1
|
Mirabent-Casals M, Caña-Bozada VH, Morales-Serna FN, Martínez-Brown JM, Medina-Guerrero RM, Hernández-Cornejo R, García-Gasca A. Transcriptomic analysis of immune-related genes in Pacific white snook (Centropomus viridis) gills infected with the monogenean parasite Rhabdosynochus viridisi. Parasitol Int 2025; 104:102981. [PMID: 39426511 DOI: 10.1016/j.parint.2024.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The parasite Rhabdosynochus viridisi (Platyhelminthes: Monogenea) infects the Pacific white snook Centropomus viridis gills and can cause adverse effects in the aquaculture industry. The immune responses of Pacific white snook to monogenean infections are poorly understood. Thus, this study aimed to identify differentially expressed genes (DEGs) in the gills of Pacific white snook juveniles experimentally infected with R. viridisi, emphasizing immune-related genes and pathways activated or suppressed during the infection. RNA sequencing was performed on the gills of uninfected (control) and infected fish. The algorithm Seq2Fun was selected without a reference transcriptome to map the reads to transcripts of fishes available from a database for gene orthologs (EcoOmics) and obtain the counting table. The ExpressAnalyst software was used for differential expression and functional analyses. A total of 20,106 transcripts were found, and 1430 (7 %) were differentially expressed genes (DEGs) between infected and control groups. We identified 860 (60 %) downregulated and 570 (40 %) upregulated genes. Thirteen canonical pathways after the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were overrepresented, and most of the DEGs were downregulated, suggesting the inactivation of these pathways. The functions of most of the DEGs with higher fold change found in this study are poorly understood in fish. Even though the well-known pro-inflammatory cytokines remained unchanged in infected gills of C. viridis, and transforming growth factor β (tgfβ) was downregulated, interleukin-17 ligands il17d and il17a/f1, as well as C-X-C motif chemokine receptor 2 (cxcr2) genes were upregulated, indicating that the infection with R. viridisi promotes Th17-like immunity. Overexpression of plasma B cell activity markers such as immunoglobulin light chain-like genes and the v-set pre-B cell surrogate light chain 3 (vpreb3) was also detected in this study. The possible implications of DEGs related to calcium imbalance, hypoxia adaptation, hemostasis, and immunity are discussed. These results will support future studies to improve the prevention and treatment of monogenean infections in finfish aquaculture.
Collapse
Affiliation(s)
- Marian Mirabent-Casals
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Víctor Hugo Caña-Bozada
- Laboratory of Parasitology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Francisco Neptalí Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, Mazatlán 82040, Sinaloa, Mexico.
| | - Juan Manuel Martínez-Brown
- Laboratory of Reproduction and Marine Fish Hatchery, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Rosa María Medina-Guerrero
- Laboratory of Parasitology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Rubí Hernández-Cornejo
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Alejandra García-Gasca
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| |
Collapse
|
2
|
Sarg NH, Zaher DM, Abu Jayab NN, Mostafa SH, Ismail HH, Omar HA. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts. Biochem Pharmacol 2024; 225:116307. [PMID: 38797269 DOI: 10.1016/j.bcp.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Mitochondria play a crucial role in cellular metabolism and bioenergetics, orchestrating various cellular processes, including energy production, metabolism, adaptation to stress, and redox balance. Besides, mitochondria regulate cellular metabolic homeostasis through coordination with multiple signaling pathways. Importantly, the p38 mitogen-activated protein kinase (MAPK) signaling pathway is a key player in the intricate communication with mitochondria, influencing various functions. This review explores the multifaced interaction between the mitochondria and p38 MAPK signaling and the consequent impact on metabolic alterations. Overall, the p38 MAPK pathway governs the activities of key mitochondrial proteins, which are involved in mitochondrial biogenesis, oxidative phosphorylation, thermogenesis, and iron homeostasis. Additionally, p38 MAPK contributes to the regulation of mitochondrial responses to oxidative stress and apoptosis induced by cancer therapies or natural substances by coordinating with other pathways responsible for energy homeostasis. Therefore, dysregulation of these interconnected pathways can lead to various pathologies characterized by aberrant metabolism. Consequently, gaining a deeper understanding of the interaction between mitochondria and the p38 MAPK pathway and their implications presents exciting forecasts for novel therapeutic interventions in cancer and other disorders characterized by metabolic dysregulation.
