1
|
Wang H, He P, Wang Z, Tian C, Liu C, Li X, Yan T, Qin Y, Ling S, Ling H, Wu G, Li Y, Wang J, Jin S. Single-cell RNA-seq analysis identifies the atlas of lymph fluid and reveals a sepsis-related T cell subset. Cell Rep 2025; 44:115469. [PMID: 40178976 DOI: 10.1016/j.celrep.2025.115469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/08/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
The lymphoid cycle serves as a sentinel of the immune response, yet the cell subtypes and immune properties within lymph fluid remain unclear. This study describes a comprehensive characterization of immune cells in rat lymph fluid using single-cell RNA sequencing, identifying a unique subset of CD4+ T cells (CD4_Icos) that suppresses inflammation in early sepsis. Trajectory analysis reveals that CD4+Icos+ T cells can differentiate into regulatory T cells (Tregs). Transferring CD4+Icos+ T cells alleviates CLP-induced organ injury, while CD4+ Icos-knockout (KO) mice show reduced Treg numbers, increased inflammation, and higher mortality. Further experiments identify Npas2 as an Icos-specific transcription factor regulating Icos expression and promoting the differentiation of CD4+Icos+ T cells. Clinical data show a negative correlation between ICOS expression in CD4+ T cells and clinical outcomes in septic patients. These findings highlight the protective role of CD4+ T cells in modulating immune responses and mitigating sepsis progression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panwei He
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenxia Wang
- Department of Emergency Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Chao Tian
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chuanlong Liu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyu Li
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Yan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Qin
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hanzhi Ling
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gan Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Li
- Department of Emergency Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Abd Ghafar SA, Yakop MF, Mohamad Hanafiah R, Ismail N. Antihypercholesterolemic and antihyperglycemic activity of Nigella sativa. BIOCHEMISTRY, NUTRITION, AND THERAPEUTICS OF BLACK CUMIN SEED 2023:143-159. [DOI: 10.1016/b978-0-323-90788-0.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Shahbodi M, Emami SA, Javadi B, Tayarani-Najaran Z. Effects of Thymoquinone on Adipocyte Differentiation in Human Adipose-Derived Stem Cells. Cell Biochem Biophys 2022; 80:771-779. [PMID: 36074244 DOI: 10.1007/s12013-022-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/28/2022] [Indexed: 11/03/2022]
Abstract
Inhibition of adipocyte differentiation would be a key strategy to control obesity. Human adipose tissue-derived stem cells (ADSCs) are a promising tool for adipocyte differentiation research. Thymoquinone (TQ) as a potent antioxidant molecule may inhibit adipocyte differentiation. Herein, we aim to investigate the inhibitory effect of TQ on lipid differentiation in ADSCs. Quantification of cell surface markers was used by Flow-Cytometry and the effect of TQ on cell viability was assessed using the AlamarBlue test. ADSCs were subjected to induction of differentiation in the presence of non-cytotoxic concentrations of TQ (6.25, 12.5 and 25 μg/mL). Lipid accumulation was assessed using the Oil-Red O staining technique. Moreover, the expression of PPARγ (Peroxisome proliferator-activated receptor-γ) and FAS (Fatty Acid Synthetase) proteins was evaluated using Western blotting. Flow-cytometry demonstrated the expression of CD44, CD90, and CD73 as mesenchymal stem cell markers on the cell surface. At concentrations ≤100 μg/mL of TQ, no significant difference in cell viability was observed compared to the control. Lipid accumulation in ADSCs significantly decreased at 25 μg/mL (P < 0.001) and 12.5 μg/mL (P < 0.01) of TQ. The findings of the qualitative examination of Lipid Droplets also confirmed these results. Western-blot showed that TQ at 12.5 (p < 0.05) and 25 μg/mL (p < 0.01) reduced FAS/β-actin ratio compared to the positive group. TQ also decreased the expression of PPARγ at 6.25 μg/mL but not at higher concentrations. In conclusion, TQ may reduce differentiation of fat stem cells into fat cells through inhibition of the expression of PPARγ and FAS proteins and might be a potential anti-obesity compound.
Collapse
Affiliation(s)
- Monireh Shahbodi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Azadi Square, Pardis University Campus, P.O. Box: 9188617871, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Azadi Square, Pardis University Campus, P.O. Box: 9188617871, Mashhad, Iran.
