1
|
Baumer Y, Singh K, Saurabh A, Baez AS, Gutierrez-Huerta CA, Chen L, Igboko M, Turner BS, Yeboah JA, Reger RN, Ortiz-Whittingham LR, Joshi S, Andrews MR, Aquino Peterson EM, Bleck CK, Mendelsohn LG, Mitchell VM, Collins BS, Redekar NR, Kuhn SA, Combs CA, Pirooznia M, Dagur PK, Allan DS, Schwartz DM, Childs RW, Powell-Wiley TM. Obesity modulates NK cell activity via LDL and DUSP1 signaling for populations with adverse social determinants. JCI Insight 2024; 10:e180606. [PMID: 39718832 PMCID: PMC11790026 DOI: 10.1172/jci.insight.180606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
African American (AA) women are disproportionately affected by obesity and hyperlipidemia, particularly in the setting of adverse social determinants of health (aSDoH) that contribute to health disparities. Obesity, hyperlipidemia, and aSDoH appear to impair NK cells. As potential common underlying mechanisms are largely unknown, we sought to investigate common signaling pathways involved in NK cell dysfunction related to obesity and hyperlipidemia in AA women from underresourced neighborhoods. We determined in freshly isolated NK cells that obesity and measures of aSDoH were associated with a shift in NK cell subsets away from CD56dim/CD16+ cytotoxic NK cells. Using ex vivo data, we identified LDL as a marker related to NK cell function in an AA population from underresourced neighborhoods. Additionally, NK cells from AA women with obesity and LDL-treated NK cells displayed a loss in NK cell function. Comparative unbiased RNA-sequencing analysis revealed DUSP1 as a common factor. Subsequently, chemical inhibition of Dusp1 and Dusp1 overexpression in NK cells highlighted its significance in NK cell function and lysosome biogenesis in a mTOR/TFEB-related fashion. Our data demonstrate a pathway by which obesity and hyperlipidemia in the setting of aSDoH may relate to NK cell dysfunction, making DUSP1 an important target for further investigation of health disparities.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Abhinav Saurabh
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Long Chen
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Muna Igboko
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | - Robert N. Reger
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | | | - Sahil Joshi
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | | | | | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
| | - Neelam R. Redekar
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Skyler A. Kuhn
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - David S.J. Allan
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Daniella M. Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard W. Childs
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, and
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory
- Intramural Research Program, National Institute on Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Kwon DH, Hwang J, You H, Kim NY, Lee GY, Han SN. Effects of an in vitro vitamin D treatment on the inflammatory responses in visceral adipose tissue from Ldlr-/- mice. Nutr Res Pract 2024; 18:19-32. [PMID: 38352213 PMCID: PMC10861343 DOI: 10.4162/nrp.2024.18.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is associated with increased inflammation in the visceral adipose tissue (VAT). Vitamin D has been reported to modulate the inflammatory responses of stromal vascular cells (SVCs) and adipocytes in adipose tissue, but the role of vitamin D in atherosclerosis biology is unclear. This study examined the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment on the inflammatory responses of SVCs and adipocytes from atherosclerotic mice. MATERIALS/METHODS C57BL/6J (B6) mice were divided randomly into 2 groups and fed a 10% kcal fat control diet (control group, CON) or 41% kcal fat, 0.21% cholesterol (high fat + cholesterol, HFC) diet (obese group, OB), and B6.129S7-Ldlrtm1Her/J (Ldlr-/-) mice were fed a HFC diet (obese with atherosclerosis group, OBA) for 16 weeks. SVCs and adipocytes isolated from VAT were pre-incubated with 1,25(OH)2D3 for 24 h and stimulated with lipopolysaccarides for the next 24 h. Proinflammatory cytokine production by adipocytes and SVCs, the immune cell population in SVCs, and the expression of the genes involved in the inflammatory signaling pathway in SVCs were determined. RESULTS The numbers of total macrophages and SVCs per mouse were higher in OB and OBA groups than the CON group. The in vitro 1,25(OH)2D3 treatment significantly reduced macrophages/SVCs (%) in the OBA group. Consistent with this change, the production of interleukin-6 and monocyte chemoattractant protein 1 (MCP-1) by SVCs from the OBA group was decreased by 1,25(OH)2D3 treatment. The 1,25(OH)2D3 treatment significantly reduced the toll-like receptor 4 and dual-specificity protein phosphatase 1 (also known as mitogen-activated protein kinase phosphatase 1) mRNA levels in SVCs and MCP-1 production by adipocytes from all 3 groups. CONCLUSIONS These findings suggest that vitamin D can attribute to the inhibition of the inflammatory response in VAT from atherosclerotic mice by reducing proinflammatory cytokine production.
Collapse
Affiliation(s)
- Deok Hoon Kwon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Jungwon Hwang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Hyeyoung You
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Na Young Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Lopez-Yus M, Frendo-Cumbo S, Del Moral-Bergos R, Garcia-Sobreviela MP, Bernal-Monterde V, Rydén M, Lorente-Cebrian S, Arbones-Mainar JM. CRISPR/Cas9-mediated deletion of adipocyte genes associated with NAFLD alters adipocyte lipid handling and reduces steatosis in hepatocytes in vitro. Am J Physiol Cell Physiol 2023; 325:C1178-C1189. [PMID: 37721003 DOI: 10.1152/ajpcell.00291.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Obesity is a major risk factor for the development of nonalcoholic fatty liver disease (NAFLD), and the subcutaneous white adipose tissue (scWAT) is the primary lipid storage depot and regulates lipid fluxes to other organs. Our previous work identified genes upregulated in scWAT of patients with NAFLD: SOCS3, DUSP1, and SIK1. Herein, we knocked down (KD) their expression in human adipose-derived mesenchymal stem cells (hADMSCs) using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology and characterized their phenotype. We found that SOCS3, DUSP1, and SIK1 expression in hADMSC-derived adipocytes was not critical for adipogenesis. However, the metabolic characterization of the cells suggested that the genes played important roles in lipid metabolism. Reduction of SIK1 expression significantly increased both de novo lipogenesis (DNL) and palmitate-induced lipogenesis (PIL). Editing out SOCS3 reduced DNL while increasing isoproterenol-induced lipolysis and insulin-induced palmitate accumulation. Conversely, DUSP1 reduced PIL and DNL. Moreover, RNA-sequencing analysis of edited cells showed that these genes not only altered lipid metabolism but also other biological pathways related to inflammatory processes, in the case of DUSP1, extracellular matrix remodeling for SOCS3, or cellular transport for SIK1. Finally, to evaluate a possible adipocyte-hepatocyte axis, human hepatoma HepG2 cells were cocultured with edited hADMSCs-derived adipocytes in the presence of [3H]-palmitate. All HepG2 cells cultured with DUSP1-, SIK1-, or SOCS3-KD adipocytes decreased [3H]-palmitate accumulation compared with control adipocytes. These results support our hypotheses that SOCS3, DUSP1, and SIK1 regulate multiple aspects of adipocyte function, which may play a role in the progression of obesity-associated comorbidities, such as NAFLD.NEW & NOTEWORTHY Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology successfully edited genomic DNA of human adipose-derived mesenchymal stem cells (hADMSC). SOCS3, SIK1, and DUSP1 regulate adipocyte lipid handling. Silencing SOCS3, SIK1, and DUSP1 expression in hADMSC-derived adipocytes reduces hepatocyte lipid storage in vitro.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Vanesa Bernal-Monterde
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- Gastroenterology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Silvia Lorente-Cebrian
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Baumer Y, Singh K, Baez AS, Gutierrez-Huerta CA, Chen L, Igboko M, Turner BS, Yeboah JA, Reger RN, Ortiz-Whittingham LR, Bleck CK, Mitchell VM, Collins BS, Pirooznia M, Dagur PK, Allan DS, Muallem-Schwartz D, Childs RW, Powell-Wiley TM. Social Determinants modulate NK cell activity via obesity, LDL, and DUSP1 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556825. [PMID: 37745366 PMCID: PMC10515802 DOI: 10.1101/2023.09.12.556825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Adverse social determinants of health (aSDoH) are associated with obesity and related comorbidities like diabetes, cardiovascular disease, and cancer. Obesity is also associated with natural killer cell (NK) dysregulation, suggesting a potential mechanistic link. Therefore, we measured NK phenotypes and function in a cohort of African-American (AA) women from resource-limited neighborhoods. Obesity was associated with reduced NK cytotoxicity and a shift towards a regulatory phenotype. In vitro, LDL promoted NK dysfunction, implicating hyperlipidemia as a mediator of obesity-related immune dysregulation. Dual specific phosphatase 1 (DUSP1) was induced by LDL and was upregulated in NK cells from subjects with obesity, implicating DUSP1 in obesity-mediated NK dysfunction. In vitro, DUSP1 repressed LAMP1/CD107a, depleting NK cells of functional lysosomes to prevent degranulation and cytokine secretion. Together, these data provide novel mechanistic links between aSDoH, obesity, and immune dysregulation that could be leveraged to improve outcomes in marginalized populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Long Chen
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muna Igboko
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Josette A. Yeboah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert N. Reger
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - David S.J. Allan
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Richard W. Childs
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. Nat Commun 2023; 14:5405. [PMID: 37669951 PMCID: PMC10480499 DOI: 10.1038/s41467-023-41145-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed male mice. The focus of this work is to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreases liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed male mice releases nuclear LKB1 into the cytoplasm to activate AMPKα and prevents hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
Affiliation(s)
- Bin Qiu
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Ahmed Lawan
- University of Alabama, Department of Biological Sciences, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Chrysovalantou E Xirouchaki
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jae-Sung Yi
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Marie Robert
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Lei Zhang
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Hospital, Melbourne, Victoria, 3004, Australia
| | - Carlos Fernández-Hernando
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyong Yang
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anton M Bennett
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548263. [PMID: 37502892 PMCID: PMC10369865 DOI: 10.1101/2023.07.10.548263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed mice. The focus of this work was to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreased liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed mice released nuclear LKB1 into the cytoplasm to activate AMPKα and prevent hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
|
7
|
Huang B, Luo YL, Huang JL, Li GZ, Qiu SY, Huang CC. FAM3D inhibits gluconeogenesis in high glucose environment via DUSP1/ZFP36/SIK1 axis. Kaohsiung J Med Sci 2023; 39:254-265. [PMID: 36524461 DOI: 10.1002/kjm2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is the most important factor leading to the complications of type 2 diabetes mellitus (T2DM). The primary condition for the treatment of T2DM is to change the glucose and lipid metabolism disorders in the liver and other insulin-sensitive tissues. The current study aims to unearth the potential molecular mechanism of inhibiting liver gluconeogenesis to provide a new theoretical basis for the treatment of T2DM. High glucose (HG) induction of HepG2 cells followed by treatment with sequence-similar family 3 member D (FAM3D). Dual specificity phosphatases 1 (DUSP1), zinc finger protein 36 (ZFP36), salt-induced kinase 1 (SIK1), p-SIK1, posphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene and protein expression level were detected by quantitative real-time polymerase chain reaction and western blot. The PEPCK and G6Pase activities were detected by enzyme linked immunosorbent assay. Glucose production assay to determine glucose content. The RNA binding protein immunoprecipitation assay was used to detect the binding of ZFP36 to SIK1. FAM3D facilitated the expression of DUSP1 but suppressed the expression of gluconeogenesis-related factors in an HG environment. The expression of ZFP36 was up-regulated in an HG environment. ZFP36 could reverse the inhibition of gluconeogenesis caused by FAM3D. HG-induced upregulation of ZFP36 was downregulated by overexpression of DUSP1. ZFP36 bound to SIK1, and downregulation of ZFP36 promoted SIK1 expression and inhibits gluconeogenesis. Our study demonstrated FAM3D inhibited gluconeogenesis through the DUSP1/ZFP36/SIK1 axis in an HG environment, which provided a new theoretical basis for exploring the pathogenesis and treatment strategy of T2DM.
