1
|
Furió-Novejarque C, Díez JL, Bondia J. GLP-1 Receptor Agonists Models for Type 1 Diabetes: A Narrative Review. J Diabetes Sci Technol 2025; 19:332-339. [PMID: 39411979 PMCID: PMC11571630 DOI: 10.1177/19322968241285925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) is a hormone that promotes insulin secretion, delays gastric emptying, and inhibits glucagon secretion. The GLP-1 receptor agonists have been developed as adjunctive therapies for type 2 diabetes to improve glucose control. Recently, there has been an interest in introducing GLP-1 receptor agonists as adjunctive therapies in type 1 diabetes alongside automatic insulin delivery systems. The preclinical validation of these systems often relies on mathematical simulators that replicate the glucose dynamics of a person with diabetes. This review aims to explore mathematical models available in the literature to describe GLP-1 effects to be used in a type 1 diabetes simulator. METHODS Three databases were examined in the search for GLP-1 mathematical models. More than 1500 works were found after searching for specific keywords that were narrowed down to 39 works for full-text assessment. RESULTS A total of 23 works were selected describing GLP-1 pharmacokinetics and pharmacodynamics. However, none of the found models was designed for type 1 diabetes. An analysis is included of the available models' features that could be translated into a GLP-1 receptor agonist model for type 1 diabetes. CONCLUSION There is a gap in research in GLP-1 receptor agonists mathematical models for type 1 diabetes, which could be incorporated into type 1 diabetes simulators, providing a safe and inexpensive tool to carry out preclinical validations using these therapies.
Collapse
Affiliation(s)
- Clara Furió-Novejarque
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
| | - José-Luis Díez
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Bondia
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Rayner CK, Watson LE, Phillips LK, Lange K, Bound MJ, Grivell J, Wu T, Jones KL, Horowitz M, Ferrannini E, Tricò D, Frascerra S, Mari A, Natali A. Effects of Sustained Treatment With Lixisenatide on Gastric Emptying and Postprandial Glucose Metabolism in Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2020; 43:1813-1821. [PMID: 32471908 DOI: 10.2337/dc20-0190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Tachyphylaxis for slowing of gastric emptying is seen with continuous exposure to glucagon-like peptide 1 (GLP-1). We therefore aimed to establish whether prolonged use of a "short-acting" GLP-1 receptor agonist, lixisenatide, achieves sustained slowing of gastric emptying and reduction in postprandial glycemia. RESEARCH DESIGN AND METHODS A total of 30 patients with metformin-treated type 2 diabetes underwent assessment of gastric emptying (scintigraphy) and glucose metabolism (dual tracer technique) after a 75-g glucose drink, before and after 8 weeks' treatment with lixisenatide (20 μg subcutaneously daily) or placebo, in a double-blind randomized parallel design. RESULTS Gastric retention of the glucose drink was markedly increased after lixisenatide versus placebo (ratio of adjusted geometric means for area under the curve [AUC] over 240 min of 2.19 [95% CI 1.82, 2.64], P < 0.001), associated with substantial reductions in the rate of systemic appearance of oral glucose (P < 0.001) and incremental AUC for blood glucose (P < 0.001). Lixisenatide suppressed both glucagon (P = 0.003) and insulin (P = 0.032), but not endogenous glucose production, over 120 min after oral glucose intake. Postprandial glucose lowering over 240 min was strongly related to the magnitude of slowing of gastric emptying by lixisenatide (r = -0.74, P = 0.002) and to the baseline rate of emptying (r = 0.52, P = 0.048) but unrelated to β-cell function (assessed by β-cell glucose sensitivity). CONCLUSIONS Eight weeks' treatment with lixisenatide is associated with sustained slowing of gastric emptying and marked reductions in postprandial glycemia and appearance of ingested glucose. Short-acting GLP-1 receptor agonists therefore potentially represent an effective long-term therapy for specifically targeting postprandial glucose excursions.
