1
|
Zhang Y, Du C, Zhang SQ, Yu HX, Mo HL, Yang QY, Li Y. Missense mutations of GPER1 in breast invasive carcinoma: Exploring gene expression, signal transduction and immune cell infiltration with insights from cellular pharmacology. Biomed Rep 2025; 22:22. [PMID: 39720300 PMCID: PMC11668130 DOI: 10.3892/br.2024.1900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 12/26/2024] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1) plays a crucial role in the progression of breast cancer and has emerged as a promising therapeutic target. However, while missense mutations in GPER1 have been detected in breast invasive carcinoma (BIC) samples, the resulting molecular, cellular and pharmacological changes remain unclear. The present study categorized BIC samples from The Cancer Genome Atlas database based on mutation information available in the cBioPortal database. Subsequently, survival analysis was conducted and the samples screened for differentially expressed genes (DEGs). Using these DEGs, the present study performed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, protein-protein interaction network analysis and hub gene selection. After assessing the prognostic value of hub genes, the immune cell infiltration between mutant and wild-type (WT) groups was analyzed. Finally, a luciferase reporter system was used to assess the cyclic AMP (cAMP) production mediated by GPER1 following treatment with the agonist G-1 for each mutation. The results revealed a significant decrease in progression-free survival and disease-specific survival in the GPER1 mutant group compared with the WT group. Gene expression analysis identified 60 DEGs, all of which were upregulated and significantly enriched in GO terms related to tumor progression, such as organic anion transport, glycosaminoglycan binding and monoatomic ion-gated channel activity. DEGs were also significantly enriched in the PI3K-Akt signaling pathway in KEGG. Hub gene selection and prognostic evaluation identified three genes significantly associated with survival: IL33, STAB2 and CFTR. Immune cell infiltration analysis revealed a significant decrease in CD8 T cell content in the GPER1 mutant group compared with the WT group. Luciferase reporter assays demonstrated that four missense mutations in GPER1 (L129M, E218Q, S235F and A345G) significantly attenuated the induction of cyclic adenosine monophosphate production mediated by its agonist. These findings provided valuable insights for the design of breast cancer drugs targeting GPER1 and for precision medicine initiatives.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chong Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shu-Qun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui-Xia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Hao-Lin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qi-Yuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
2
|
Gong C, Bertagnolli LN, Boulton DW, Coppola P. A Literature Review of Changes in Phase II Drug-Metabolizing Enzyme and Drug Transporter Expression during Pregnancy. Pharmaceutics 2023; 15:2624. [PMID: 38004602 PMCID: PMC10674389 DOI: 10.3390/pharmaceutics15112624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this literature review is to comprehensively summarize changes in the expression of phase II drug-metabolizing enzymes and drug transporters in both the pregnant woman and the placenta. Using PubMed®, a systematic search was conducted to identify literature relevant to drug metabolism and transport in pregnancy. PubMed was searched with pre-specified terms during the period of 26 May 2023 to 10 July 2023. The final dataset of 142 manuscripts was evaluated for evidence regarding the effect of gestational age and hormonal regulation on the expression of phase II enzymes (n = 16) and drug transporters (n = 38) in the pregnant woman and in the placenta. This comprehensive review exposes gaps in current knowledge of phase II enzyme and drug transporter localization, expression, and regulation during pregnancy, which emphasizes the need for further research. Moreover, the information collected in this review regarding phase II drug-metabolizing enzyme and drug transporter changes will aid in optimizing pregnancy physiologically based pharmacokinetic (PBPK) models to inform dose selection in the pregnant population.
