1
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Structure, Functions, and Implications of Selected Lipocalins in Human Disease. Int J Mol Sci 2024; 25:4290. [PMID: 38673873 PMCID: PMC11050150 DOI: 10.3390/ijms25084290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).
Collapse
Affiliation(s)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
2
|
Calderari S, Archilla C, Jouneau L, Daniel N, Peynot N, Dahirel M, Richard C, Mourier E, Schmaltz-Panneau B, Vitorino Carvalho A, Rousseau-Ralliard D, Lager F, Marchiol C, Renault G, Gatien J, Nadal-Desbarats L, Couturier-Tarrade A, Duranthon V, Chavatte-Palmer P. Alteration of the embryonic microenvironment and sex-specific responses of the preimplantation embryo related to a maternal high-fat diet in the rabbit model. J Dev Orig Health Dis 2023; 14:602-613. [PMID: 37822211 DOI: 10.1017/s2040174423000260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The maternal metabolic environment can be detrimental to the health of the offspring. In a previous work, we showed that maternal high-fat (HH) feeding in rabbit induced sex-dependent metabolic adaptation in the fetus and led to metabolic syndrome in adult offspring. As early development representing a critical window of susceptibility, in the present work we aimed to explore the effects of the HH diet on the oocyte, preimplantation embryo and its microenvironment. In oocytes from females on HH diet, transcriptomic analysis revealed a weak modification in the content of transcripts mainly involved in meiosis and translational control. The effect of maternal HH diet on the embryonic microenvironment was investigated by identifying the metabolite composition of uterine and embryonic fluids collected in vivo by biomicroscopy. Metabolomic analysis revealed differences in the HH uterine fluid surrounding the embryo, with increased pyruvate concentration. Within the blastocoelic fluid, metabolomic profiles showed decreased glucose and alanine concentrations. In addition, the blastocyst transcriptome showed under-expression of genes and pathways involved in lipid, glucose and amino acid transport and metabolism, most pronounced in female embryos. This work demonstrates that the maternal HH diet disrupts the in vivo composition of the embryonic microenvironment, where the presence of nutrients is increased. In contrast to this nutrient-rich environment, the embryo presents a decrease in nutrient sensing and metabolism suggesting a potential protective process. In addition, this work identifies a very early sex-specific response to the maternal HH diet, from the blastocyst stage.
Collapse
Affiliation(s)
- Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Michele Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
- Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Eve Mourier
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
- Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Barbara Schmaltz-Panneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Anaïs Vitorino Carvalho
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Franck Lager
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Carmen Marchiol
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Gilles Renault
- Université Paris Cité, Institut Cochin, Inserm, CNRS, ParisF-75014, France
| | - Julie Gatien
- Research and Development Department, Eliance, Nouzilly, France
| | - Lydie Nadal-Desbarats
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
- PST-ASB, University of Tours, Tours, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort94700, France
| |
Collapse
|
3
|
Feng Z, Mabrouk I, Msuthwana P, Zhou Y, Song Y, Gong H, Li S, Min C, Ju A, Duan A, Niu J, Fu J, Yan X, Xu X, Li C, Sun Y. In ovo injection of CHIR-99021 promotes feather follicles development via activating Wnt/β-catenin signaling pathway during chick embryonic period. Poult Sci 2022; 101:101825. [PMID: 35381530 PMCID: PMC8980496 DOI: 10.1016/j.psj.2022.101825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
The Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway plays an important role in embryonic development and affects the physiological development processes of feather follicles. To investigate the role of Wnt/β-catenin pathway in regulating feather follicles morphogenesis, in ovo injection of CHIR-99021, an activator of the Wnt/β-catenin signaling pathway, was conducted in chick embryo model. Initially, a total of 40 embryos were used to assess feather follicles morphogenesis and the expression of β-catenin (E9–E17). The histological results showed that feather follicle morphogenesis was mainly completed from E9 to E17. β-catenin was involved in the processing of the appearance of dermal cell condensation (E9) and the completion of the feather follicles morphogenesis (E17). Next, a total of 160 fertilized eggs were randomly divided into 8 groups for in ovo injection at E9, including a Normal Saline injected group (CON) and the 500, 1,000, 2,000, 5,000, 10,000, 50,000, and 100,000 ng CHIR-99021 groups. Dorsal skin tissue samples were collected at E17 for investigating feather follicles morphology and expressions of β-catenin and lymphoid enhancerbinding factor-1 (LEF1) at gene and protein levels. The results showed that feather follicle diameter in the injected groups were significantly (P < 0.05) increased with limit dose-independence compared to the CON group. CHIR-99021 significantly (P < 0.05) influenced the mRNA expressions of catenin beta-1 (CTNNB1) and downstream target LEF1. In ovo injection of CHIR-99021 caused that β-catenin and LEF1 were significantly (P < 0.05) increased followed the increased doses as determined by western blotting. The immunochemical results showed that β-catenin was detected in the dermal papilla of feather follicles. Given these results, this study suggests to developmental biology that in ovo injection of CHIR-99021 promoted feather follicles morphogenesis and development via activating Wnt/β-catenin signaling pathway and upregulating downstream target LEF1 during embryonic period in chick embryo model. Moreover, CHIR-99021 may be a strong candidate to promote the animal feather/hair industry, especially as a reference for bird feather production.
Collapse
|
4
|
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022; 14:1236. [PMID: 35334893 PMCID: PMC8951293 DOI: 10.3390/nu14061236] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.
Collapse
Affiliation(s)
- Julia S. Steinhoff
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Schupp
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| |
Collapse
|
5
|
Li H, He X, Wen S, Yang L, Chen Q, Li Y, Huang S, Huang X, Wan F, He M. Optimised expression and purification of RBP4 and preparation of anti-RBP4 monoclonal antibody. FEBS Open Bio 2021; 12:430-442. [PMID: 34889069 PMCID: PMC8804599 DOI: 10.1002/2211-5463.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022] Open
Abstract
The expression level of retinol-binding protein 4 (RBP4) protein is closely related to liver damage and plays an important role in the diagnosis and prognosis of cancer. However, the preparation of anti-RBP4 mAb or exploration on the application of anti-RBP4 mAb has not been reported thus far. In the present study, we constructed a pET30a-RBP4 recombinant vector, used E. coli BL21 (DE3) as the vector to express the RBP4 recombinant protein and prepared anti-RBP4 mAb using hybridoma technology. We performed immunohistochemical analysis on hepatocellular carcinoma (HCC) and adjacent tissues by using this anti-RBP4 mAb. In addition to the high-purity RBP4 recombinant protein, we successfully developed the anti-RBP4 mAb with high affinity and specificity; it binds to natural RBP4 protein and is suitable for immunohistochemical analysis.
Collapse
Affiliation(s)
- Hui Li
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiao He
- School of Public Health, Guilin Medical School, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, China.,Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Qiuli Chen
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yasi Li
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shiping Huang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Fengjie Wan
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning, China.,Laboratory Animal Center, Guangxi Medical University, Nanning, China.,Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Zhang KZ, Shen XY, Wang M, Wang L, Sun HX, Li XZ, Huang JJ, Li XQ, Wu C, Zhao C, Liu JL, Lu X, Gao W. Retinol-Binding Protein 4 Promotes Cardiac Injury After Myocardial Infarction Via Inducing Cardiomyocyte Pyroptosis Through an Interaction With NLRP3. J Am Heart Assoc 2021; 10:e022011. [PMID: 34726071 PMCID: PMC8751920 DOI: 10.1161/jaha.121.022011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Acute myocardial infarction (AMI) is one of the leading causes of cardiovascular morbidity and mortality worldwide. Pyroptosis is a form of inflammatory cell death that plays a major role in the development and progression of cardiac injury in AMI. However, the underlying mechanisms for the activation of pyroptosis during AMI are not fully elucidated. Methods and Results Here we show that RBP4 (retinol‐binding protein 4), a previous identified proinflammatory adipokine, was increased both