Collapse
Affiliation(s)
- Bin Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Yue-Ling Luo
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Jun-Ling Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Guang-Zhi Li
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Shi-Yuan Qiu
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Chun-Chun Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| |
Collapse
|
8
|
Mandal A, Sharma SK, Yadav SRM, Mirza AA, Thakur MS, Jachak S, Saini S, Roy P, Kant R, Patil M. Efficacy of Young Cinnamomum zeylanicum Blume Bark on Hyperglycemia and PTPase Activity in Type 2 Diabetes. Cureus 2023; 15:e35023. [PMID: 36938283 PMCID: PMC10022837 DOI: 10.7759/cureus.35023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetes is a major public health concern and natural easy-going remedies are being searched. Since Cinnamomum zeylanicum Blume has a low coumarin concentration and possible insulin-enhancing properties, it is preferred over all other cinnamon species. Although similar research has been done on humans, there have been very few studies on this particular species, and none among South Asians. Moreover, no human trial that properly described their intervening agent (C. zeylanicum) and checked its efficacy at the molecular level along with clinical variables was conducted. Therefore, the current research aimed to explore the effects of C. zeylanicum on the glycemic index, lipid profile, and expression of the protein tyrosine phosphatase 1 B (PTP1B) enzyme in the peripheral blood mononuclear cells (PBMC) in type 2 diabetes. We examined the presence of bioactive compounds in young C. zeylanicum bark (Alba grade) from native Sri Lanka using gas chromatography-mass spectrometry, high-performance thin-layer chromatography, and thin-layer chromatography before introducing it in the clinical study where trans-Cinnamaldehyde was found to be a major chemical constituent (>60%). Then, from January 2020 to March 2022, a randomized double-blinded placebo-controlled trial was carried out in the Diabetic Clinic at AIIMS Rishikesh. A total of 154 diabetic patients were enrolled and were taken either cinnamon or placebo capsules (1.5 g/day) for 120 days on an empty stomach with warm water along with their conventional treatment. Reduction in fasting blood glucose levels in the cinnamon group was found -35.50% (95% CI, -173 to 58.4), whereas in the placebo group change was 5.00% (95% CI, -165 to 224). For glycosylated hemoglobin, it differed -0.85% (95% CI, -8.2 to 1.6) in the cinnamon group compared to the placebo where it was found 0.15% (95% CI, -6.1 to 5.5). PTP1B expression in PBMC was determined from pre- and post-trial blood samples using the Western Blot, and significant inhibition was also observed (p=0.039). The study result depicts, C. zeylanicum is emerging as a beneficial plant for type 2 diabetes in Northern India and could be used as an adjunctive treatment rather than as a standalone managerial remedy.
Collapse
Affiliation(s)
- Anindita Mandal
- Nursing, All India Institute of Medical Sciences, Rishikesh, IND
| | - Suresh K Sharma
- Nursing, All India Institute of Medical Sciences, Jodhpur, IND
| | | | - Anissa Atif Mirza
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, IND
| | - Mridula Singh Thakur
- Natural Product, National Institute of Pharmaceutical Education and Research, Mohali, IND
| | - Sanjay Jachak
- Natural Product, National Institute of Pharmaceutical Education and Research, Mohali, IND
| | - Sakshi Saini
- Bioscience and Bioengineering, Indian Institute of Technology, Roorkee, IND
| | - Partha Roy
- Bioscience and Bioengineering, Indian Institute of Technology, Roorkee, IND
| | - Ravi Kant
- Internal Medicine, All India Institute of Medical Sciences, Rishikesh, IND
| | - Meenaxi Patil
- AYUSH, All India Institute of Medical Sciences, Rishikesh, IND
| |
Collapse
|
9
|
Abstract
Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.
Collapse
Affiliation(s)
- Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Expression of Steroid Receptor RNA Activator 1 (SRA1) in the Adipose Tissue Is Associated with TLRs and IRFs in Diabesity. Cells 2022; 11:cells11244007. [PMID: 36552771 PMCID: PMC9776802 DOI: 10.3390/cells11244007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Steroid receptor RNA activator gene (SRA1) emerges as a player in pathophysiological responses of adipose tissue (AT) in metabolic disorders such as obesity and type 2 diabetes (T2D). We previously showed association of the AT SRA1 expression with inflammatory cytokines/chemokines involved in metabolic derangement. However, the relationship between altered adipose expression of SRA1 and the innate immune Toll-like receptors (TLRs) as players in nutrient sensing and metabolic inflammation as well as their downstream signaling partners, including interferon regulatory factors (IRFs), remains elusive. Herein, we investigated the association of AT SRA1 expression with TLRs, IRFs, and other TLR-downstream signaling mediators in a cohort of 108 individuals, classified based on their body mass index (BMI) as persons with normal-weight (N = 12), overweight (N = 32), and obesity (N = 64), including 55 with and 53 without T2D. The gene expression of SRA1, TLRs-2,3,4,7,8,9,10 and their downstream signaling mediators including IRFs-3,4,5, myeloid differentiation factor 88 (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK1), and nuclear factor-κB (NF-κB) were determined using qRT-PCR and SRA1 protein expression was determined by immunohistochemistry. AT SRA1 transcripts' expression was significantly correlated with TLRs-3,4,7, MyD88, NF-κB, and IRF5 expression in individuals with T2D, while it associated with TLR9 and TRAF6 expression in all individuals, with/without T2D. SRA1 expression associated with TLR2, IRAK1, and IRF3 expression only in individuals with obesity, regardless of diabetes status. Furthermore, TLR3/TLR7/IRAK1 and TLR3/TLR9 were identified as independent predictors of AT SRA1 expression in individuals with obesity and T2D, respectively. Overall, our data demonstrate a direct association between the AT SRA1 expression and the TLRs together with their downstream signaling partners and IRFs in individuals with obesity and/or T2D.