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Razaque R, Raza AR, Irshad M, Rubab SL, Batool S, Nisar B, Akram Z, Akhtar MT, Qadir R, Siddique AB, Siddique F, Saadia M. Synthesis and evaluation of 2-phenylamino-1,4-naphthoquinones derivatives as potential hypoglycaemic agents. BRAZ J BIOL 2022; 84:e254234. [PMID: 35293531 DOI: 10.1590/1519-6984.254234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
Due to the severe side effects revealed by most of the currently used antidiabetic medicines, search for finding new and safe drugs to manage diabetes is continued. Naphthoquinones possessing strong antioxidant properties have been employed as candidates for diabetes therapy. Present study is aimed at finding the antioxidant and hypoglycaemic potential of some novel derivatives of 2-phenylamino-1,4-naphthoquinones (PAN) including chloro, nitro, methyl and bromo (5a-d) derivatives synthesized by single pot experiment. Product crystals were purified by TLC and characterized by FT-IR. The antioxidant potential of the compounds was assayed through DPPH radical scavenging and reducing power activities noted as UV-vis. absorbance. The DPPH assay has showed the powerful antioxidant activity of nitro and bromo derivatives, while the nitro derivative showed the significant reduction potential towards FRAP assay. Hypoglycaemic potential of the compounds was studied in rat animal model. All synthesized compounds revealed better hypoglycaemic activity; however, the chloro-derivative exhibited the more potent hypoglycaemic activity showing about 43% reduction in the mean blood glucose levels of the treated animals. As the bioreduction of naphthoquinones may be influenced by changing its redox properties, it has been noticed that the e-donating resonance effect (+R) of 'chloro' group has shown the significant effects on biological activity through stabalization of its imine form which limits the potential of generation of free radicals during bioreduction of quinones and thus has been proposed as the reason of its hypoglycaemic activity. Future studies employing the properties of e-donating groups of PAN may optimize the drug-receptor interaction for better drug designing and drug development strategies against diabetes and also for the clinical trials.
Collapse
Affiliation(s)
- R Razaque
- University of Sargodha, Institute of Chemistry, Sargodha, Pakistan
| | - A R Raza
- University of Sargodha, Institute of Chemistry, Sargodha, Pakistan
| | - M Irshad
- University of Education Lahore, Department of Chemistry, Division of Science and Technology, Lahore, Pakistan
| | - S L Rubab
- University of Education, Department of Chemistry, Jauharabad Campus, Jauharabad, Pakistan
| | - S Batool
- University of Sargodha, Department of Zoology, Sargodha, Pakistan
| | - B Nisar
- University of Lahore, Department of Chemistry, Sargodha Campus, Sargodha, Pakistan
| | - Z Akram
- Griffith University, Health Institute Queensland, School of Medical Sciences, Gold Cost Campus, Queensland, Australia
| | - M T Akhtar
- University of Sargodha, Institute of Chemistry, Sargodha, Pakistan
| | - R Qadir
- University of Sargodha, Institute of Chemistry, Sargodha, Pakistan
| | | | - Farzana Siddique
- Insititute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - M Saadia
- Ghazi University, Department of Chemistry, Dera Ghazi Khan, Pakistan
| |
Collapse
|
5
|
Mahmud NM, Paraoan L, Khaliddin N, Kamalden TA. Thymoquinone in Ocular Neurodegeneration: Modulation of Pathological Mechanisms via Multiple Pathways. Front Cell Neurosci 2022; 16:786926. [PMID: 35308121 PMCID: PMC8924063 DOI: 10.3389/fncel.2022.786926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer’s (AD) and Parkinson’s diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.