Collapse
Affiliation(s)
- Christopher K Rayner
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Linda E Watson
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Liza K Phillips
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Kylie Lange
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Michelle J Bound
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Jacqueline Grivell
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Tongzhi Wu
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Karen L Jones
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Centre of Research Excellence for Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | | | - Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Silvia Frascerra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Herrero P, El-Sharkawy M, Daniels J, Jugnee N, Uduku CN, Reddy M, Oliver N, Georgiou P. The Bio-inspired Artificial Pancreas for Type 1 Diabetes Control in the Home: System Architecture and Preliminary Results. J Diabetes Sci Technol 2019; 13:1017-1025. [PMID: 31608656 PMCID: PMC6835194 DOI: 10.1177/1932296819881456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Artificial pancreas (AP) technology has been proven to improve glucose and patient-centered outcomes for people with type 1 diabetes (T1D). Several approaches to implement the AP have been described, clinically evaluated, and in one case, commercialized. However, none of these approaches has shown a clear superiority with respect to others. In addition, several challenges still need to be solved before achieving a fully automated AP that fulfills the users' expectations. We have introduced the Bio-inspired Artificial Pancreas (BiAP), a hybrid adaptive closed-loop control system based on beta-cell physiology and implemented directly in hardware to provide an embedded low-power solution in a dedicated handheld device. In coordination with the closed-loop controller, the BiAP system incorporates a novel adaptive bolus calculator which aims at improving postprandial glycemic control. This paper focuses on the latest developments of the BiAP system for its utilization in the home environment. METHODS The hardware and software architectures of the BiAP system designed to be used in the home environment are described. Then, the clinical trial design proposed to evaluate the BiAP system in an ambulatory setting is introduced. Finally, preliminary results corresponding to two participants enrolled in the trial are presented. RESULTS Apart from minor technical issues, mainly due to wireless communications between devices, the BiAP system performed well (~88% of the time in closed-loop) during the clinical trials conducted so far. Preliminary results show that the BiAP system might achieve comparable glycemic outcomes to the existing AP systems (~73% time in target range 70-180 mg/dL). CONCLUSION The BiAP system is a viable platform to conduct ambulatory clinical trials and a potential solution for people with T1D to control their glucose control in a home environment.
Collapse
Affiliation(s)
- Pau Herrero
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Mohamed El-Sharkawy
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - John Daniels
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Narvada Jugnee
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Chukwuma N. Uduku
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Monika Reddy
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Nick Oliver
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Fujii M, Murakami Y, Karasawa Y, Sumitomo Y, Fujita S, Koyama M, Uda S, Kubota H, Inoue H, Konishi K, Oba S, Ishii S, Kuroda S. Logical design of oral glucose ingestion pattern minimizing blood glucose in humans. NPJ Syst Biol Appl 2019; 5:31. [PMID: 31508240 PMCID: PMC6718521 DOI: 10.1038/s41540-019-0108-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Excessive increase in blood glucose level after eating increases the risk of macroangiopathy, and a method for not increasing the postprandial blood glucose level is desired. However, a logical design method of the dietary ingestion pattern controlling the postprandial blood glucose level has not yet been established. We constructed a mathematical model of blood glucose control by oral glucose ingestion in three healthy human subjects, and predicted that intermittent ingestion 30 min apart was the optimal glucose ingestion patterns that minimized the peak value of blood glucose level. We confirmed with subjects that this intermittent pattern consistently decreased the peak value of blood glucose level. We also predicted insulin minimization pattern, and found that the intermittent ingestion 30 min apart was optimal, which is similar to that of glucose minimization pattern. Taken together, these results suggest that the glucose minimization is achieved by suppressing the peak value of insulin concentration, rather than by enhancing insulin concentration. This approach could be applied to design optimal dietary ingestion patterns.
Collapse
Affiliation(s)
- Masashi Fujii
- Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Present Address: Department of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526 Japan
| | - Yohei Murakami
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasuaki Karasawa
- Department of Neurosurgery, The University of Tokyo Hospital, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Yohei Sumitomo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Suguru Fujita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masanori Koyama
- Department of Mathematics, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, 525-8577 Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, 920-8640 Japan
| | - Katsumi Konishi
- Faculty of Computer and Information Sciences, Hosei University, Tokyo, 184-8584 Japan
| | - Shigeyuki Oba
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501 Japan
| | - Shin Ishii
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501 Japan
- CREST, Japan Science and Technology Agency, Tokyo, 113-0033 Japan
| | - Shinya Kuroda
- Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- CREST, Japan Science and Technology Agency, Tokyo, 113-0033 Japan
| |
Collapse
|
5
|
Herrero P, Bondia J, Oliver N, Georgiou P. A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes. Comput Methods Biomech Biomed Engin 2017; 20:1474-1482. [PMID: 28929796 DOI: 10.1080/10255842.2017.1378352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes is an autoimmune condition characterised by a pancreatic insulin secretion deficit, resulting in high blood glucose concentrations, which can lead to micro- and macrovascular complications. Type 1 diabetes also leads to impaired glucagon production by the pancreatic α-cells, which acts as a counter-regulatory hormone to insulin. A closed-loop system for automatic insulin and glucagon delivery, also referred to as an artificial pancreas, has the potential to reduce the self-management burden of type 1 diabetes and reduce the risk of hypo- and hyperglycemia. To date, bihormonal closed-loop systems for glucagon and insulin delivery have been based on two independent controllers. However, in physiology, the secretion of insulin and glucagon in the body is closely interconnected by paracrine and endocrine associations. In this work, we present a novel biologically-inspired glucose control strategy that accounts for such coordination. An in silico study using an FDA-accepted type 1 simulator was performed to evaluate the proposed coordinated control strategy compared to its non-coordinated counterpart, as well as an insulin-only version of the controller. The proposed coordinated strategy achieves a reduction of hyperglycemia without increasing hypoglycemia, when compared to its non-coordinated counterpart.