Collapse
|
11
|
Munawar N, Nader J, Khadadah NH, Al Madhoun A, Al-Ali W, Varghese LA, Masocha W, Al-Mulla F, Bitar MS. Guanfacine Normalizes the Overexpression of Presynaptic α-2A Adrenoceptor Signaling and Ameliorates Neuropathic Pain in a Chronic Animal Model of Type 1 Diabetes. Pharmaceutics 2022; 14:2146. [PMID: 36297581 PMCID: PMC9609777 DOI: 10.3390/pharmaceutics14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diabetes is associated with several complications, including neuropathic pain, which is difficult to manage with currently available drugs. Descending noradrenergic neurons possess antinociceptive activity; however, their involvement in diabetic neuropathic pain remains to be explored. METHODS To infer the regulatory role of this system, we examined as a function of diabetes, the expression and localization of alpha-2A adrenoceptors (α2-AR) in the dorsal root ganglia and key regions of the central nervous system, including pons and lumbar segment of the spinal cord using qRT-PCR, Western blotting, and immunofluorescence-based techniques. RESULTS The data revealed that presynaptic synaptosomal-associated protein-25 labeled α2-AR in the central and peripheral nervous system of streptozotocin diabetic rats was upregulated both at the mRNA and protein levels. Interestingly, the levels of postsynaptic density protein-95 labeled postsynaptic neuronal α2-AR remained unaltered as a function of diabetes. These biochemical abnormalities in the noradrenergic system of diabetic animals were associated with increased pain sensitivity as typified by the presence of thermal hyperalgesia and cold/mechanical allodynia. The pain-related behaviors were assessed using Hargreaves apparatus, cold-plate and dynamic plantar aesthesiometer. Chronically administered guanfacine, a selective α2-AR agonist, to diabetic animals downregulated the upregulation of neuronal presynaptic α2-AR and ameliorated the hyperalgesia and the cold/mechanical allodynia in these animals. CONCLUSION Together, these findings demonstrate that guanfacine may function as a potent analgesic and highlight α2-AR, a key component of the descending neuronal autoinhibitory pathway, as a potential therapeutic target in the treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Joelle Nader
- Department of Mathematics and Natural Sciences, American University of Kuwait, Salmiya 20002, Kuwait
| | - Najat H. Khadadah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15400, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Linu A. Varghese
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| |
Collapse
|
12
|
Lopez-Yus M, Lorente-Cebrian S, Del Moral-Bergos R, Hörndler C, Garcia-Sobreviela MP, Casamayor C, Sanz-Paris A, Bernal-Monterde V, Arbones-Mainar JM. Identification of novel targets in adipose tissue involved in non-alcoholic fatty liver disease progression. FASEB J 2022; 36:e22429. [PMID: 35792898 DOI: 10.1096/fj.202200118rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Obesity is a major risk factor for the development of Nonalcoholic fatty liver disease (NAFLD). We hypothesize that a dysfunctional subcutaneous white adipose tissue (scWAT) may lead to an accumulation of ectopic fat in the liver. Our aim was to investigate the molecular mechanisms involved in the causative role of scWAT in NALFD progression. We performed a RNA-sequencing analysis in a discovery cohort (n = 45) to identify genes in scWAT correlated with fatty liver index, a qualitative marker of liver steatosis. We then validated those targets in a second cohort (n = 47) of obese patients who had liver biopsies available. Finally, we obtained scWAT mesenchymal stem cells (MSCs) from 13 obese patients at different stages of NAFLD and established in vitro models of human MSC (hMSC)-derived adipocytes. We observed impaired adipogenesis in hMSC-derived adipocytes as liver steatosis increased, suggesting that an impaired adipogenic capacity is a critical event in the development of NAFLD. Four genes showed a differential expression pattern in both scWAT and hMSC-derived adipocytes, where their expression paralleled steatosis degree: SOCS3, DUSP1, SIK1, and GADD45B. We propose these genes as key players in NAFLD progression. They could eventually constitute potential new targets for future therapies against liver steatosis.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain
| | - Silvia Lorente-Cebrian
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain
| | - Carlos Hörndler
- Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Pathology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain
| | - Carmen Casamayor
- Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Endocrine, Bariatric and Breast Surgery Unit, General and Digestive Surgery Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Alejandro Sanz-Paris
- Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Nutrition Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Vanesa Bernal-Monterde
- Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Gastroenterology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Aghajani M, Rahmati-Ahmadabad S, Zamani F, Ghanbari B, Azarbayjani MA. The effects of high-intensity interval training and orlistat on selected adipokines and cytokines in obese women. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2022; 52:87-96. [DOI: 10.1007/s12662-021-00749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
|
14
|
Gil-Recio C, Montori S, Al Demour S, Ababneh MA, Ferrés-Padró E, Marti C, Ferrés-Amat E, Barajas M, Al Madhoun A, Atari M. Chemically Defined Conditions Mediate an Efficient Induction of Dental Pulp Pluripotent-Like Stem Cells into Hepatocyte-Like Cells. Stem Cells Int 2021; 2021:5212852. [PMID: 34795766 PMCID: PMC8593589 DOI: 10.1155/2021/5212852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Liver diseases are major causes of morbidity and mortality. Dental pulp pluripotent-like stem cells (DPPSCs) are of a considerable promise in tissue engineering and regenerative medicine as a new source of tissue-specific cells; therefore, this study is aimed at demonstrating their ability to generate functional hepatocyte-like cells in vitro. Cells were differentiated on a collagen scaffold in serum-free media supplemented with growth factors and cytokines to recapitulate liver development. At day 5, the differentiated DPPSC cells expressed the endodermal markers FOXA1 and FOXA2. Then, the cells were derived into the hepatic lineage generating hepatocyte-like cells. In addition to the associated morphological changes, the cells expressed the hepatic genes HNF6 and AFP. The terminally differentiated hepatocyte-like cells expressed the liver functional proteins albumin and CYP3A4. In this study, we report an efficient serum-free protocol to differentiate DPPSCs into functional hepatocyte-like cells. Our approach promotes the use of DPPSCs as a new source of adult stem cells for prospective use in liver regenerative medicine.
Collapse
Affiliation(s)
- Carlos Gil-Recio
- Regenerative Medicine Research Institute, UIC Barcelona, Barcelona, Spain
| | - Sheyla Montori
- Regenerative Medicine Research Institute, UIC Barcelona, Barcelona, Spain
| | - Saddam Al Demour
- Department of Special Surgery/Division of Urology, The University of Jordan, School of Medicine, Amman, Jordan
| | - Mera A. Ababneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Amman, Jordan
| | - Eduard Ferrés-Padró
- Oral and Maxillofacial Surgery Department, Fundació Hospital de Nens de Barcelona, Barcelona, Spain
| | - Carles Marti
- Oral and Maxillofacial Surgery Department, Hospital Clinico de Barcelona, Barcelona, Spain
| | - Elvira Ferrés-Amat
- Pediatric Dentistry Service, Oral and Maxillofacial Surgery Service, Hospital de Nens de Barcelona, Barcelona, Spain
| | - Miguel Barajas
- Biochemistry and Molecular Biology Department, Universidad Pública de Navarra, Pamplona, Spain
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Functional Genomic Unit, Dasman Diabetes Institute, Kuwait
| | - Maher Atari
- Regenerative Medicine Research Institute, UIC Barcelona, Barcelona, Spain
- Biointelligent Technology Systems SL, Diputaccion 316, 3D, 08009 Barcelona, Spain
| |
Collapse
|
15
|
Adipose Tissue Steroid Receptor RNA Activator 1 (SRA1) Expression Is Associated with Obesity, Insulin Resistance, and Inflammation. Cells 2021; 10:cells10102602. [PMID: 34685582 PMCID: PMC8534244 DOI: 10.3390/cells10102602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Steroid receptor RNA activator 1 (SRA1) is involved in pathophysiological responses of adipose tissue (AT) in obesity. In vitro and animal studies have elucidated its role in meta-inflammation. Since SRA1 AT expression in obesity/type 2 diabetes (T2D) and the relationship with immune-metabolic signatures remains unclear, we assessed AT SRA1 expression and its association with immune–metabolic markers in individuals with obesity/T2D. For this, 55 non-diabetic and 53 T2D individuals classified as normal weight (NW; lean), overweight, and obese were recruited and fasting blood and subcutaneous fat biopsy samples were collected. Plasma metabolic markers were assessed using commercial kits and AT expression of SRA1 and selected immune markers using RT-qPCR. SRA1 expression was significantly higher in non-diabetic obese compared with NW individuals. SRA1 expression associated with BMI, PBF, serum insulin, and HOMA-IR in the total study population and people without diabetes. SRA1 associated with waist circumference in people without diabetes and NW participants, whereas it associated inversely with HbA1c in overweight participants. In most study subgroups AT SRA1 expression associated directly with CXCL9, CXCL10, CXCL11, TNF-α, TGF-β, IL2RA, and IL18, but inversely with CCL19 and CCR2. TGF-β/IL18 independently predicted the SRA1 expression in people without diabetes and in the total study population, while TNF-α/IL-2RA predicted SRA1 only in people with diabetes. TNF-α also predicted SRA1 in both NW and obese people regardless of the diabetes status. In conclusion, AT SRA1 expression is elevated in people with obesity which associates with typical immunometabolic markers of obesity/T2D, implying that SRA1 may have potential as a biomarker of metabolic derangements.
Collapse
|
16
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
17
|
Kochumon S, Al Madhoun A, Al-Rashed F, Thomas R, Sindhu S, Al-Ozairi E, Al-Mulla F, Ahmad R. Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Sci Rep 2020; 10:16364. [PMID: 33004937 PMCID: PMC7530670 DOI: 10.1038/s41598-020-73347-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue (AT) associated cytokines are involved in the development of chronic low-grade inflammation in obese individuals. IL-2, a pleiotropic cytokine, contributes to immune alterations during inflammation. However, the interaction between AT-IL-2 and other inflammatory biomolecules in obesity remains elusive. We investigated whether AT-IL-2 expression was associated with markers of inflammation and insulin resistance in overweight/obese individuals. Subcutaneous fat tissues were collected from 56 individuals (lean/overweight/obese) for RNA extraction. IL-2 and inflammatory mediators were quantified by qRT-PCR and immunohistochemistry. CRP was measured by ELISA. AT-IL-2 expression was higher in obese compared with lean individuals (P < 0.021) and correlated with BMI. IL-2 correlated with interleukins IL-8 and IL-12A (r = 0.333-0.481; p = 0.0001-0.029); as well as with chemokines and their receptors including CCL5, CCL19, CCR2 and CCR5 (r = 0.538-0.677; p < 0.0001). Moreover, IL-2 correlated with toll-like receptors (TLR2, TLR8, TLR10), interferon regulatory factor 5 (IRF5) and cluster of differentiation CD11c (r = 0.282-0.357; p < 0.039). Notably, IL-2 was associated positively with fasting blood glucose (FBG), HbA1c, TGL and CRP (r ≥ 0.423;P ≤ 0.007). In multiple regression analysis, IL-2 is an independent predictor of IL-8, IL-12A, TLR10, TGL and HbA1c. Overall, our data demonstrate that increased expression of the AT-IL-2, in obesity, may represent a novel biomarker for progression of metabolic inflammation and insulin-resistance.