Collapse
Affiliation(s)
- Nur Musfirah Mahmud
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nurliza Khaliddin
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Tengku Ain Kamalden
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Tengku Ain Kamalden,
| |
Collapse
|
6
|
Mostafa TM, Hegazy SK, Elnaidany SS, Shehabeldin WA, Sawan ES. Nigella sativa as a promising intervention for metabolic and inflammatory disorders in obese prediabetic subjects: A comparative study of Nigella sativa versus both lifestyle modification and metformin. J Diabetes Complications 2021; 35:107947. [PMID: 34006388 DOI: 10.1016/j.jdiacomp.2021.107947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/20/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022]
Abstract
AIM This study aimed at evaluating the effect of Nigella sativa (NS) on anthropometric, metabolic and inflammatory parameters and examining its related molecular mechanisms in obese prediabetic individuals as compared to both lifestyle modification (LM) and Metformin (Met). METHODS This study included 117 obese prediabetic subjects who were randomized into LM group which followed controlled diet and exercise regimen, metformin group received metformin 500 mg tablets twice daily and NS group received NS oil soft gelatin capsules 450 mg twice daily. Anthropometric (weight, BMI), glycemic, lipid, inflammatory parameters and genetic expressions of Sirtuin-1 (SIRT1) and p53 genes were assessed before and six months after interventions. RESULTS Post-intervention pairwise comparison revealed that, NS was statistically similar to metformin in improving anthropometric, glycemic parameters and SIRT1 gene expression. There was non-significant difference between LM and NS regarding their effects on anthropometric and most of glycemic parameters. Lifestyle modification group showed significantly higher HOMA-B and SIRT1 expression than NS and metformin. Nigella sativa improved lipid panel and significantly reduced TNF-α level and Castelli risk index-I as compared to other interventions. CONCLUSION Nigella sativa uniquely improved lipid panel and significantly suppressed inflammation. Therefore, Nigella sativa may represent a promising intervention for obese prediabetic subjects. Clinicaltrial.gov ID: NCT03925714.
Collapse
Affiliation(s)
- Tarek M Mostafa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Sahar K Hegazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin S Elnaidany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| | - Walid A Shehabeldin
- Department of Internal Medicine, Faculty of Medicine, Menoufia University, Egypt
| | - Eman S Sawan
- Pharm D in Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
7
|
Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, Ibrahim WN. Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals (Basel) 2021; 14:369. [PMID: 33923474 PMCID: PMC8074212 DOI: 10.3390/ph14040369] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25594, Malaysia;
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health sciences, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
8
|
Ahmad N, Ahmad R, Al Qatifi S, Alessa M, Al Hajji H, Sarafroz M. A bioanalytical UHPLC based method used for the quantification of Thymoquinone-loaded-PLGA-nanoparticles in the treatment of epilepsy. BMC Chem 2020; 14:10. [PMID: 32083254 PMCID: PMC7023730 DOI: 10.1186/s13065-020-0664-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
To formulate a nanoformulation (PLGA-NPs) and to improve brain bioavailability for thymoquinone (THQ) through intranasal (i.n.) drug delivery, using a newly UHPLC-PDA developed the method and validated. Five different THQ-PLGA-NPs (THQ-N1 to THQ-N5) were prepared by emulsion solvent evaporation method. A new UHPLC method developed and validated for biodistribution studies in the rat’s brain, lungs and plasma. Optimized-THQ-N1-NPs showed a particle size of 97.36 ± 2.01 nm with a low PDI value of 0.263 ± 0.004, ZP of − 17.98 ± 1.09, EE of 82.49 ± 2.38% and DL of 5.09 ± 0.13%. THQ-N1-NPs showed sustained release pattern via in vitro release profile. A bioanalytical method was developed by UHPLC-PDA and validated for the evaluation of pharmacokinetics parameters, biodistribution studies, brain drug-targeting potential (89.89 ± 9.38%), and brain-targeting efficiency (8075.00 ± 113.05%) studies through intranasal administration which showed an improved THQ-brain- bioavailability, compared to i.v. Moreover, THQ-PLGA-NPs improved the seizure threshold treatment i.e. epilepsy increasing current electroshock (ICES) rodent models induced seizures in rats. A significant role of THQ-PLGA-NPs with high brain targeting efficiency of the nanoformulations was established. The reported data supports the treatment of epilepsy.![]()
Collapse
Affiliation(s)
- Niyaz Ahmad
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia.,2Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Rizwan Ahmad
- 3Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sadiq Al Qatifi
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Mahdi Alessa
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Hassan Al Hajji
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Md Sarafroz
- 2Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Pelegrin S, Galtier F, Chalançon A, Gagnol JP, Barbanel AM, Pélissier Y, Larroque M, Lepape S, Faucanié M, Gabillaud I, Petit P, Chevassus H. Effects of Nigella sativa seeds (black cumin) on insulin secretion and lipid profile: A pilot study in healthy volunteers. Br J Clin Pharmacol 2019; 85:1607-1611. [PMID: 30875097 DOI: 10.1111/bcp.13922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
It has been claimed that Nigella sativa seeds (NSS), also known as black cumin, have antidiabetic and lipid-lowering properties. Our pilot study investigated the effects of powdered NSS on insulin secretion and lipid profile in healthy male volunteers. We conducted a double-blind, randomized, placebo-controlled 4-week trial in 30 subjects, receiving NSS powder (1 g/day) or placebo orally (15 subjects/group). Insulin secretion as determined by the hyperglycaemic clamp technique, insulin sensitivity as well as cholesterol and triglycerides serum concentrations, were measured before and after treatment. NSS powder administration was clinically well tolerated. It did not modify fasting glycaemia and insulinaemia, and was ineffective on glucose-induced insulin secretion and insulin sensitivity. No significant changes on serum lipids were observed after treatment in any treatment groups, nor between the two treatment groups. However, in the treated group only, there was a significant correlation between total cholesterol change after treatment and its baseline level (r = -0.71, P = 0.006, n = 13), and between low-density lipoprotein (LDL) cholesterol change after treatment and its baseline level (r = -0.74, P = 0.004, n = 13). No such correlations were found for high-density lipoprotein (HDL) cholesterol, and for triglycerides. These results do not confirm any NSS effect on glucose regulation; however, they suggest that NSS powder may be of interest in lowering lipid concentrations in hyperlipidaemic subjects.
