of Pharmacy, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
24
|
Son YH, Lee SM, Lee SH, Yoon JH, Kang JS, Yang YR, Kwon KS. Comparative molecular analysis of endurance exercise in vivo with electrically stimulated in vitro myotube contraction. J Appl Physiol (1985) 2019; 127:1742-1753. [DOI: 10.1152/japplphysiol.00091.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exercise has positive effects on health and improves a variety of disease conditions. An in vitro model of exercise has been developed to better understand its molecular mechanisms. While various conditions have been used to mimic in vivo exercise, no specific conditions have matched a specific type of in vivo exercise. Here, we screened various electrical pulse stimulation (EPS) conditions and compared the molecular events under each condition in myotube culture with that obtained under voluntary wheel running (VWR), a mild endurance exercise, in mice. Both EPS and VWR upregulated the mRNA levels of genes involved in the slow-type twitch ( Myh7 and Myh2) and myogenesis ( Myod and Myog) and increased the protein expression of peroxisome proliferator-activated receptor-γ coactivator-1α, which is involved in mitochondrial biogenesis. These changes were accompanied by activation of p38 and AMPK. However, neither condition induced the expression of muscle-specific E3 ligases such as MAFbx and MuRF1. Both EPS and VWR consistently induced antioxidant genes such as Sod3 and Gpx4 but did not cause similar changes in the expression levels of the calcium channel/pump-related genes Ryr and Serca. Furthermore, both EPS and VWR reduced glycogen levels but not lactate levels as assessed in post-EPS culture medium and post-VWR serum, respectively. Thus we identified an in vitro EPS condition that effectively mimics VWR in mice, which can facilitate further studies of the detailed molecular mechanisms of endurance exercise in the absence of interference from multiple tissues and organs. NEW & NOTEWORTHY This study establishes an optimal condition for electrical pulse stimulation (EPS) in myotubes that shows a similar molecular signature as voluntary wheel running. The specific EPS condition 1) upregulates the mRNA of slow-twitch muscle components and myogenic transcription factors, 2) induces antioxidant genes without any muscle damage, and 3) promotes peroxisome proliferator-activated receptor-γ coactivator-1α and its upstream regulators involved in mitochondrial biogenesis.
Collapse
Affiliation(s)
- Young Hoon Son
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seol Hee Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jong Hyeon Yoon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Sook Kang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
25
|
Fujimoto BA, Young M, Carter L, Pang APS, Corley MJ, Fogelgren B, Polgar N. The exocyst complex regulates insulin-stimulated glucose uptake of skeletal muscle cells. Am J Physiol Endocrinol Metab 2019; 317:E957-E972. [PMID: 31593505 PMCID: PMC6962504 DOI: 10.1152/ajpendo.00109.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 01/16/2023]
Abstract
Skeletal muscle handles ~80-90% of the insulin-induced glucose uptake. In skeletal muscle, insulin binding to its cell surface receptor triggers redistribution of intracellular glucose transporter GLUT4 protein to the cell surface, enabling facilitated glucose uptake. In adipocytes, the eight-protein exocyst complex is an indispensable constituent in insulin-induced glucose uptake, as it is responsible for the targeted trafficking and plasma membrane-delivery of GLUT4. However, the role of the exocyst in skeletal muscle glucose uptake has never been investigated. Here we demonstrate that the exocyst is a necessary factor in insulin-induced glucose uptake in skeletal muscle cells as well. The exocyst complex colocalizes with GLUT4 storage vesicles in L6-GLUT4myc myoblasts at a basal state and associates with these vesicles during their translocation to the plasma membrane after insulin signaling. Moreover, we show that the exocyst inhibitor endosidin-2 and a heterozygous knockout of Exoc5 in skeletal myoblast cells both lead to impaired GLUT4 trafficking to the plasma membrane and hinder glucose uptake in response to an insulin stimulus. Our research is the first to establish that the exocyst complex regulates insulin-induced GLUT4 exocytosis and glucose metabolism in muscle cells. A deeper knowledge of the role of the exocyst complex in skeletal muscle tissue may help our understanding of insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Brent A Fujimoto
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Madison Young
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Lamar Carter
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Alina P S Pang
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Michael J Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
26
|
Chen W, Nyasha MR, Koide M, Tsuchiya M, Suzuki N, Hagiwara Y, Aoki M, Kanzaki M. In vitro exercise model using contractile human and mouse hybrid myotubes. Sci Rep 2019; 9:11914. [PMID: 31417107 PMCID: PMC6695424 DOI: 10.1038/s41598-019-48316-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 01/24/2023] Open
Abstract
Contraction of cultured myotubes with application of electric pulse stimulation (EPS) has been utilized for investigating cellular responses associated with actual contractile activity. However, cultured myotubes derived from human subjects often exhibit relatively poor EPS-evoked contractile activity, resulting in minimal contraction-inducible responses (i.e. myokine secretion). We herein describe an “in vitro exercise model”, using hybrid myotubes comprised of human myoblasts and murine C2C12 myoblasts, exhibiting vigorous contractile activity in response to EPS. Species-specific analyses including RT-PCR and the BioPlex assay allowed us to separately evaluate contraction-inducible gene expressions and myokine secretions from human and mouse constituents of hybrid myotubes. The hybrid myotubes, half of which had arisen from primary human satellite cells obtained from biopsy samples, exhibited remarkable increases in the secretions of human cytokines (myokines) including interleukins (IL-6, IL-8, IL-10, and IL16), CXC chemokines (CXCL1, CXCL2, CXCL5, CXCL6, CXCL10), CC chemokines (CCL1, CCL2, CCL7, CCL8, CCL11, CCL13, CCL16, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL27), and IFN-γ in response to EPS-evoked contractile activity. Together, these results indicate that inadequacies arising from human muscle cells are effectively overcome by fusing them with murine C2C12 cells, thereby supporting the development of contractility and the resulting cellular responses of human-origin muscle cells. Our approach, using hybrid myotubes, further expands the usefulness of the “in vitro exercise model”.