Collapse
Affiliation(s)
- Shihab Kochumon
- Immunology and Microbiology Department, Dasman Diabetes Institute, Jasim Mohamad Al Bahar St., P.O. Box 1180, 15462, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Jasim Mohamad Al Bahar St., P.O. Box 1180, 15462, Kuwait City, Kuwait
- Immunology Department, Ministry of Health, Kuwait City, Kuwait
| | - Reeby Thomas
- Immunology and Microbiology Department, Dasman Diabetes Institute, Jasim Mohamad Al Bahar St., P.O. Box 1180, 15462, Kuwait City, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Medical Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Jasim Mohamad Al Bahar St., P.O. Box 1180, 15462, Kuwait City, Kuwait.
| |
Collapse
|
18
|
Al Madhoun A, Marafie SK, Haddad D, Melhem M, Abu-Farha M, Ali H, Sindhu S, Atari M, Al-Mulla F. Comparative Proteomic Analysis Identifies EphA2 as a Specific Cell Surface Marker for Wharton's Jelly-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:6437. [PMID: 32899389 PMCID: PMC7503404 DOI: 10.3390/ijms21176437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are a valuable tool in stem cell research due to their high proliferation rate, multi-lineage differentiation potential, and immunotolerance properties. However, fibroblast impurity during WJ-MSCs isolation is unavoidable because of morphological similarities and shared surface markers. Here, a proteomic approach was employed to identify specific proteins differentially expressed by WJ-MSCs in comparison to those by neonatal foreskin and adult skin fibroblasts (NFFs and ASFs, respectively). Mass spectrometry analysis identified 454 proteins with a transmembrane domain. These proteins were then compared across the different cell-lines and categorized based on their cellular localizations, biological processes, and molecular functions. The expression patterns of a selected set of proteins were further confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assays. As anticipated, most of the studied proteins had common expression patterns. However, EphA2, SLC25A4, and SOD2 were predominantly expressed by WJ-MSCs, while CDH2 and Talin2 were specific to NFFs and ASFs, respectively. Here, EphA2 was established as a potential surface-specific marker to distinguish WJ-MSCs from fibroblasts and for prospective use to prepare pure primary cultures of WJ-MSCs. Additionally, CDH2 could be used for a negative-selection isolation/depletion method to remove neonatal fibroblasts contaminating preparations of WJ-MSCs.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Sulaiman K. Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (M.A.-F.)
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Motasem Melhem
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (M.A.-F.)
| | - Hamad Ali
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya 046302, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Maher Atari
- Medical-Surgical Pathology Department, Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| |
Collapse
|
19
|
Soluble Epoxide Hydrolase 2 Expression Is Elevated in Obese Humans and Decreased by Physical Activity. Int J Mol Sci 2020; 21:ijms21062056. [PMID: 32192153 PMCID: PMC7139757 DOI: 10.3390/ijms21062056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Epoxide hydrolase 2 (EPHX2) is an emerging therapeutic target in several immunometabolic disorders. EPHX2 metabolizes anti-inflammatory epoxyeicosatrienoic acids into pro-inflammatory diols. The contribution of EPHX2 activity to human obesity remains unexplored. We compared the expression of EPHX2 between lean and obese humans (n = 20 each) in subcutaneous adipose tissue (SAT) and peripheral blood mononuclear cells (PBMCs) using RT-PCR, Western Blot analysis, immunohistochemistry, and confocal microscopy before and after a 3-month physical activity regimen. We also assessed EPHX2 levels during preadipocyte differentiation in humans and mice. EPHX2 mRNA and protein expression were significantly elevated in obese subjects, with concomitant elevated endoplasmic reticulum (ER) stress components (the 78-kDa glucose-regulated protein; GRP78, and the Activating transcription factor 6; ATF6) and inflammatory markers (Tumor necrosis factor-α; TNFα, and Interleukin 6; IL6) as compared to controls (p < 0.05). EPHX2 mRNA levels strongly correlated with adiposity markers. In obese individuals, physical activity attenuated EPHX2 expression levels in both the SAT and PBMCs, with a parallel decrease in ER stress and inflammation markers. EPHX2 expression was also elevated during differentiation of both human primary and 3T3-L1 mouse preadipocytes. Mediators of cellular stress (palmitate, homocysteine, and macrophage culture medium) also increased EPHX2 expression in 3T3-L1 preadipocytes. Our findings suggest that EPHX2 upregulation is linked to ER stress in adiposity and that physical activity may attenuate metabolic stress by reducing EPHX2 expression.
Collapse
|
20
|
Kochumon S, Madhoun AA, Al-Rashed F, Azim R, Al-Ozairi E, Al-Mulla F, Ahmad R. Adipose tissue gene expression of CXCL10 and CXCL11 modulates inflammatory markers in obesity: implications for metabolic inflammation and insulin resistance. Ther Adv Endocrinol Metab 2020; 11:2042018820930902. [PMID: 32655851 PMCID: PMC7331767 DOI: 10.1177/2042018820930902] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/10/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The CXCL subfamily of chemokines (CXCL9, CXCL10, and CXCL11; angiostatic chemokines) plays a key role in many inflammatory diseases. However, the expression of CXCLs in adipose tissue (AT) during obesity and association of these CXCLs with inflammatory markers and insulin resistance are poorly understood. Therefore, this study aimed to investigate the effects of CXCL gene expression on subcutaneous AT inflammatory markers and insulin resistance. METHODS Subcutaneous-fat biopsies were collected from 59 nondiabetic (lean/overweight/obese) individuals for RNA isolation. Expression levels of AT CXCL and inflammatory markers were determined by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR). Biomedical parameters in the plasma were measured by enzyme-linked immunosorbent assay (ELISA). Insulin resistance was estimated using homeostatic model assessment (HOMA-IR). RESULTS AT CXCL expression was higher in obese compared with lean individuals (p < 0.05) and positively correlated with body mass index (BMI; r ⩾ 0.269, p < 0.05). Expression of CXCL9, CXCL10, and CXCL11 correlated significantly with various pro-inflammatory markers, including family members of interleukins, chemokines, and their prospective receptors (r ⩾ 0.339, p ⩽ 0.009), but not anti-inflammatory markers. CXCL11 expression correlated specifically with the expression of CCL5, CCL18, TLR3, TLR4, TLR8, IRF5, and NF-κB (r ⩾ 0.279, p ⩽ 0.039). Notably, CXCL11 was correlated with C-reactive protein (CRP), fasting blood glucose (FBG), and HOMA-IR. In multiple regression analysis, CXCL11 was identified as an independent predictor of CCL19, CCL5, IL-6, and TLR3. CONCLUSION These data suggest that the CXCL family members, specifically CXCL10 and CXCL11, are potential biomarkers for the onset of AT inflammation during obesity.
Collapse
Affiliation(s)
| | | | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rafaat Azim
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | | | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Dasman, Kuwait
| | | |
Collapse
|
21
|
de las Heras-Saldana S, Clark SA, Duijvesteijn N, Gondro C, van der Werf JHJ, Chen Y. Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle. BMC Genomics 2019; 20:939. [PMID: 31810463 PMCID: PMC6898931 DOI: 10.1186/s12864-019-6270-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) are extensively used to identify single nucleotide polymorphisms (SNP) underlying the genetic variation of complex traits. However, much uncertainly often still exists about the causal variants and genes at quantitative trait loci (QTL). The aim of this study was to identify QTL associated with residual feed intake (RFI) and genes in these regions whose expression is also associated with this trait. Angus cattle (2190 steers) with RFI records were genotyped and imputed to high density arrays (770 K) and used for a GWAS approach to identify QTL associated with RFI. RNA sequences from 126 Angus divergently selected for RFI were analyzed to identify the genes whose expression was significantly associated this trait with special attention to those genes residing in the QTL regions. RESULTS The heritability for RFI estimated for this Angus population was 0.3. In a GWAS, we identified 78 SNPs associated with RFI on six QTL (on BTA1, BTA6, BTA14, BTA17, BTA20 and BTA26). The most significant SNP was found on chromosome BTA20 (rs42662073) and explained 4% of the genetic variance. The minor allele frequencies of significant SNPs ranged from 0.05 to 0.49. All regions, except on BTA17, showed a significant dominance effect. In 1 Mb windows surrounding the six significant QTL, we found 149 genes from which OAS2, STC2, SHOX, XKR4, and SGMS1 were the closest to the most significant QTL on BTA17, BTA20, BTA1, BTA14, and BTA26, respectively. In a 2 Mb windows around the six significant QTL, we identified 15 genes whose expression was significantly associated with RFI: BTA20) NEURL1B and CPEB4; BTA17) RITA1, CCDC42B, OAS2, RPL6, and ERP29; BTA26) A1CF, SGMS1, PAPSS2, and PTEN; BTA1) MFSD1 and RARRES1; BTA14) ATP6V1H and MRPL15. CONCLUSIONS Our results showed six QTL regions associated with RFI in a beef Angus population where five of these QTL contained genes that have expression associated with this trait. Therefore, here we show that integrating information from gene expression and GWAS studies can help to better understand the genetic mechanisms that determine variation in complex traits.