Collapse
Affiliation(s)
- Sophie Pelegrin
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| | - Florence Galtier
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| | - Anne Chalançon
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| | - Jean-Pierre Gagnol
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| | | | - Yves Pélissier
- Faculté de Pharmacie, Laboratoire de Pharmacognosie & UMR Qualisud, Université de Montpellier, Montpellier, France
| | - Michel Larroque
- Faculté de Pharmacie, Laboratoire de Chimie analytique et Bromatologie & UMR Qualisud, Université de Montpellier, Montpellier, France
| | - Samuel Lepape
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| | - Marie Faucanié
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| | - Isabelle Gabillaud
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| | - Pierre Petit
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| | - Hugues Chevassus
- Centre d'Investigation Clinique, CHU de Montpellier, Montpellier, France.,CIC1411, INSERM, Montpellier, France
| |
Collapse
|
10
|
Mahmoud YK, Abdelrazek HMA. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother 2019; 115:108783. [PMID: 31060003 DOI: 10.1016/j.biopha.2019.108783] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recently, there is growing interest in the natural bioactive components having anticancer activity. Thymoquinone (TQ), the principle active constituent of black seed (Nigella sativa), has promising properties including anticancer and chemosensitizing peculiarities. The anticancer power of TQ is accomplished by several aspects; including promotion of apoptosis, arrest of cell cycle and ROS generation. In addition, it boosts the immune system and lessens the side effects associated with traditional anticancer therapy. TQ also controls angiogenesis and cancer metastasis. This review focuses on the potential aspects and mechanisms by which TQ acquires its actions.
Collapse
Affiliation(s)
- Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
11
|
Islam MT, Khan MR, Mishra SK. An updated literature-based review: phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13596-019-00363-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Mousavi SM, Sheikhi A, Varkaneh HK, Zarezadeh M, Rahmani J, Milajerdi A. Effect of Nigella sativa supplementation on obesity indices: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2018; 38:48-57. [PMID: 29857879 DOI: 10.1016/j.ctim.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND & OBJECTIVE(S) No meta-analysis is available on the effect of Nigella sativa (NS) on obesity indices. This systematic review and meta-analysis was conducted to systematically review the available Randomized Clinical Trials (RCTs) that examined the effects of NS on Body Weight (BW), Body Mass index (BMI), and Waist Circumference (WC) in adults. METHODS Relevant articles published up to January 2018 were searched through PubMed/Medline, SCOPUS, Cochrane Library, and Google Scholar databases, using relevant keywords. All RCTs that examined the effect of NS supplementation on BW, BMI, or WC were included. RESULTS Overall, thirteen RCTs, including 875 subjects (64% males) were included in this study. Combining effect sizes from ten studies, NS supplementation significantly reduced BW (Weighted Mean Differences (WMD): -1.76 kg, 95% CI: -3.34 to -0.17, I2 = 87.4%), as compared to placebo. Subgroup analysis by the intervention type (I2 = 0.0%), participants' gender (I2 = 0.0%), and age (I2 = 5.5%) removed between-study heterogeneity. A significant reduction was seen in BMI (WMD: -0.85 kg/m2, 95% CI: -1.23, -0.46, I2 = 70.6%) after NS supplementation than placebo among eleven trials. Subgroup analysis based on study duration (I2 = 0.0%), participants' gender (females: I2 = 0.0% & both genders: I2 = 20.9%), an age (I2 = 35.9%) disappeared the heterogeneity. However, no significant reduction was found in WC comparing NS supplementation to placebo (WMD: -4.04 cm, 95% CI: 11.37, 3.27, I2 = 97.8%) in five studies. CONCLUSIONS We find a significant effect of NS supplementation on BW and BMI in adults. However, the effect of NS supplementation on WC was not significant in this meta-analysis.