Collapse
Affiliation(s)
- Christine Gong
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lynn N. Bertagnolli
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Gaithersburg, MD 20878, USA
| | - David W. Boulton
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Gaithersburg, MD 20878, USA
| | - Paola Coppola
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Cambridge CB2 0AA, UK
| |
Collapse
|
3
|
Yu Z, Wang H, You G. The regulation of human organic anion transporter 4 by insulin-like growth factor 1 and protein kinase B signaling. Biochem Pharmacol 2023; 215:115702. [PMID: 37487877 PMCID: PMC10528241 DOI: 10.1016/j.bcp.2023.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Human organic anion transporter 4 (hOAT4), mainly expressed in the kidney and placenta, is essential for the disposition of numerous drugs, toxins, and endogenous substances. Insulin-like growth factor 1 (IGF-1) is a hormone generated in the liver and plays important roles in systemic growth, development, and metabolism. In the current study, we explored the regulatory effects of IGF-1 and downstream signaling on the transport activity, protein expression, and SUMOylation of hOAT4. We showed that IGF-1 significantly increased the transport activity, expression, and maximal transport velocity Vmax of hOAT4 in kidney-derived cells. This stimulatory effect of IGF-1 on hOAT4 activity was also confirmed in cells derived from the human placenta. The increased activity and expression were correlated well with the reduced degradation rate of hOAT4 at the cell surface. Furthermore, IGF-1 significantly increased hOAT4 SUMOylation, and protein kinase B (PKB)-specific inhibitors blocked the IGF-1-induced regulations on hOAT4. In conclusion, our study demonstrates that the hepatic hormone IGF-1 regulates hOAT4 expressed in the kidney and placenta through the PKB signaling pathway. Our results support the remote sensing and signaling theory, where OATs play a central role in the remote communications among distal tissues.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
5
|
Abbiati RA, Wientjes MG, Au JLS. Is It Time to Use Modeling of Cellular Transporter Homeostasis to Inform Drug-Drug Interaction Studies: Theoretical Considerations. AAPS J 2021; 23:102. [PMID: 34435271 PMCID: PMC11048728 DOI: 10.1208/s12248-021-00635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Mathematical modeling has been an important tool in pharmaceutical research for 50 + years and there is increased emphasis over the last decade on using modeling to improve the efficiency and effectiveness of drug development. In an earlier commentary, we applied a multiscale model linking 6 scales (whole body, tumor, vasculature, cell, spatial location, time), together with literature data on nanoparticle and tumor properties, to demonstrate the effects of nanoparticle particles on systemic disposition. The current commentary used a 4-scale model (cell membrane, intracellular organelles, spatial location, time) together with literature data on the intracellular processing of membrane receptors and transporters to demonstrate disruption of transporter homeostasis can lead to drug-drug interaction (DDI) between victim drug (VD) and perpetrator drug (PD), including changes in the area-under-concentration-time-curve of VD in cells that are considered significant by the US Food and Drug Administration (FDA). The model comprised 3 computational components: (a) intracellular transporter homeostasis, (b) pharmacokinetics of extracellular and intracellular VD/PD concentrations, and (c) pharmacodynamics of PD-induced stimulation or inhibition of an intracellular kinetic process. Model-based simulations showed that (a) among the five major endocytic processes, perturbation of transporter internalization or recycling led to the highest incidence and most extensive DDI, with minor DDI for perturbing transporter synthesis and early-to-late endosome and no DDI for perturbing transporter degradation and (b) three experimental conditions (spatial transporter distribution in cells, VD/PD co-incubation time, extracellular PD concentrations) were determinants of DDI detection. We propose modeling is a useful tool for hypothesis generation and for designing experiments to identify potential DDI; its application further aligns with the model-informed drug development paradigm advocated by FDA.
Collapse
Affiliation(s)
- Roberto A Abbiati
- Institute of Quantitative Systems Pharmacology, Carlsbad, California, 92008, USA
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, Oklahoma, 73117, USA
| | - M Guillaume Wientjes
- Institute of Quantitative Systems Pharmacology, Carlsbad, California, 92008, USA
- Optimum Therapeutics LLC, 1815 Aston Ave, Suite 107, Carlsbad, California, 92008, USA
| | - Jessie L-S Au
- Institute of Quantitative Systems Pharmacology, Carlsbad, California, 92008, USA.
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, Oklahoma, 73117, USA.
- Optimum Therapeutics LLC, 1815 Aston Ave, Suite 107, Carlsbad, California, 92008, USA.