Collapse
Affiliation(s)
| | - Samuel A. Clark
- School of Environmental and Rural Science, University of New England, Armidale, NSW Australia
| | - Naomi Duijvesteijn
- School of Environmental and Rural Science, University of New England, Armidale, NSW Australia
| | - Cedric Gondro
- School of Environmental and Rural Science, University of New England, Armidale, NSW Australia
- Department of Animal Science, Michigan State University, East Lansing, MI USA
| | | | - Yizhou Chen
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW Australia
| |
Collapse
|
22
|
Fu XH, Chen CZ, Li S, Han DX, Wang YJ, Yuan B, Gao Y, Zhang JB, Jiang H. Dual-specificity phosphatase 1 regulates cell cycle progression and apoptosis in cumulus cells by affecting mitochondrial function, oxidative stress, and autophagy. Am J Physiol Cell Physiol 2019; 317:C1183-C1193. [DOI: 10.1152/ajpcell.00012.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dual-specificity phosphatase 1 ( DUSP1) is differentially expressed in cumulus cells of different physiological states, but its specific function and mechanism of action remain unclear. In this study, we explored the effects of DUSP1 expression inhibition on cell cycle progression, proliferation, apoptosis, and lactate and cholesterol levels in cumulus cells and examined reactive oxygen species levels, mitochondrial function, autophagy, and the expression of key cytokine genes. The results showed that inhibition of DUSP1 in cumulus cells caused abnormal cell cycle progression, increased cell proliferation, decreased apoptosis rates, increased cholesterol synthesis and lactic acid content, and increased cell expansion. The main reason for these effects was that inhibition of DUSP1 reduced ROS accumulation, increased glutathione level and mitochondrial membrane potential, and reduced autophagy levels in cells. These results indicate that DUSP1 limits the biological function of bovine cumulus cells under normal physiological conditions and will greatly contribute to further explorations of the physiological functions of cumulus cells and the interactions of the cumulus-oocyte complex.
Collapse
Affiliation(s)
- Xu-huang Fu
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Cheng-zhen Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Sheng Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dong-xu Han
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yi-jie Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jia-bao Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Shirvani H, Rahmati-Ahmadabad S, Broom DR, Mirnejad R. Eccentric resistance training and β-hydroxy-β-methylbutyrate free acid affects muscle PGC-1α expression and serum irisin, nesfatin-1 and resistin in rats. ACTA ACUST UNITED AC 2019; 222:jeb.198424. [PMID: 31085594 DOI: 10.1242/jeb.198424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/05/2019] [Indexed: 01/13/2023]
Abstract
The hypothalamus controls metabolism and feeding behaviour via several signals with other tissues. Exercise and supplements can change hypothalamic signalling pathways, so the present study investigated the influence of eccentric resistance training and β-hydroxy-β-methylbutyrate free acid supplementation on PGC-1α expression, serum irisin, nesfatin-1 and resistin concentrations. Thirty-two male rats (8 weeks old, 200±17 g body mass) were randomly allocated to control, β-hydroxy-β-methylbutyrate free acid supplementation (HMB), eccentric resistance training (ERT), and β-hydroxy-β-methylbutyrate free acid supplementation plus eccentric resistance training (HMB+ERT) groups. Training groups undertook eccentric resistance training (6 weeks, 3 times a week) and supplement groups consumed β-hydroxy-β-methylbutyrate free acid (HMB-FA) orally (76 mg kg-1 day-1). Twenty-four hours after the last training session, serum and triceps brachii muscle samples were collected and sent to the laboratory for analysis. Two-way ANOVA and Pearson correlation were employed (significance level: P<0.05). The results showed that eccentric resistance training increases skeletal muscle PGC-1α gene expression, as well as serum levels of irisin and nesfatin-1 (P=0.001). Eccentric resistance training decreased the serum concentration of resistin (P=0.001). HMB-FA supplementation increased skeletal muscle PGC-1α gene expression (P=0.002), as well as the serum concentration of irisin and nesfatin-1 (P=0.001), but decreased the serum concentration of resistin (P=0.001). Significant correlations were observed between PGC-1α gene expression and serum concentrations of irisin, nesfatin-1 and resistin. HMB-FA supplementation with eccentric resistance training may induce crosstalk between peptide release from other tissues and increases maximal muscle strength. The combination of the two interventions had a more substantial effect than each in isolation.
Collapse
Affiliation(s)
- Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - David Robert Broom
- Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S10 2BP, UK
| | - Reza Mirnejad
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Shirvani H, Rahmati-Ahmadabad S. Irisin interaction with adipose tissue secretions by exercise training and flaxseed oil supplement. Lipids Health Dis 2019; 18:15. [PMID: 30654813 PMCID: PMC6337839 DOI: 10.1186/s12944-019-0960-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previous studies have shown that physical training and natural diet able to change the expression and concentration of peptides and proteins. Myokines and adipokines play an important role in metabolism and metabolic syndrome. Therefore, the purpose of the present study was to investigate the effect of high-intensity interval training (HIIT) and supplementation of flaxseed oil on plasma irisin, nesfatin-1 and resistin in male rats. METHODS Forty adult male rats were randomly divided into four groups (ten in each group) including Control-Saline (CS), Training-Saline (TS), Control-FlaxOil supplement (CO), and Training-FlaxOil supplement (TO). The training groups performed for 10 weeks and 5 sessions each week, interval training with 90-95% VO2max on rodent treadmill, and supplement groups received flaxseed oil (300 mg / kg). Five days after the last training session, rats were sacrificed. Blood samples were taken from the heart and plasma was evaluated. RESULTS Exercise Training significantly increased plasma levels of irisin (P = 0.019), nesfatin-1 (P = 0.01), and decreased resistin (P = 0.01). Flaxseed oil significantly reduced plasma resistin levels (P = 0.02). Plasma irisin levels in the supplementation group were higher than all groups (P = 0.041). CONCLUSION There was a significant positive correlation between plasma levels of irisin with nesfatin-1 and negative correlation with resistin. HIIT program with flaxseed oil as a modality can create a metabolic crosstalk between skeletal muscle and adipose tissues and have health benefits.
Collapse
Affiliation(s)
- Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Nosrati alley, Sheikh Bahaei Street, Mollasadra Street, Vanak Square, Post Office Box: 19395-5487, Tehran, Iran.
| | | |
Collapse
|
25
|
DUSP1 Is a Potential Marker of Chronic Inflammation in Arabs with Cardiovascular Diseases. DISEASE MARKERS 2019; 2018:9529621. [PMID: 30647800 PMCID: PMC6311887 DOI: 10.1155/2018/9529621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/03/2018] [Indexed: 11/17/2022]
Abstract
Background Cardiovascular disease (CVD) risks persist in patients despite the use of conventional treatments. This might be due to chronic inflammation as reflected in epidemiological studies associating circulating low-grade inflammatory markers with CVD recurrent events. Here, we explored this potential link by assessing plasma dual-specificity phosphatase 1 (DUSP1) levels and comparing them to high-sensitivity CRP (hsCRP) and oxidized low-density lipoprotein (oxLDL) levels and their associations to conventional CVD risk factors in confirmed CVD patients. Methods Human adults with reported CVD (n = 207) and controls (n = 70) living in Kuwait were used in this study. Anthropometric and classical biochemical parameters were determined. Plasma levels of DUSP1, oxLDL, and hsCRP were measured using human enzyme-linked immunosorbent assay kits. Results DUSP1 and hsCRP plasma levels and their least square means were higher in CVD cases, while oxLDL plasma levels were lower (p < 0.05). Multivariate logistic regression analysis showed that DUSP1 and hsCRP are independently associated with CVD in the studied population, as reflected by 2-fold and 1.5-fold increased risks with increased levels of DUSP1 and hsCRP, respectively. In our study, DUSP1 levels were found to be associated with CVD despite statin treatment and diabetes status (p < 0.05), whereas hsCRP mainly correlated with obesity markers. Conclusions Circulating DUSP1 might be a predictor of chronic subclinical inflammation and residual risk in CVD patients, whereas our data suggest that the association between hsCRP and CVD is largely accounted for adiposity risk factors.
Collapse
|
26
|
Kavalakatt S, Khadir A, Madhu D, Hammad M, Devarajan S, Abubaker J, Al-Mulla F, Tuomilehto J, Tiss A. Urocortin 3 Levels Are Impaired in Overweight Humans With and Without Type 2 Diabetes and Modulated by Exercise. Front Endocrinol (Lausanne) 2019; 10:762. [PMID: 31781037 PMCID: PMC6851015 DOI: 10.3389/fendo.2019.00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Urocortin3 (UCN3) regulates metabolic functions and is involved in cellular stress response. Although UCN3 is expressed in human adipose tissue, the association of UCN3 with obesity and diabetes remains unclear. This study investigated the effects of Type 2 diabetes (T2D) and increased body weight on the circulatory and subcutaneous adipose tissue (SAT) levels of UCN3 and assessed UCN3 modulation by a regular physical exercise. Normal-weight (n = 37) and overweight adults with and without T2D (n = 98 and n = 107, respectively) were enrolled in the study. A subset of the overweight subjects (n = 39 for each group) underwent a supervised 3-month exercise program combining both moderate intensity aerobic exercise and resistance training with treadmill. UCN3 levels in SAT were measured by immunofluorescence and RT-PCR. Circulatory UCN3 in plasma was assessed by ELISA and was correlated with various clinical and metabolic markers. Our data revealed that plasma UCN3 levels decreased in overweight subjects without T2D compared with normal-weight controls [median; 11.99 (0.78-86.07) and 6.27 (0.64-77.04), respectively; p < 0.001], whereas plasma UCN3 levels increased with concomitant T2D [median; 9.03 (0.77-104.92) p < 0.001]. UCN3 plasma levels were independently associated with glycemic index; fasting plasma glucose and hemoglobin A1c (r = 0.16 and r = 0.20, p < 0.05, respectively) and were significantly different between both overweight, with and without T2D, and normal-weight individuals (OR = 2.11 [1.84-4.11, 95% CI] and OR = 2.12 [1.59-3.10, 95% CI], p < 0.01, respectively). Conversely, the UCN3 patterns observed in SAT were opposite to those in circulation; UCN3 levels were significantly increased with body weight and decreased with T2D. After a 3-month supervised exercise protocol, UCN3 expression showed a significant reduction in SAT of both overweight groups (2.3 and 1.6-fold change; p < 0.01, respectively). In conclusion, UCN levels are differentially dysregulated in obesity in a tissue-dependent manner and can be mitigated by regular moderate physical exercise.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdelkrim Khadir
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dhanya Madhu
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Maha Hammad
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Ali Tiss
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Ali Tiss
| |
Collapse
|
27
|
Stinkens R, Brouwers B, Jocken JW, Blaak EE, Teunissen-Beekman KF, Hesselink MK, van Baak MA, Schrauwen P, Goossens GH. Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. J Appl Physiol (1985) 2018; 125:1585-1593. [DOI: 10.1152/japplphysiol.00496.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rodent studies have indicated that physical exercise may improve adipose tissue function. We investigated the effects of a 12-wk supervised, progressive exercise training program on adipocyte morphology and abdominal subcutaneous adipose tissue function in metabolically well-phenotyped subjects with obesity. Men with obesity ( n = 21) participated in a 12-wk supervised, progressive, combined exercise training program consisting of aerobic exercise (30 min at 70% of maximal power output 2 times/wk) and resistance exercise (3 × 10 repetitions at 60% of 1 repeated maximum 1 time/wk), with adjustment of exercise intensity every 4 wk. At baseline and after intervention, abdominal subcutaneous adipose tissue biopsies were collected to determine 1) adipocyte morphology, 2) gene expression of markers for lipolysis, inflammation, browning, adipokines, and mitochondrial biogenesis/function, 3) protein expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes, and 4) ex vivo basal and β2-adrenergic stimulated lipolysis. The exercise training program, which increased maximal aerobic capacity ( P < 0.001) and muscle strength ( P < 0.001), slightly reduced adipose tissue mass (~0.7 kg, P = 0.021) but did not affect abdominal subcutaneous adipocyte size ( P = 0.744), adipose tissue gene expression of markers for mitochondrial biogenesis and function, browning, lipolysis, inflammation and adipokines, total OXPHOS protein content ( P = 0.789), or β2-adrenergic sensitivity of lipolysis ( P = 0.555). A 12-wk supervised, progressive exercise training program did not alter abdominal subcutaneous adipocyte morphology and adipose tissue gene/protein expression of markers related to adipose tissue function or β2-adrenergic sensitivity of lipolysis in male subjects with obesity.NEW & NOTEWORTHY Studies that investigated the effects of exercise training on adipose tissue function in well-phenotyped humans are scarce. We demonstrate that 12 wk of supervised exercise training improved physical fitness and peripheral insulin sensitivity but did not alter abdominal subcutaneous adipocyte morphology, adipose tissue gene and protein expression of markers related to adipose tissue function, or β2-adrenergic receptor-mediated lipolysis in men with obesity. A prolonged and/or more intense training program may be required to improve human adipose tissue function.