Collapse
Affiliation(s)
- Pau Herrero
- a Centre for Bio-Inspired Technology, Institute of Biomedical Engineering , Imperial College London , London , UK
| | - Jorge Bondia
- b Institut Universitari d'Automàtica i Informàtica Industrial , Universitat Politècnica de València , València , Spain
| | - Nick Oliver
- c Charing Cross Hospital, Imperial College Healthcare NHS Trust , London , UK
| | - Pantelis Georgiou
- a Centre for Bio-Inspired Technology, Institute of Biomedical Engineering , Imperial College London , London , UK
| |
Collapse
|
6
|
Herrero P, Bondia J, Adewuyi O, Pesl P, El-Sharkawy M, Reddy M, Toumazou C, Oliver N, Georgiou P. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator - in silico evaluation under intra-day variability. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 146:125-131. [PMID: 28688482 PMCID: PMC6522376 DOI: 10.1016/j.cmpb.2017.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/02/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Current prototypes of closed-loop systems for glucose control in type 1 diabetes mellitus, also referred to as artificial pancreas systems, require a pre-meal insulin bolus to compensate for delays in subcutaneous insulin absorption in order to avoid initial post-prandial hyperglycemia. Computing such a meal bolus is a challenging task due to the high intra-subject variability of insulin requirements. Most closed-loop systems compute this pre-meal insulin dose by a standard bolus calculation, as is commonly found in insulin pumps. However, the performance of these calculators is limited due to a lack of adaptiveness in front of dynamic changes in insulin requirements. Despite some initial attempts to include adaptation within these calculators, challenges remain. METHODS In this paper we present a new technique to automatically adapt the meal-priming bolus within an artificial pancreas. The technique consists of using a novel adaptive bolus calculator based on Case-Based Reasoning and Run-To-Run control, within a closed-loop controller. Coordination between the adaptive bolus calculator and the controller was required to achieve the desired performance. For testing purposes, the clinically validated Imperial College Artificial Pancreas controller was employed. The proposed system was evaluated against itself but without bolus adaptation. The UVa-Padova T1DM v3.2 system was used to carry out a three-month in silico study on 11 adult and 11 adolescent virtual subjects taking into account inter-and intra-subject variability of insulin requirements and uncertainty on carbohydrate intake. RESULTS Overall, the closed-loop controller enhanced by an adaptive bolus calculator improves glycemic control when compared to its non-adaptive counterpart. In particular, the following statistically significant improvements were found (non-adaptive vs. adaptive). Adults: mean glucose 142.2 ± 9.4vs. 131.8 ± 4.2mg/dl; percentage time in target [70, 180]mg/dl, 82.0 ± 7.0vs. 89.5 ± 4.2; percentage time above target 17.7 ± 7.0vs. 10.2 ± 4.1. Adolescents: mean glucose 158.2 ± 21.4vs. 140.5 ± 13.0mg/dl; percentage time in target, 65.9 ± 12.9vs. 77.5 ± 12.2; percentage time above target, 31.7 ± 13.1vs. 19.8 ± 10.2. Note that no increase in percentage time in hypoglycemia was observed. CONCLUSION Using an adaptive meal bolus calculator within a closed-loop control system has the potential to improve glycemic control in type 1 diabetes when compared to its non-adaptive counterpart.
Collapse
Affiliation(s)
- Pau Herrero
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom.
| | - Jorge Bondia
- Institut Universitari d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, València, Spain
| | - Oloruntoba Adewuyi
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Peter Pesl
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Mohamed El-Sharkawy
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Monika Reddy
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Chris Toumazou
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Nick Oliver
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Li Z, Xu X, Huang W, Qian H. Free Fatty Acid Receptor 1 (FFAR1) as an Emerging Therapeutic Target for Type 2 Diabetes Mellitus: Recent Progress and Prevailing Challenges. Med Res Rev 2017; 38:381-425. [DOI: 10.1002/med.21441] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zheng Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Xue Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| |
Collapse
|
8
|
Defossa E, Wagner M. Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 2014; 24:2991-3000. [PMID: 24881568 DOI: 10.1016/j.bmcl.2014.05.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
Abstract
Despite the availability of established medication for treatment of type 2 diabetes mellitus (T2DM) there still remains a significant unmet need for new effective, oral antidiabetic agents that improve glycemic control while maintaining an excellent safety profile. In this regard the FFA1 receptor has emerged as an attractive target in recent years. Activation of the FFA1 receptor has been shown to not only amplify glucose induced insulin secretion from pancreatic beta cells but also to stimulate incretin secretion from intestinal endocrine cells. The current review highlights on the latest developments and clinical data from evolving research on the potential of FFA1 agonists as effective treatment for T2DM.
Collapse
Affiliation(s)
- Elisabeth Defossa
- Lead Generation to Candidate Realization, Sanofi Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt, Germany.
| | - Michael Wagner
- Diabetes Division, Sanofi Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt, Germany.
| |
Collapse
|