Collapse
Affiliation(s)
- Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Salma H Mostafa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussein H Ismail
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Novel brown adipose tissue candidate genes predicted by the human gene connectome. Sci Rep 2022; 12:7614. [PMID: 35534514 PMCID: PMC9085833 DOI: 10.1038/s41598-022-11317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Brown adipose tissue (BAT) is a promising therapeutic target against obesity. Therefore, research on the genetic architecture of BAT could be key for the development of successful therapies against this complex phenotype. Hypothesis-driven candidate gene association studies are useful for studying genetic determinants of complex traits, but they are dependent upon the previous knowledge to select candidate genes. Here, we predicted 107 novel-BAT candidate genes in silico using the uncoupling protein one (UCP1) as the hallmark of BAT activity. We first identified the top 1% of human genes predicted by the human gene connectome to be biologically closest to the UCP1, estimating 167 additional pathway genes (BAT connectome). We validated this prediction by showing that 60 genes already associated with BAT were included in the connectome and they were biologically closer to each other than expected by chance (p < 2.2 × 10-16). The rest of genes (107) are potential candidates for BAT, being also closer to known BAT genes and more expressed in BAT biopsies than expected by chance (p < 2.2 × 10-16; p = 4.39 × 10-02). The resulting new list of predicted human BAT genes should be useful for the discovery of novel BAT genes and metabolic pathways.
Collapse
|
4
|
Liu X, Liu L, Zhao J, Wang H, Li Y. Mechanotransduction regulates inflammation responses of epicardial adipocytes in cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1080383. [PMID: 36589802 PMCID: PMC9800500 DOI: 10.3389/fendo.2022.1080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue is a crucial regulator in maintaining cardiovascular homeostasis by secreting various bioactive products to mediate the physiological function of the cardiovascular system. Accumulating evidence shows that adipose tissue disorders contribute to several kinds of cardiovascular disease (CVD). Furthermore, the adipose tissue would present various biological effects depending on its tissue localization and metabolic statuses, deciding the individual cardiometabolic risk. Crosstalk between adipose and myocardial tissue is involved in the pathophysiological process of arrhythmogenic right ventricular cardiomyopathy (ARVC), cardiac fibrosis, heart failure, and myocardial infarction/atherosclerosis. The abnormal distribution of adipose tissue in the heart might yield direct and/or indirect effects on cardiac function. Moreover, mechanical transduction is critical for adipocytes in differentiation, proliferation, functional maturity, and homeostasis maintenance. Therefore, understanding the features of mechanotransduction pathways in the cellular ontogeny of adipose tissue is vital for underlining the development of adipocytes involved in cardiovascular disorders, which would preliminarily contribute positive implications on a novel therapeutic invention for cardiovascular diseases. In this review, we aim to clarify the role of mechanical stress in cardiac adipocyte homeostasis and its interplay with maintaining cardiac function.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junfei Zhao
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| | - Hua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| |
Collapse
|
5
|
Colleluori G, Perugini J, Giordano A, Cinti S. From Obesity to Diabetes: The Role of the Adipose Organ. Handb Exp Pharmacol 2022; 274:75-92. [PMID: 35044536 DOI: 10.1007/164_2021_572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a complex, multifactorial, and relapsing disease whose prevalence has tripled during the last decades and whose incidence is expected to further increase. For these reasons, obesity is considered as a real pandemic, deeply burdening the global health-care systems. From a pathophysiological standpoint obesity is the result of a chronic-positive energy balance which in turn leads to an excessive accumulation of lipids, not only within the adipose organ, but also in different cytotypes, a phenomenon leading to lipotoxicity that deeply compromises several cellular and organs functions. Obesity is therefore associated with over 200 medical complications, including insulin resistance and type 2 diabetes mellitus (T2DM) and represents the fifth leading cause of death worldwide. In this review, we describe the main pathophysiological mechanisms linking obesity-induced adipose organ dysfunction to insulin resistance and T2DM.
Collapse
Affiliation(s)
- Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
6
|
Retinoic acid exerts sexually dimorphic effects on muscle energy metabolism and function. J Biol Chem 2021; 297:101101. [PMID: 34419449 PMCID: PMC8441203 DOI: 10.1016/j.jbc.2021.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/- mice. Relative to wild-type (WT) controls, Rdh10+/- males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/- females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/- male GM decrease 38% relative to WT. Rdh10+/- male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/- female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.