in the myocardium of left anterior descending artery ligation‐induced AMI mouse model and in ischemia‐hypoxia‒induced cardiomyocyte injury model. The upregulated RBP4 may contribute to the activation of cardiomyocyte pyroptosis in AMI because overexpression of RBP4 activated NLRP3 (nucleotide‐binding oligomerization domain‐like receptor family pyrin domain‐containing 3) inflammasome, promoted the precursor cleavage of Caspase‐1, and subsequently induced GSDMD (gasdermin‐D)‐dependent pyroptosis. In contrast, knockdown of RBP4 alleviated ischemia‐hypoxia‒induced activation of NLRP3 inflammasome signaling and pyroptosis in cardiomyocytes. Mechanistically, coimmunoprecipitation assay showed that RBP4 interacted directly with NLRP3 in cardiomyocyte, while genetic knockdown or pharmacological inhibition of NLRP3 attenuated RBP4‐induced pyroptosis in cardiomyocytes. Finally, knockdown of RBP4 in heart decreased infarct size and protected against AMI‐induced pyroptosis and cardiac dysfunction in mice. Conclusions Taken together, these findings reveal RBP4 as a novel modulator promoting cardiomyocyte pyroptosis via interaction with NLRP3 in AMI. Therefore, targeting cardiac RBP4 might represent a viable strategy for the prevention of cardiac injury in patients with AMI.
Collapse
Affiliation(s)
- Kang-Zhen Zhang
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xi-Yu Shen
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Man Wang
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Li Wang
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Hui-Xian Sun
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Xiu-Zhen Li
- Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jing-Jing Huang
- Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiao-Qing Li
- Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Cheng Wu
- Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Can Zhao
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Jia-Li Liu
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| | - Xiang Lu
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China.,Department of Geriatrics The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Wei Gao
- Department of Geriatrics Sir Run Run HospitalNanjing Medical University Nanjing China.,Key Laboratory for Aging and Disease Nanjing Medical University Nanjing China
| |
Collapse
|
7
|
Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cell Signal 2021; 84:110010. [PMID: 33872697 PMCID: PMC8169602 DOI: 10.1016/j.cellsig.2021.110010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Activation of the protein kinase mechanistic target of rapamycin (mTOR) in both complexes 1 and 2 (mTORC1/2) in the liver is repressed during fasting and rapidly stimulated in response to a meal. The effect of feeding on hepatic mTORC1/2 is attributed to an increase in plasma levels of nutrients, such as amino acids, and insulin. By contrast, fasting is associated with elevated plasma levels of glucagon, which is conventionally viewed as having a counter-regulatory role to insulin. More recently an expanded role for glucagon action in post-prandial metabolism has been demonstrated. Herein we investigated the impact of insulin and glucagon on mTORC1/2 activation. In H4IIE and HepG2 cultures, insulin enhanced phosphorylation of the mTORC1 substrates S6K1 and 4E-BP1. Surprisingly, the effect of glucagon on mTORC1 was biphasic, wherein there was an acute increase in phosphorylation of S6K1 and 4E-BP1 over the first hour of exposure, followed by latent suppression. The transient stimulatory effect of glucagon on mTORC1 was not additive with insulin, suggesting convergent signaling. Glucagon enhanced cAMP levels and mTORC1 stimulation required activation of the glucagon receptor, PI3K/Akt, and exchange protein activated by cAMP (EPAC). EPAC acts as the guanine nucleotide exchange factor for the small GTPase Rap1. Rap1 expression enhanced S6K1 phosphorylation and glucagon addition to culture medium promoted Rap1-GTP loading. Signaling through mTORC1 acts to regulate protein synthesis and we found that glucagon promoted an EPAC-dependent increase in protein synthesis. Overall, the findings support that glucagon elicits acute activation of mTORC1/2 by an EPAC-dependent increase in Rap1-GTP.
Collapse
|
8
|
Steinhoff JS, Lass A, Schupp M. Biological Functions of RBP4 and Its Relevance for Human Diseases. Front Physiol 2021; 12:659977. [PMID: 33790810 PMCID: PMC8006376 DOI: 10.3389/fphys.2021.659977] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body’s vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4’s actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|