- Taipei Medical University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
Cerveny L, Murthi P, Staud F. HIV in pregnancy: Mother-to-child transmission, pharmacotherapy, and toxicity. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166206. [PMID: 34197912 DOI: 10.1016/j.bbadis.2021.166206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
An estimated 1.3 million pregnant women were living with HIV in 2018. HIV infection is associated with adverse pregnancy outcomes and all HIV-positive pregnant women, regardless of their clinical stage, should receive a combination of antiretroviral drugs to suppress maternal viral load and prevent vertical fetal infection. Although antiretroviral treatment in pregnant women has undoubtedly minimized mother-to-child transmission of HIV, several uncertainties remain. For example, while pregnancy is accompanied by changes in pharmacokinetic parameters, relevant data from clinical studies are lacking. Similarly, long-term adverse effects of exposure to antiretrovirals on fetuses have not been studied in detail. Here, we review current knowledge on HIV effects on the placenta and developing fetus, recommended antiretroviral regimens, and pharmacokinetic considerations with particular focus on placental transport. We also discuss recent advances in antiretroviral research and potential effects of antiretroviral treatment on placental/fetal development and programming.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Padma Murthi
- Department of Medicine, School of Clinical Sciences, and Department of Pharmacology, Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia; Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
7
|
Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295:17349-17364. [PMID: 33051208 PMCID: PMC7863896 DOI: 10.1074/jbc.rev120.009132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jeong-Min Ha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Ali Y, Shams T, Cheng Z, Li Y, Chun CSW, Shu W, Bao X, Zhu L, Murray M, Zhou F. Impaired Transport Activity of Human Organic Anion Transporters (OATs) and Organic Anion Transporting Polypeptides (OATPs) by Wnt Inhibitors. J Pharm Sci 2020; 110:914-924. [PMID: 33049263 DOI: 10.1016/j.xphs.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
The Wnt/β-catenin signaling pathway is dysregulated in diseases and Wnt inhibitors like PRI-724 are in clinical development. This study evaluated the regulatory actions of PRI-724 and other Wnt inhibitors on the transport activity of human renal Organic anion transporters (OATs) and Organic anion transporting polypeptides (OATPs). The substrate uptake by OAT4 and OATP2B1 was markedly decreased by PRI-724 (Vmax/Km: ∼26% and ∼17% of corresponding control), with less pronounced decreases in OAT1, OAT3 and OAT1A2. PRI-724 decreased the plasma membrane expression of inhibited OATs/OATPs but didn't affect their total cellular expression. Two model Wnt inhibitors - FH535 and 21H7 - were also tested in comparative studies. Like PRI-724, they also strongly decreased the activities and membrane expression of multiple OATs/OATPs. In contrast, FH535 didn't affect the substrate uptake by organic cation transporters. In control studies, the EGFR inhibitor lapatinib did not inhibit the function of some OATs/OATPs. Together these findings suggest that Wnt inhibitors selectively modulate the function of multiple organic anions transporters, so their clinical use may have unanticipated effects on drug entry into cells. These findings are pertinent to current clinical trials that have been designed to understand the safety and efficacy of new Wnt inhibitor drugs.
Collapse
Affiliation(s)
- Youmna Ali
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Tahiatul Shams
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Chelsea Siu-Wai Chun
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia
| | - Wenying Shu
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia; Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong Province, 511400 China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226019 China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, New South Wales, 2000 Australia
| | - Michael Murray
- The University of Sydney, Discipline of Pharmacology, Faculty of Medicine and Health, New South Wales 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health, New South Wales, 2006 Australia.
| |
Collapse
|
9
|
Nielsen C, Andersson Hall U, Lindh C, Ekström U, Xu Y, Li Y, Holmäng A, Jakobsson K. Pregnancy-induced changes in serum concentrations of perfluoroalkyl substances and the influence of kidney function. Environ Health 2020; 19:80. [PMID: 32641055 PMCID: PMC7346349 DOI: 10.1186/s12940-020-00626-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/19/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Epidemiological associations between maternal concentrations of perfluoroalkyl substances (PFAS) and birth weight are inconsistent. There is concern that studies based on samples collected in late pregnancy may be confounded by kidney function but studies of the relation between pregnancy-induced changes in PFAS and kidney function are lacking. Our aims were to investigate changes in serum concentrations of perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) from early to late pregnancy and to explore relations to changes in glomerular filtration rate (GFR) and glomerular pore size. METHODS We conducted the study in a cohort of 73 pregnancies of normal-weight Swedish women without gestational diabetes and preeclampsia, enrolled 2009-2014. Blood was collected in median weeks 11 and 36, respectively, and analysed PFAS using liquid chromatography-tandem-mass-spectrometry. We estimated GFR based on creatinine and cystatin C and used the ratio eGFRcystatin C/eGFRcreatinine to indicate glomerular pore size. We used Wilcoxon signed-rank test to compare early and late measures and partial Spearman rank correlations to explore relations between changes in PFAS and kidney function. RESULTS Median concentrations of PFNA, PFOA and PFOS decreased by 15-21% but changes were uncorrelated to changes in kidney function (partial R = - 0.06-0.11). The observed increase in median PFHxS concentration of 69% was likely an artefact of systematic measurement error caused by coeluting endogenous inferences. CONCLUSIONS Serum concentrations of PFNA, PFOA and PFOS decrease during pregnancy but the magnitudes of change are unrelated to parallel changes in eGFR and glomerular pore size, suggesting that changes in these indicators of kidney function are not important confounders in studies of PFAS and birth weight in pregnancies without gestational diabetes and preeclampsia.