Collapse
Affiliation(s)
- Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Sheikhi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Kord Varkaneh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Meysam Zarezadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Jamal Rahmani
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Milajerdi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
14
|
Neuropharmacological Potential and Delivery Prospects of Thymoquinone for Neurological Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1209801. [PMID: 29743967 PMCID: PMC5883931 DOI: 10.1155/2018/1209801] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa and has various pharmacological activities, such as protection against oxidative stress, inflammation, and infections. In addition, it might be a potential neuropharmacological agent because it exhibits versatile potential for attenuating neurological impairments. It features greater beneficial effects in toxin-induced neuroinflammation and neurotoxicity. In various models of neurological disorders, it demonstrates emergent functions, including safeguarding various neurodegenerative diseases and other neurological diseases, such as stroke, schizophrenia, and epilepsy. TQ also has potential effects in trauma mediating and chemical-, radiation-, and drug-induced central nervous system injuries. Considering the pharmacokinetic limitations, research has concentrated on different TQ novel formulations and delivery systems. Here, we visualize the neuropharmacological potential, challenges, and delivery prospects of TQ, specifically focusing on neurological disorders along with its chemistry, pharmacokinetics, and toxicity.
Collapse
|
15
|
Ozdemir N, Kantekin-Erdogan MN, Tat T, Tekin A. Effect of black cumin oil on the oxidative stability and sensory characteristics of mayonnaise. Journal of Food Science and Technology 2018; 55:1562-1568. [PMID: 29606771 DOI: 10.1007/s13197-018-3075-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Mayonnaise is one of the most commonly used sauces all over the world but it is vulnerable to oxidation because of its high oil content. Using natural antioxidants instead of synthetic ones is a popular and promising topic in the food industry. The aim of this study was to increase the oxidative stability of mayonnaise using cold-pressed black cumin oil (BCO), which has high antioxidant activity due to its phenolic content. Four different mayonnaise formulations were used: Mayo-Control, Mayo-5% BCO, Mayo-10% BCO, and Mayo-20% BCO, which refer to a 0 (control), 5, 10, and 20% BCO replacement of total sunflower oil content, respectively. Thymoquinone content of the mayonnaises including BCO increased with the increasing BCO ratios. At the end of the storage for 4 weeks at 20 °C, peroxide values of Mayo-Control, Mayo-5% BCO, Mayo-10% BCO, and Mayo-20% BCO samples were recorded as 36.07 ± 1.51, 26.76 ± 0.67, 25.60 ± 0.57, and 17.66 ± 1.93 meq O2/kg oil, respectively. The conjugated diene and triene values of the mayonnaises prepared by adding BCO were lower than those of the control group during storage. Overall acceptability of Mayo-5% BCO in sensory analysis was higher than that of Mayo-Control. Using BCO in mayonnaise improved its oxidative stability and flavor.