Collapse
Affiliation(s)
- Rudi Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Bram Brouwers
- Department of Nutrition and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Johan W. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Karianna F. Teunissen-Beekman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Matthijs K. Hesselink
- Department of Nutrition and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marleen A. van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gijs H. Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
28
|
Lawan A, Min K, Zhang L, Canfran-Duque A, Jurczak MJ, Camporez JPG, Nie Y, Gavin TP, Shulman GI, Fernandez-Hernando C, Bennett AM. Skeletal Muscle-Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling Node That Regulates Obesity-Induced Insulin Resistance. Diabetes 2018; 67:624-635. [PMID: 29317435 PMCID: PMC5860856 DOI: 10.2337/db17-0826] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
Abstract
Stress responses promote obesity and insulin resistance, in part, by activating the stress-responsive mitogen-activated protein kinases (MAPKs), p38 MAPK, and c-Jun NH2-terminal kinase (JNK). Stress also induces expression of MAPK phosphatase-1 (MKP-1), which inactivates both JNK and p38 MAPK. However, the equilibrium between JNK/p38 MAPK and MKP-1 signaling in the development of obesity and insulin resistance is unclear. Skeletal muscle is a major tissue involved in energy expenditure and glucose metabolism. In skeletal muscle, MKP-1 is upregulated in high-fat diet-fed mice and in skeletal muscle of obese humans. Mice lacking skeletal muscle expression of MKP-1 (MKP1-MKO) showed increased skeletal muscle p38 MAPK and JNK activities and were resistant to the development of diet-induced obesity. MKP1-MKO mice exhibited increased whole-body energy expenditure that was associated with elevated levels of myofiber-associated mitochondrial oxygen consumption. miR-21, a negative regulator of PTEN expression, was upregulated in skeletal muscle of MKP1-MKO mice, resulting in increased Akt activity consistent with enhanced insulin sensitivity. Our results demonstrate that skeletal muscle MKP-1 represents a critical signaling node through which inactivation of the p38 MAPK/JNK module promotes obesity and insulin resistance.
Collapse
Affiliation(s)
- Ahmed Lawan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Lei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Alberto Canfran-Duque
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT
| | - Michael J Jurczak
- Cellular & Molecular Physiology and Department of Internal Medicine, Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT
| | - Joao Paulo G Camporez
- Cellular & Molecular Physiology and Department of Internal Medicine, Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT
| | - Yaohui Nie
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | - Gerald I Shulman
- Cellular & Molecular Physiology and Department of Internal Medicine, Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT
| | - Carlos Fernandez-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
29
|
Khadir A, Kavalakatt S, Cherian P, Warsame S, Abubaker JA, Dehbi M, Tiss A. Physical Exercise Enhanced Heat Shock Protein 60 Expression and Attenuated Inflammation in the Adipose Tissue of Human Diabetic Obese. Front Endocrinol (Lausanne) 2018; 9:16. [PMID: 29467719 PMCID: PMC5808138 DOI: 10.3389/fendo.2018.00016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Heat shock protein 60 (HSP60) is a key protein in the crosstalk between cellular stress and inflammation. However, the status of HSP60 in diabetes and obesity is unclear. In the present study, we investigated the hypothesis that HSP60 expression levels in the adipose tissue of human obese adults with and without diabetes are different and physical exercise might affect these levels. Subcutaneous adipose tissue (SAT) and blood samples were collected from obese adults with and without diabetes (n = 138 and n = 92, respectively, at baseline; n = 43 for both groups after 3 months of physical exercise). Conventional RT-PCR, immunohistochemistry, immunofluorescence, and ELISA were used to assess the expression and secretion of HSP60. Compared with obese adults without diabetes, HSP60 mRNA and protein levels were decreased in SAT in diabetic obese together with increased inflammatory marker expression and glycemic levels but lower VO2 Max. More interestingly, a 3-month physical exercise differentially affected HSP60 expression and the heat shock response but attenuated inflammation in both groups, as reflected by decreased endogenous levels of IL-6 and TNF-α. Indeed, HSP60 expression levels in SAT were significantly increased by exercise in the diabetes group, whereas they were decreased in the non-diabetes group. These results were further confirmed using immunofluorescence microscopy and anti-HSP60 antibody in SAT. Exercise had only marginal effects on HSP60 secretion and HSP60 autoantibody levels in plasma in both obese with and without diabetes. Physical exercise differentially alleviates cellular stress in obese adults with and without diabetes despite concomitant attenuation of the inflammatory response.
Collapse
Affiliation(s)
- Abdelkrim Khadir
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sina Kavalakatt
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Samia Warsame
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Mohammed Dehbi
- Diabetes Research Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ali Tiss
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
30
|
Kokosar M, Benrick A, Perfilyev A, Nilsson E, Källman T, Ohlsson C, Ling C, Stener-Victorin E. A Single Bout of Electroacupuncture Remodels Epigenetic and Transcriptional Changes in Adipose Tissue in Polycystic Ovary Syndrome. Sci Rep 2018; 8:1878. [PMID: 29382850 PMCID: PMC5790004 DOI: 10.1038/s41598-017-17919-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
A single bout of electroacupuncture results in muscle contractions and increased whole body glucose uptake in women with polycystic ovary syndrome (PCOS). Women with PCOS have transcriptional and epigenetic alterations in the adipose tissue and we hypothesized that electroacupuncture induces epigenetic and transcriptional changes to restore metabolic alterations. Twenty-one women with PCOS received a single bout of electroacupuncture, which increased the whole body glucose uptake. In subcutaneous adipose tissue biopsies, we identified treatment-induced expression changes of 2369 genes (Q < 0.05) and DNA methylation changes of 7055 individual genes (Q = 0.11). The largest increase in expression was observed for FOSB (2405%), and the largest decrease for LOC100128899 (54%). The most enriched pathways included Acute phase response signaling and LXR/RXR activation. The DNA methylation changes ranged from 1-16%, and 407 methylation sites correlated with gene expression. Among genes known to be differentially expressed in PCOS, electroacupuncture reversed the expression of 80 genes, including PPARγ and ADIPOR2. Changes in the expression of Nr4a2 and Junb are reversed by adrenergic blockers in rats demonstrating that changes in gene expression, in part, is due to activation of the sympathetic nervous system. In conclusion, low-frequency electroacupuncture with muscle contractions remodels epigenetic and transcriptional changes that elicit metabolic improvement.