Collapse
|
7
|
Zhang Z, Wu Q, He Y, Lu P, Li D, Yang M, Gu W, Liu R, Hong J, Wang J. IRX3 Overexpression Enhances Ucp1 Expression In Vivo. Front Endocrinol (Lausanne) 2021; 12:634191. [PMID: 33776928 PMCID: PMC7988233 DOI: 10.3389/fendo.2021.634191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The Iroquois homeobox 3 (IRX3) gene was recently reported to be a functional downstream target of a common polymorphism in the FTO gene, which encodes an obesity-associated protein; however, the role of IRX3 in energy expenditure remains unclear. Studies have revealed that the overexpression of a dominant-negative form of IRX3 in the mouse hypothalamus and adipose tissue promoted energy expenditure by enhancing brown/browning activities. Meanwhile, we and others recently demonstrated that IRX3 knockdown impaired the browning program of primary preadipocytes in vitro. In this study, we aimed to further clarify the effects of overexpressing human IRX3 (hIRX3) on brown/beige adipose tissues in vivo. METHODS Brown/beige adipocyte-specific hIRX3-overexpressing mice were generated and the browning program of white adipose tissues was induced by both chronic cold stimulation and CL316,243 injection. Body weight, fat mass, lean mass, and energy expenditure were measured, while morphological changes and the expression of thermogenesis-related genes in adipose tissue were analyzed. Moreover, the browning capacity of primary preadipocytes derived from hIRX3-overexpressing mice was assessed. RNA sequencing was also employed to investigate the effect of hIRX3 on the expression of thermogenesis-related genes. RESULTS hIRX3 overexpression in embryonic brown/beige adipose tissues (Rosa26hIRX3 ;Ucp1-Cre) led to increased energy expenditure, decreased fat mass, and a lean body phenotype. After acute cold exposure or CL316,243 stimulation, brown/beige tissue hIRX3-overexpressing mice showed an increase in Ucp1 expression. Consistent with this, induced hIRX3 overexpression in adult mice (Rosa26hIRX3 ;Ucp1-CreERT2) also promoted a moderate increase in Ucp1 expression. Ex vitro experiments further revealed that hIRX3 overexpression induced by Ucp1-driven Cre recombinase activity upregulated brown/beige adipocytes Ucp1 expression and oxygen consumption rate (OCR). RNA sequencing analyses indicated that hIRX3 overexpression in brown adipocytes enhanced brown fat cell differentiation, glycolysis, and gluconeogenesis. CONCLUSION Consistent with the in vitro findings, brown/beige adipocyte-specific overexpression of hIRX3 promoted Ucp1 expression and thermogenesis, while reducing fat mass.
Collapse
Affiliation(s)
- Zhiyin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang He
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minglan Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zou Y, Wang YN, Ma H, He ZH, Tang Y, Guo L, Liu Y, Ding M, Qian SW, Tang QQ. SCD1 promotes lipid mobilization in subcutaneous white adipose tissue. J Lipid Res 2020; 61:1589-1604. [PMID: 32978274 PMCID: PMC7707166 DOI: 10.1194/jlr.ra120000869] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Beiging of white adipose tissue (WAT) has beneficial effects on metabolism. Although it is known that beige adipocytes are active in lipid catabolism and thermogenesis, how they are regulated deserves more explorations. In this study, we demonstrate that stearoyl-CoA desaturase 1 (SCD1) in subcutaneous WAT (scWAT) responded to cold stimulation and was able to promote mobilization of triacylglycerol [TAG (triglyceride)]. In vitro studies showed that SCD1 promoted lipolysis in C3H10T1/2 white adipocytes. The lipolytic effect was contributed by one of SCD1's products, oleic acid (OA). OA upregulated adipose TAG lipase and hormone-sensitive lipase expression. When SCD1 was overexpressed in the scWAT of mice, lipolysis was enhanced, and oxygen consumption and heat generation were increased. These effects were also demonstrated by the SCD1 knockdown experiments in mice. In conclusion, our study suggests that SCD1, known as an enzyme for lipid synthesis, plays a role in upregulating lipid mobilization through its desaturation product, OA.
Collapse
Affiliation(s)
- Ying Zou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yi-Na Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Hong Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhi-Hui He
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Liang Guo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| |
Collapse
|
9
|
Leiva M, Matesanz N, Pulgarín-Alfaro M, Nikolic I, Sabio G. Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Front Endocrinol (Lausanne) 2020; 11:572089. [PMID: 33424765 PMCID: PMC7786386 DOI: 10.3389/fendo.2020.572089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
The complex functions of adipose tissue have been a focus of research interest over the past twenty years. Adipose tissue is not only the main energy storage depot, but also one of the largest endocrine organs in the body and carries out crucial metabolic functions. Moreover, brown and beige adipose depots are major sites of energy expenditure through the activation of adaptive, non-shivering thermogenesis. In recent years, numerous signaling molecules and pathways have emerged as critical regulators of adipose tissue, in both homeostasis and obesity-related disease. Among the best characterized are members of the p38 kinase family. The activity of these kinases has emerged as a key contributor to the biology of the white and brown adipose tissues, and their modulation could provide new therapeutic approaches against obesity. Here, we give an overview of the roles of the distinct p38 family members in adipose tissue, focusing on their actions in adipogenesis, thermogenic activity, and secretory function.
Collapse
|
10
|
Ferreira V, Grajales D, Valverde ÁM. Adipose tissue as a target for second-generation (atypical) antipsychotics: A molecular view. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158534. [PMID: 31672575 DOI: 10.1016/j.bbalip.2019.158534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a neuropsychiatric disorder that chronically affects 21 million people worldwide. Second-generation antipsychotics (SGAs) are the cornerstone in the management of schizophrenia. However, despite their efficacy in counteracting both positive and negative symptomatology of schizophrenia, recent clinical observations have described an increase in the prevalence of metabolic disturbances in patients treated with SGAs, including abnormal weight gain, hyperglycemia and dyslipidemia. While the molecular mechanisms responsible for these side-effects remain poorly understood, increasing evidence points to a link between SGAs and adipose tissue depots of white, brown and beige adipocytes. In this review, we survey the present knowledge in this area, with a particular focus on the molecular aspects of adipocyte biology including differentiation, lipid metabolism, thermogenic function and the browning/beiging process.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|