Collapse
Affiliation(s)
- Christel Nielsen
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Medicon Village (402A), Scheelevägen 8, 223 81 Lund, Sweden
| | - Ulrika Andersson Hall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Christian Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Medicon Village (402A), Scheelevägen 8, 223 81 Lund, Sweden
| | - Ulf Ekström
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden
| | - Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Agneta Holmäng
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
10
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Placental Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:505-548. [PMID: 31571173 DOI: 10.1007/978-981-13-7647-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
12
|
Wang H, Xu D, Toh MF, Pao AC, You G. Serum- and glucocorticoid-inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4-2. Biochem Pharmacol 2016; 102:120-129. [PMID: 26740304 PMCID: PMC5166719 DOI: 10.1016/j.bcp.2015.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT4 is abundantly expressed in the kidney and placenta. In the current study, we examined the regulation of hOAT4 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT4 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity Vmax without significant change in substrate-binding affinity Km. We further showed that regulation of hOAT4 activity by sgk2 was mediated by ubiquitin ligase Nedd4-2. Overexpression of Nedd4-2 enhanced hOAT4 ubiquitination, and inhibited hOAT4 transport activity, whereas overexpression of ubiquitin ligase-dead mutant Nedd4-2/C821A or siRNA knockdown of endogenous Nedd4-2 had opposite effects on hOAT4. Our co-immunoprecipitation experiment revealed that sgk2 weakened the association between hOAT4 and Nedd4-2. In conclusion, our study demonstrated for the first time that sgk2 stimulated hOAT4 transport activity by abrogating the inhibitory effect of Nedd4-2 on the transporter.
Collapse
Affiliation(s)
- Haoxun Wang
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Da Xu
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - May Fern Toh
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alan C Pao
- Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
13
|
Lu X, Chan T, Xu C, Zhu L, Zhou QT, Roberts KD, Chan HK, Li J, Zhou F. Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J Antimicrob Chemother 2015; 71:403-12. [PMID: 26494147 DOI: 10.1093/jac/dkv340] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/20/2015] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Polymyxins are a last-line therapy to treat MDR Gram-negative bacterial infections. Nephrotoxicity is the dose-limiting factor for polymyxins and recent studies demonstrated significant accumulation of polymyxins in renal tubular cells. However, little is known about the mechanism of polymyxin uptake into these cells. Oligopeptide transporter 2 (PEPT2) is a solute carrier transporter (SLC) expressed at the apical membrane of renal proximal tubular cells and facilitates drug reabsorption in the kidney. In this study, we examined the role of PEPT2 in polymyxin uptake into renal tubular cells. METHODS We investigated the inhibitory effects of colistin and polymyxin B on the substrate uptake mediated through 15 essential SLCs in overexpressing HEK293 cells. The inhibitory potency of both polymyxins on PEPT2-mediated substrate uptake was measured. Fluorescence imaging was employed to investigate PEPT2-mediated uptake of the polymyxin fluorescent probe MIPS-9541 and a transport assay was conducted with MIPS-9541 and [(3)H]polymyxin B1. RESULTS Colistin and polymyxin B potently inhibited PEPT2-mediated [(3)H]glycyl-sarcosine uptake (IC50 11.4 ± 3.1 and 18.3 ± 4.2 μM, respectively). In contrast, they had no or only mild inhibitory effects on the transport activity of the other 14 SLCs evaluated. MIPS-9541 potently inhibited PEPT2-mediated [(3)H]glycyl-sarcosine uptake (IC50 15.9 μM) and is also a substrate of PEPT2 (Km 74.9 μM). [(3)H]polymyxin B1 was also significantly taken up by PEPT2-expressing cells (Km 87.3 μM). CONCLUSIONS Our study provides the first evidence of PEPT2-mediated uptake of polymyxins and contributes to a better understanding of the accumulation of polymyxins in renal tubular cells.