Collapse
Affiliation(s)
- Milana Kokosar
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health and Education, University of Skövde, Skövde, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Scania University Hospital, Malmö, Sweden
| | - Emma Nilsson
- Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Scania University Hospital, Malmö, Sweden
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology, NBIS - National Bioinformatics Infrastructure Sweden, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Scania University Hospital, Malmö, Sweden
| | | |
Collapse
|
31
|
Cherian PT, Al-Khairi I, Sriraman D, Al-Enezi A, Al-Sultan D, AlOtaibi M, Al-Enezi S, Tuomilehto J, Al-Mulla F, Abubaker JA, Abu-Farha M. Increased Circulation and Adipose Tissue Levels of DNAJC27/RBJ in Obesity and Type 2-Diabetes. Front Endocrinol (Lausanne) 2018; 9:423. [PMID: 30131766 PMCID: PMC6090877 DOI: 10.3389/fendo.2018.00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
Heat shock response is an essential cellular stress response. Dysregulation of various heat shock proteins (HSPs), within the heat shock response (HSR) pathway, play a vital role in this host-defense mechanism contributing to obesity-induced insulin resistance and type 2 diabetes (T2D). Previously, we have reported changes in the expression levels of several HSPs such as HSP40, HSP60, HSP70, and HSP90 in obese compared with lean individuals. DNAJC27 is a member of the HSP40 protein family that was previously identified as a body mass index (BMI) associated locus in genome-wide association (GWAS) studies. However, not much is known about the changes in DNAJC27 expression levels in obesity and T2D. In the present study, we aimed at understanding changes in DNAJC27 expression levels in plasma, peripheral blood mononuclear cells (PBMCs) and adipose tissue in association with obesity and T2D. A total of 277 individuals enrolled including 160 non-diabetic (96 non-obese and 64 obese) and 117 T2D (45 non-obese and 72 obese) individuals. Plasma level of DNAJC27 was significantly higher in obese individuals (6.28 ± 0.64 ng/mL) compared with non-obese individuals (4.8 ± 0.45 ng/mL) with P = 0.043. Dividing the population based on diabetes status showed that there was a significant increase in the plasma level of DNAJC27 in obese (6.90 ± 1.3 ng/mL) compared with non-obese individuals (3.81 ± 0.43 ng/mL) (P = 0.033) in the non-diabetic group. Similarly, DNAJC27 expression level was also higher in PBMCs and adipose tissue of obese individuals. DNAJC27 was found to be associated with leptin and resistin, adipokines known to be dysregulated in obesity, that stimulate inflammatory processes leading to metabolic disorders. In conclusion, our data show that DNAJC27 is elevated in obese and T2D individuals and was positively associated with obesity biomarkers such as leptin and resistin suggesting that this protein may play a role in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Preethi T. Cherian
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Devarajan Sriraman
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ahmad Al-Enezi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dalal Al-Sultan
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohammed AlOtaibi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Saad Al-Enezi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
- Functional Genomic Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Fahd Al-Mulla
- Functional Genomic Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad A. Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Jehad A. Abubaker
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
- Mohamed Abu-Farha ;
| |
Collapse
|
32
|
Chao HW, Doi M, Fustin JM, Chen H, Murase K, Maeda Y, Hayashi H, Tanaka R, Sugawa M, Mizukuchi N, Yamaguchi Y, Yasunaga JI, Matsuoka M, Sakai M, Matsumoto M, Hamada S, Okamura H. Circadian clock regulates hepatic polyploidy by modulating Mkp1-Erk1/2 signaling pathway. Nat Commun 2017; 8:2238. [PMID: 29269828 PMCID: PMC5740157 DOI: 10.1038/s41467-017-02207-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Liver metabolism undergoes robust circadian oscillations in gene expression and enzymatic activity essential for liver homeostasis, but whether the circadian clock controls homeostatic self-renewal of hepatocytes is unknown. Here we show that hepatocyte polyploidization is markedly accelerated around the central vein, the site of permanent cell self-renewal, in mice deficient in circadian Period genes. In these mice, a massive accumulation of hyperpolyploid mononuclear and binuclear hepatocytes occurs due to impaired mitogen-activated protein kinase phosphatase 1 (Mkp1)-mediated circadian modulation of the extracellular signal-regulated kinase (Erk1/2) activity. Time-lapse imaging of hepatocytes suggests that the reduced activity of Erk1/2 in the midbody during cytokinesis results in abscission failure, leading to polyploidization. Manipulation of Mkp1 phosphatase activity is sufficient to change the ploidy level of hepatocytes. These data provide clear evidence that the Period genes not only orchestrate dynamic changes in metabolic activity, but also regulate homeostatic self-renewal of hepatocytes through Mkp1-Erk1/2 signaling pathway. Circadian clock regulates hepatic gene expression and functions. Here Chao et al. show that alteration of circadian clock genes by Period deletion induces polyploidy in hepatocytes due to impaired regulation of Erk signaling by mitogen-activated protein kinase phosphatase 1.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jean-Michel Fustin
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Huatao Chen
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kimihiko Murase
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,The Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Maeda
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hida Hayashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Rina Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Maho Sugawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Naoki Mizukuchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan.,Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Mashito Sakai
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | | | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
33
|
Alkhatib A, Tsang C, Tiss A, Bahorun T, Arefanian H, Barake R, Khadir A, Tuomilehto J. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients 2017; 9:E1310. [PMID: 29194424 PMCID: PMC5748760 DOI: 10.3390/nu9121310] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Functional foods contain biologically active ingredients associated with physiological health benefits for preventing and managing chronic diseases, such as type 2 diabetes mellitus (T2DM). A regular consumption of functional foods may be associated with enhanced anti-oxidant, anti-inflammatory, insulin sensitivity, and anti-cholesterol functions, which are considered integral to prevent and manage T2DM. Components of the Mediterranean diet (MD)-such as fruits, vegetables, oily fish, olive oil, and tree nuts-serve as a model for functional foods based on their natural contents of nutraceuticals, including polyphenols, terpenoids, flavonoids, alkaloids, sterols, pigments, and unsaturated fatty acids. Polyphenols within MD and polyphenol-rich herbs-such as coffee, green tea, black tea, and yerba maté-have shown clinically-meaningful benefits on metabolic and microvascular activities, cholesterol and fasting glucose lowering, and anti-inflammation and anti-oxidation in high-risk and T2DM patients. However, combining exercise with functional food consumption can trigger and augment several metabolic and cardiovascular protective benefits, but it is under-investigated in people with T2DM and bariatric surgery patients. Detecting functional food benefits can now rely on an "omics" biological profiling of individuals' molecular, genetics, transcriptomics, proteomics, and metabolomics, but is under-investigated in multi-component interventions. A personalized approach for preventing and managing T2DM should consider biological and behavioral models, and embed nutrition education as part of lifestyle diabetes prevention studies. Functional foods may provide additional benefits in such an approach.
Collapse
Affiliation(s)
- Ahmad Alkhatib
- Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait.
| | - Catherine Tsang
- Faculty of Health and Social Care, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP, UK.
| | - Ali Tiss
- Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait.
| | - Theeshan Bahorun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit 80837, Mauritius.
| | | | - Roula Barake
- Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait.
| | | | - Jaakko Tuomilehto
- Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait.
- Diabetes Research Group, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
34
|
Madhu D, Hammad M, Kavalakatt S, Khadir A, Tiss A. GLP-1 Analogue, Exendin-4, Modulates MAPKs Activity but not the Heat Shock Response in Human HepG2 Cells. Proteomics Clin Appl 2017; 12. [PMID: 29105359 DOI: 10.1002/prca.201600169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/17/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE Glucagon-like peptide-1 (GLP-1) analogues reduce ER stress and inflammation in key metabolic organs, including the liver. However, their effects on heat shock response (HSR) and mitogen-activated protein kinases (MAPKs) have not yet been elucidated. In the present study, we investigate whether the GLP-1 analogue, exendin-4, triggers the expression of HSR and increases MAPK activity under metabolic stress. EXPERIMENTAL DESIGN The effects of exendin-4 in the presence or absence of palmitic acid (PA; 400 μm) or glucose (30 mm) in the HepG2 liver cell line are assessed using Western blots, quantitative real-time PCR, and label-free proteomics. RESULTS Heat shock proteins (HSP60, HSP72, HSP90, and GRP78) and other chaperones are not significantly affected by exendin-4 under the conditions tested. In contrast, the presence of exendin-4 alone increases the MAPK phosphorylation levels (JNK, ERK1/2, and p38). For short incubation periods, in the presence of PA or glucose, treatment with exendin-4 exhibits limited effects but significantly attenuates MAPK phosphorylation after a 24-h incubation. Interestingly, canonical signaling pathways, such as EIF2, ILK, PKA, and Rho, are modulated by exendin-4. CONCLUSION AND CLINICAL RELEVANCE Identifying new pathways modulated by GLP-1 analogues will provide further insights into their benefits beyond their currently recognized roles in glycemic control, such as MAPK activity, energy homeostasis, and body weight decrease.
Collapse
Affiliation(s)
- Dhanya Madhu
- Research Division, Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Maha Hammad
- Research Division, Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sina Kavalakatt
- Research Division, Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdelkrim Khadir
- Research Division, Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ali Tiss
- Research Division, Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
35
|
Analysis of Differentially Expressed Genes in Gastrocnemius Muscle between DGAT1 Transgenic Mice and Wild-Type Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5404682. [PMID: 28386555 PMCID: PMC5366756 DOI: 10.1155/2017/5404682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/22/2017] [Indexed: 11/17/2022]
Abstract
Adipose tissue was the major energy deposition site of the mammals and provided the energy for the body and released the external pressure to the internal organs. In animal production, fat deposition in muscle can affect the meat quality, especially the intramuscular fat (IMF) content. Diacylglycerol acyltransferase-1 (DGAT1) was the key enzyme to control the synthesis of the triacylglycerol in adipose tissue. In order to better understand the regulation mechanism of the DGAT1 in the intramuscular fat deposition, the global gene expression profiling was performed in gastrocnemius muscle between DGAT1 transgenic mice and wild-type mice by microarray. 281 differentially expressed transcripts were identified with at least 1.5-fold change and the p value < 0.05. 169 transcripts were upregulated and 112 transcripts were downregulated. Ten genes (SREBF1, DUSP1, PLAGL1, FKBP5, ZBTB16, PPP1R3C, CDC14A, GLUL, PDK4, and UCP3) were selected to validate the reliability of the chip's results by the real-time PCR. The finding of RT-PCR was consistent with the gene chip. Seventeen signal pathways were analyzed using KEGG pathway database and the pathways concentrated mainly on the G-protein coupled receptor protein signaling pathway, signal transduction, oxidation-reduction reaction, olfactory receptor activity, protein binding, and zinc ion binding. This study implied a function role of DGAT1 in the synthesis of TAG, insulin resistance, and IMF deposition.