Collapse
Affiliation(s)
- Necla Ozdemir
- Department of Food Engineering, Faculty of Engineering, Ankara University, 06830 Golbasi, Ankara, Turkey
| | | | - Tuba Tat
- Department of Food Engineering, Faculty of Engineering, Ankara University, 06830 Golbasi, Ankara, Turkey
| | - Aziz Tekin
- Department of Food Engineering, Faculty of Engineering, Ankara University, 06830 Golbasi, Ankara, Turkey
| |
Collapse
|
16
|
Pakdel R, Hadjzadeh H, Sadegh MM, Hosseini M, Emami B, Hadjzadeh MAR. The Effects of Hydroalcoholic Extract of Nigella sativa Seeds on Serum Estradiol and Prolactin Levels and obstetric Criteria due to Hypothyroidism in Rat. Adv Biomed Res 2017; 6:166. [PMID: 29387677 PMCID: PMC5767798 DOI: 10.4103/2277-9175.221860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The aim of this study was investigation of the effects of Nigella sativa (NS) seeds on hypothyroid pregnant rats and their progenies. Materials and Methods: Hypothyroidism was induced by propylthiouracil (PTU) 0.03% in drinking water. Female rats were divided into seven groups: control, PTU, PTU-NS (100, 200, and 400 mg/kg), and NS (100 and 400 mg/kg). All treatments were done 20 days before mating and during pregnancy. The weight of rat dams and progenies, number of progenies and serum T4, estradiol and prolactin (PRL) levels in rat dams were measured for all groups. Results: Serum T4 in all PTU-NS groups before mating was significantly increased versus PTU group. Body weight of rat dams before mating in all groups of PTU-NS was increased versus PTU group by P < 0.001, P < 0.05, and P < 0.001, respectively and in NS 100 and NS 400 was increased versus control group (P < 0.001). The number of offspring was significantly decreased in PTU and PTU-NS versus control group. The weight of progenies in NS 400 was higher than control group (P < 0.001) and was increased in PTU-NS 200 and PTU-NS 400 versus PTU group by P < 0.001 and P < 0.05, respectively. Serum PRL level in rat dams in control, PTU, and PTU-NS groups were not statistically different between groups but significantly increased in NS 400 group when compared to control group. Estradiol levels were not significantly different in rat dams at 5 days after delivery. Conclusion: These results demonstrated that feeding of rat dams with NS extract before mating has positive protective effects on progenies. These effects may be due to antioxidant properties of NS in reducing oxidative stress and thyroid damages induced by PTU.
Collapse
Affiliation(s)
- Roghayeh Pakdel
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossien Hadjzadeh
- Department of Clinical Science, Veterinary Medicine Faculty, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Majid Mohammad Sadegh
- Department of Clinical Science, Veterinary Medicine Faculty, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Emami
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Anti-hypercholesterolemic and anti-hyperglycaemic effects of conventional and supercritical extracts of black cumin ( Nigella sativa ). Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Karandrea S, Yin H, Liang X, Slitt AL, Heart EA. Thymoquinone ameliorates diabetic phenotype in Diet-Induced Obesity mice via activation of SIRT-1-dependent pathways. PLoS One 2017; 12:e0185374. [PMID: 28950020 PMCID: PMC5614580 DOI: 10.1371/journal.pone.0185374] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Thymoquinone, a natural occurring quinone and the main bioactive component of plant Nigella sativa, undergoes intracellular redox cycling and re-oxidizes NADH to NAD+. TQ administration (20 mg/kg/bw/day) to the Diet-Induced Obesity (DIO) mice reduced their diabetic phenotype by decreasing fasting blood glucose and fasting insulin levels, and improved glucose tolerance and insulin sensitivity as evaluated by oral glucose and insulin tolerance tests (OGTT and ITT). Furthermore, TQ decreased serum cholesterol levels and liver triglycerides, increased protein expression of phosphorylated Akt, decreased serum levels of inflammatory markers resistin and MCP-1, and decreased NADH/NAD+ ratio. These changes were paralleled by an increase in phosphorylated SIRT-1 and AMPKα in liver and phosphorylated SIRT-1 in skeletal muscle. TQ also increased insulin sensitivity in insulin-resistant HepG2 cells via a SIRT-1-dependent mechanism. These findings are consistent with the TQ-dependent re-oxidation of NADH to NAD+, which stimulates glucose and fatty acid oxidation and activation of SIRT-1-dependent pathways. Taken together, these results demonstrate that TQ ameliorates the diabetic phenotype in the DIO mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Shpetim Karandrea
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Huquan Yin
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Xiaomei Liang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Angela L. Slitt
- Department of Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Emma A. Heart
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