Collapse
Affiliation(s)
- Weijian Chen
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Mazvita R Nyasha
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 980-8575, Sendai, Japan
| | - Masahiro Tsuchiya
- Department of Nursing, Tohoku Fukushi University, 981-8522, Sendai, Japan
| | - Naoki Suzuki
- Department of Neuroscience, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 980-8575, Sendai, Japan
| | - Masashi Aoki
- Department of Neuroscience, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579, 6-6-04 Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| |
Collapse
|
27
|
Takaguri A. Elucidation of a New Mechanism of Onset of Insulin Resistance: Effects of Statins and Tumor Necrosis Factor-α on Insulin Signal Transduction. YAKUGAKU ZASSHI 2018; 138:1329-1334. [DOI: 10.1248/yakushi.18-00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| |
Collapse
|
28
|
In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch 2018; 471:413-429. [PMID: 30291430 DOI: 10.1007/s00424-018-2210-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Collapse
|
29
|
Regulation of RabGAPs involved in insulin action. Biochem Soc Trans 2018; 46:683-690. [PMID: 29784647 DOI: 10.1042/bst20170479] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Rab (Ras-related proteins in brain) GTPases are key proteins responsible for a multiplicity of cellular trafficking processes. Belonging to the family of monomeric GTPases, they are regulated by cycling between their active GTP-bound and inactive GDP-bound conformations. Despite possessing a slow intrinsic GTP hydrolysis activity, Rab proteins rely on RabGAPs (Rab GTPase-activating proteins) that catalyze GTP hydrolysis and consequently inactivate the respective Rab GTPases. Two related RabGAPs, TBC1D1 and TBC1D4 (=AS160) have been described to be associated with obesity-related traits and type 2 diabetes in both mice and humans. Inactivating mutations of TBC1D1 and TBC1D4 lead to substantial changes in trafficking and subcellular distribution of the insulin-responsive glucose transporter GLUT4, and to subsequent alterations in energy substrate metabolism. The activity of the RabGAPs is controlled through complex phosphorylation events mediated by protein kinases including AKT and AMPK, and by putative regulatory interaction partners. However, the dynamics and downstream events following phosphorylation are not well understood. This review focuses on the specific role and regulation of TBC1D1 and TBC1D4 in insulin action.
Collapse
|
30
|
Tsuchiya M, Sekiai S, Hatakeyama H, Koide M, Chaweewannakorn C, Yaoita F, Tan-No K, Sasaki K, Watanabe M, Sugawara S, Endo Y, Itoi E, Hagiwara Y, Kanzaki M. Neutrophils Provide a Favorable IL-1-Mediated Immunometabolic Niche that Primes GLUT4 Translocation and Performance in Skeletal Muscles. Cell Rep 2018; 23:2354-2364. [DOI: 10.1016/j.celrep.2018.04.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/09/2018] [Accepted: 04/14/2018] [Indexed: 11/27/2022] Open
|
31
|
Shang L, Chen T, Deng Y, Huang Y, Huang Y, Xian J, Lu W, Yang L, Huang Q. Caveolin-3 promotes glycometabolism, growth and proliferation in muscle cells. PLoS One 2017; 12:e0189004. [PMID: 29206848 PMCID: PMC5716543 DOI: 10.1371/journal.pone.0189004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 11/18/2022] Open
Abstract
Objective Caveolin-3 (CAV3) protein is known to be expressed specifically in various myocytes, but its physiological function remains unclear. CAV3, located at the cell membrane, may promote the sensitivity of the Akt signaling pathway, which is closely related to glucose metabolism and to cell growth and proliferation. Methods The CAV3 gene was stably transfected into C2C12 muscle cells, and the effects were evaluated by biochemical assays, WB and confocal microscopy for the observation of cellular glucose metabolism, growth and proliferation, and the effect of CAV3 on the Akt signaling pathway with no insulin stimulation. Results After C2C12 cells were transfected with the mouse CAV3 gene, which increased CAV3 expression, the abundance of the CAV3 and GLUT4 proteins on the cell membrane increased, but the total GLUT4 protein content of the cell was unchanged. Glucose uptake was increased, and this did not affect the glycogen synthesis, but the cell surface area and cell proliferation increased. While there were significant increases in p-Akt and p-p70s6K, which is a downstream component of Akt signaling, the level of GSK3β protein, another component of Akt signaling did not change. Conclusions The muscle, CAV3 protein can activate Akt signaling, increase GLUT4 protein localization in the cell membrane, increase glucose uptake, and promote myocyte growth and proliferation. CAV3 protein has a physiological role in glycometabolism, growth and proliferation, independent of insulin stimulation.
Collapse
Affiliation(s)
- Lina Shang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yufeng Deng
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiyuan Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanheng Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wensheng Lu
- Department of Endocrinology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Lihui Yang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Huang
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|