Collapse
|
36
|
Al Madhoun A, Ali H, AlKandari S, Atizado VL, Akhter N, Al-Mulla F, Atari M. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells. Stem Cell Res Ther 2016; 7:165. [PMID: 27852316 PMCID: PMC5111269 DOI: 10.1186/s13287-016-0426-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/18/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells. METHODS WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch. RESULTS We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage. CONCLUSIONS In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.
Collapse
Affiliation(s)
| | - Hamad Ali
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Al-Jabriya, Kuwait
| | - Sarah AlKandari
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | | | - Nadeem Akhter
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Molecular Pathology Unit, Faculty of Medicine, Health Sciences Center, Kuwait University, Al-Jabriya, Kuwait
| | - Maher Atari
- UIC Regenerative Medicine Research Institute, International University of Catalonia, Barcelona, Spain
| |
Collapse
|
37
|
Khadir A, Kavalakatt S, Abubaker J, Cherian P, Madhu D, Al-Khairi I, Abu-Farha M, Warsame S, Elkum N, Dehbi M, Tiss A. Physical exercise alleviates ER stress in obese humans through reduction in the expression and release of GRP78 chaperone. Metabolism 2016; 65:1409-20. [PMID: 27506747 DOI: 10.1016/j.metabol.2016.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Perturbation of the endoplasmic reticulum (ER) homeostasis has emerged as one of the prominent features of obesity and diabetes. This occurs when the adaptive unfolded protein response (UPR) fails to restore ER function in key metabolic tissues. We previously reported increased inflammation and impaired heat shock response (HSR) in obese human subjects that were restored by physical exercise. Here, we investigated the status of ER stress chaperone; glucose-regulated protein 78 (GRP78) and its downstream UPR pathways in human obese, and their modulation by a supervised 3-month physical exercise. METHODS Subcutaneous adipose tissue (SAT) and blood samples were collected from non-diabetic adult human lean (n=40) and obese (n=40, at baseline and after 3months of physical exercise). Transcriptomic profiling was used as a primary screen to identify differentially expressed genes and it was carried out on SAT samples using the UPR RT(2) Profiler PCR Array. Conventional RT-PCR, immunohistochemistry, immunofluorescence, Western blot and ELISA were used to validate the transcriptomic data. Correlation analyses with the physical, clinical and biochemical outcomes were performed using Pearson's rank correlation coefficient. RESULTS Levels of GRP78 and its three downstream UPR arms; activating transcription factor-6 (ATF6), inositol-requiring enzyme-1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) were increased in obese subjects. More interestingly, higher levels of circulating GRP78 protein were found in obese compared to lean subjects which correlated negatively with maximum oxygen uptake (VO2 Max) but positively with high-sensitivity C-reactive protein (hsCRP) and obesity indicators such as BMI, percentage body fat (PBF) and waist circumference. GRP78 increased secretion in obese was further confirmed in vitro using 3T3-L1 preadipocyte cells under ER stress. Finally, we showed that physical exercise significantly attenuated the expression and release of GRP78 with a concomitant reduction in the phosphorylation of IRE1α and eukaryotic initiation factor-2α (eIF2α). CONCLUSION Our results suggest that physical exercise alleviates ER stress in human obese through attenuation of GRP78 signaling network.
Collapse
Affiliation(s)
- Abdelkrim Khadir
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sina Kavalakatt
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dhanya Madhu
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Samia Warsame
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Naser Elkum
- Clinical Epidemiology, Sidra Medical and Research Center, Doha, Qatar
| | - Mohammed Dehbi
- Diabetes Research Centre, Qatar Biomedical Research Institute and Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ali Tiss
- Biochemistry and Molecular Biology Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait.
| |
Collapse
|
38
|
Broome DT, Datta NS. Mitogen-activated protein kinase phosphatase-1: function and regulation in bone and related tissues. Connect Tissue Res 2016; 57:175-89. [PMID: 27031422 DOI: 10.3109/03008207.2015.1125480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, we have highlighted work that has clearly demonstrated that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), a negative regulator of MAPKs, is an important signaling mediator in bone, muscle, and fat tissue homeostasis and differentiation. Further, we examined recent studies with particular focus on MKP-1 overexpression or deletion and its impact on tissues connected to bone. We also summarized regulation of MKP-1 by known skeletal regulators like parathyroid hormone (PTH)/PTH-related peptide (PTHrP) and bone morphogenic proteins. MKP-1's integration into the pathophysiological state of osteoporosis, osteoarthritis, rheumatoid arthritis, obesity, and muscular dystrophy are examined to emphasize possible involvement of MKP-1 both at the molecular level and in disease complications such as sarcopenia- or diabetes-related osteoporosis. We predict that understanding the mechanism of MKP-1-mediated signaling in bone-muscle-fat crosstalk will be a key in coordinating their activities and developing therapeutics to improve clinical outcomes for diseases associated with advanced age.
Collapse
Affiliation(s)
- David T Broome
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| | - Nabanita S Datta
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
39
|
Ferguson BS, Nam H, Stephens JM, Morrison RF. Mitogen-Dependent Regulation of DUSP1 Governs ERK and p38 Signaling During Early 3T3-L1 Adipocyte Differentiation. J Cell Physiol 2015; 231:1562-74. [PMID: 26566083 DOI: 10.1002/jcp.25248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023]
Abstract
Knowledge concerning mechanisms that control proliferation and differentiation of preadipocytes is essential to our understanding of adipocyte hyperplasia and the development of obesity. Evidence has shown that temporal regulation of mitogen-activated protein kinase (MAPK) phosphorylation and dephosphorylation is critical for coupling extracellular stimuli to cellular growth and differentiation. Using differentiating 3T3-L1 preadipocytes as a model of adipocyte hyperplasia, we examined a role for dual-specificity phosphatase 1 (DUSP1) on the timely modulation of MAPK signaling during states of growth arrest, proliferation, and differentiation. Using real-time reverse transcription PCR (qRT-PCR), we report that DUSP1 is induced during early preadipocyte proliferation concomitant with ERK and p38 dephosphorylation. As deactivation of ERK and p38 is essential for the progression of adipocyte differentiation, we further showed that de novo mRNA synthesis was required for ERK and p38 dephosphorylation, suggesting a role for "inducible" phosphatases in regulating MAPK signaling. Pharmacological and genetic inhibition of DUSP1 markedly increased ERK and p38 phosphorylation during early adipocyte differentiation. Based on these findings, we postulated that loss of DUSP1 would block adipocyte hyperplasia. However, genetic loss of DUSP1 was not sufficient to prevent preadipocyte proliferation or differentiation, suggesting a role for other phosphatases in the regulation of adipogenesis. In support of this, qRT-PCR identified several MAPK-specific DUSPs induced during early (DUSP2, -4, -5, & -6), mid (DUSP4 & -16) and late (DUSP9) stages of adipocyte differentiation. Collectively, these data suggest an important role for DUSPs in regulating MAPK dephosphorylation, with an emphasis on DUSP1, during early adipogenesis.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Heesun Nam
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Jacqueline M Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Ron F Morrison
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
40
|
Gondim OS, de Camargo VTN, Gutierrez FA, Martins PFDO, Passos MEP, Momesso CM, Santos VC, Gorjão R, Pithon-Curi TC, Cury-Boaventura MF. Benefits of Regular Exercise on Inflammatory and Cardiovascular Risk Markers in Normal Weight, Overweight and Obese Adults. PLoS One 2015; 10:e0140596. [PMID: 26474157 PMCID: PMC4608693 DOI: 10.1371/journal.pone.0140596] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/27/2015] [Indexed: 12/12/2022] Open
Abstract
Obesity is a worldwide epidemic that increases the risk of several well-known co-morbidities. There is a complicated relationship between adipokines and low-grade inflammation in obesity and cardiovascular disease (CVD). Physical activity practices have beneficial health effects on obesity and related disorders such as hypertension and dyslipidemia. We investigated the effects of 6 and 12 months of moderate physical training on the levels of adipokines and CVD markers in normal weight, overweight and obese volunteers. The 143 participants were followed up at baseline and after six and twelfth months of moderate regular exercise, 2 times a week, for 12 months. The volunteers were distributed into 3 groups: Normal Weight Group (NWG,), Overweight Group (OVG) and Obese Group (OBG). We evaluated blood pressure, resting heart rate, anthropometric parameters, body composition, fitness capacity (VO2max and isometric back strength), cardiovascular markers (CRP, total cholesterol, LDL-c, HDL-c, homocysteine) and adipokine levels (leptin, adiponectin, resistin, IL-6 and TNF-alpha). There were no significant changes in anthropometric parameters and body composition in any of the groups following 6 and 12 months of exercise training. Leptin, IL-6 levels and systolic blood pressure were significantly elevated in OBG before the training. Regular exercise decreased HDL-c, leptin, adiponectin and resistin levels and diastolic blood pressure in OVG. In OBG, exercise diminished HDL-c, homocysteine, leptin, resistin, IL-6, adiponectin. Moderate exercise had no effect on the body composition; however, exercise did promote beneficial effects on the low-grade inflammatory state and CVD clinical markers in overweight and obese individuals.
Collapse
Affiliation(s)
- Olivia Santos Gondim
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Vinicius Tadeu Nunes de Camargo
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Fernanda Almeida Gutierrez
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Patricia Fátima de Oliveira Martins
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Maria Elizabeth Pereira Passos
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Cesar Miguel Momesso
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Vinicius Coneglian Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Renata Gorjão
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Tania Cristina Pithon-Curi
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Maria Fernanda Cury-Boaventura
- Institute of Physical Activity and Sports Sciences, Post-Graduate Program in Human Movement Science, Cruzeiro do Sul University, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|