El-Shemi AG, Kensara OA, Alsaegh A, Mukhtar MH. Pharmacotherapy with Thymoquinone Improved Pancreatic β-Cell Integrity and Functional Activity, Enhanced Islets Revascularization, and Alleviated Metabolic and Hepato-Renal Disturbances in Streptozotocin-Induced Diabetes in Rats. Pharmacology 2017; 101:9-21. [DOI: 10.1159/000480018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Aims: This study is aimed at evaluating the antidiabetic effects of thymoquinone (TQ) on streptozotocin (STZ)-induced diabetes in rats, and exploring the possible underlying mechanisms. Methods: Diabetes was induced in adult male Wistar rats by intraperitoneal injection of freshly prepared STZ (65 mg/kg). After disease induction, 42 rats were equally assigned to: controls, STZ-diabetic group, and STZ-diabetic group treated with oral TQ (35 mg/kg/day) for 5 weeks. Fasting blood glucose levels were determined weekly, and the animals were euthanized at day 38 post-STZ injection. Blood samples were assessed for glucose-insulin homeostasis parameters (plasma glucose, glycated hemoglobin, serum insulin, homeostatic model assessment of insulin resistance, and insulin sensitivity index) and lipid profile. Resected pancreases were subjected to histological examination and immunohistochemical or enzyme-linked immunosorbent assay assessment to determine the pancreatic expression of insulin sensitizing β-cells, anti-apoptotic protein “survivin,” apoptosis-inducer “caspase-3,” prototypic angiogenic factors (vascular endothelial growth factor [VEGF] and endothelial cluster of differentiation 31 [CD31]), pro- and anti-inflammatory cytokines (interleukin-1beta [IL-1β] and interleukin-10 [IL-10], respectively), thiobarbituric acid reactive substances (TBARS), total glutathione (GSH), and superoxide dismutase (SOD). The hepato-renal statuses were assessed biochemically and histologically. Results: Therapy with TQ markedly improved the integrity of pancreatic islets, glucose-insulin homeostasis-related parameters, lipid profile parameters, and hepato-renal functional and histomorphological statuses that collectively were severely deteriorated in untreated diabetic group. Mechanistically, TQ therapy efficiently increased insulin producing β-cells, upregulated survivin, VEGF, CD31, IL-10, GSH and SOD, and downregulated caspase-3, IL-1β, and TBARSs in the pancreatic tissues of STZ-diabetic rats. Conclusions: These findings prove the anti-diabetic potential of TQ and its efficacy in regenerating pancreatic β-cells and ameliorating pancreatic inflammation and oxidative stress, and highlight its novelty in repressing apoptosis of β-cells and enhancing islet revascularization in STZ-diabetic rats. Further studies are required to support these findings and realize their possible clinical significance.
Collapse
|
20
|
Ma J, Hu X, Li J, Wu D, Lan Q, Wang Q, Tian S, Dong W. Enhancing conventional chemotherapy drug cisplatin-induced anti-tumor effects on human gastric cancer cells both in vitro and in vivo by Thymoquinone targeting PTEN gene. Oncotarget 2017; 8:85926-85939. [PMID: 29156767 PMCID: PMC5689657 DOI: 10.18632/oncotarget.20721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
Combination chemotherapy regimen with several anti-tumor drugs is a strategy to improve outcome. Thymoquinone (TQ) has been reported to exert biological activity on various types of human cancers without obvious toxicity. However, only few studies showed the anti-tumor effects of TQ combination with cisplatin on gastric cancer (GC). Here, we showed pretreatment with 5μM TQ significantly increased the apoptotic effects induced by cisplatin on GC cell lines. Combined treatment of cisplatin with TQ represented a significantly superior tumor suppression effect than either agent alone in a xenograft tumor mouse model. Interestingly, TQ pretreatment following cisplatin caused a significant increase in the levels of PTEN, an obvious decrease in p-AKT, CyclinD1, P-glycoprotein (P-gp), meanwhile, TQ and cisplatin also led to an increase in Bax, Cyt C, AIF, cleaved caspase 9, and cleaved caspase 3, and a decrease in Bcl-2, procaspase-9, procaspase-3. Moreover, results in vitro, showed that a combination of TQ and cisplatin represents a more effective anti-tumor agent than either agent alone in a xenograft tumor mouse model. In conclusion, TQ significantly augments cisplatin-induced anti-tumor effects on gastric cancer both in vitro and in vivo, through inhibiting PI3K/AKT signaling pathway, activating the mitochondrial pathway, and down-regulating P-glycoprotein by up-regulating PTEN gene. TQ might be as a promising candidate as a cancer chemopreventive or chemotherapeutic agent for antineoplastic combination therapy and merits further clinical investigation.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xue Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Dandan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qingzhi Lan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qian Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells. Toxicol Lett 2016; 262:1-11. [PMID: 27558805 DOI: 10.1016/j.toxlet.2016.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/20/2016] [Indexed: 01/08/2023]
Abstract
NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells.
Collapse
|