Collapse
Affiliation(s)
- Xiaoxi Lu
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Ting Chan
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Chenghao Xu
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Ling Zhu
- Retinal Therapeutics Research Group, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907-2091, USA
| | - Kade D Roberts
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Hak-Kim Chan
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
14
|
Abstract
Potential drug-drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug-metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
15
|
Powell J, Farasyn T, Köck K, Meng X, Pahwa S, Brouwer KLR, Yue W. Novel mechanism of impaired function of organic anion-transporting polypeptide 1B3 in human hepatocytes: post-translational regulation of OATP1B3 by protein kinase C activation. Drug Metab Dispos 2014; 42:1964-70. [PMID: 25200870 PMCID: PMC4201128 DOI: 10.1124/dmd.114.056945] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023] Open
Abstract
The organic anion-transporting polypeptide (OATP) 1B3 is a membrane transport protein that mediates hepatic uptake of many drugs and endogenous compounds. Currently, determination of OATP-mediated drug-drug interactions in vitro is focused primarily on direct substrate inhibition. Indirect inhibition of OATP1B3 activity is under-appreciated. OATP1B3 has putative protein kinase C (PKC) phosphorylation sites. Studies were designed to determine the effect of PKC activation on OATP1B3-mediated transport in human hepatocytes using cholecystokinin-8 (CCK-8), a specific OATP1B3 substrate, as the probe. A PKC activator, phorbol-12-myristate-13-acetate (PMA), did not directly inhibit [(3)H]CCK-8 accumulation in human sandwich-cultured hepatocytes (SCH). However, pretreatment with PMA for as little as 10 minutes rapidly decreased [(3)H]CCK-8 accumulation. Treatment with a PKC inhibitor bisindolylmaleimide (BIM) I prior to PMA treatment blocked the inhibitory effect of PMA, indicating PKC activation is essential for downregulating OATP1B3 activity. PMA pretreatment did not affect OATP1B3 mRNA or total protein levels. To determine the mechanism(s) underlying the indirect inhibition of OATP1B3 activity upon PKC activation, adenoviral vectors expressing FLAG-Myc-tagged OATP1B3 (Ad-OATP1B3) were transduced into human hepatocytes; surface expression and phosphorylation of OATP1B3 were determined by biotinylation and by an anti-phosphor-Ser/Thr/Tyr antibody, respectively. PMA pretreatment markedly increased OATP1B3 phosphorylation without affecting surface or total OATP1B3 protein levels. In conclusion, PKC activation rapidly decreases OATP1B3 transport activity by post-translational regulation of OATP1B3. These studies elucidate a novel indirect inhibitory mechanism affecting hepatic uptake mediated by OATP1B3, and provide new insights into predicting OATP-mediated drug interactions between OATP substrates and kinase modulator drugs/endogenous compounds.
Collapse
Affiliation(s)
- John Powell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Kathleen Köck
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Xiaojie Meng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Kim L R Brouwer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| |
Collapse
|
16
|
Pelis RM, Wright SH. SLC22, SLC44, and SLC47 transporters--organic anion and cation transporters: molecular and cellular properties. CURRENT TOPICS IN MEMBRANES 2014; 73:233-61. [PMID: 24745985 DOI: 10.1016/b978-0-12-800223-0.00006-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transporters within the SLC22, SLC44, and SLC47 families of solute carriers mediate transport of a structurally diverse array of organic electrolytes, that is, molecules that are generally charged (cationic, anionic, or zwitterionic) at physiological pH. Transporters in the SLC22 family--all of which are members of the major facilitator superfamily (MFS) of transporters--represent a mechanistically diverse set of processes, including the organic anion transporters (OATs and URAT1) that physiologically operate as organic anion (OA) exchangers, the organic cation transporters (OCTs) that operate as electrogenic uniporters of organic cations (OCs), and the so-called "novel" organic cation transporters (OCTNs) that support Na-cotransport of selected zwitterions. Whereas the OCTNs display a high degree of substrate selectivity, the physiological hallmark of the OATs and OCTs is their multiselectivity--consistent with a principal role in renal and hepatic clearance of a wide array of both endogenous and xenobiotic compounds. SLC47 consists of members of the multidrug and toxin extruder (MATE) family, which are carriers that are obligatory exchangers and that physiologically support electroneutral H⁺ exchange. The MATEs also display a characteristic multiselectivity and are frequently paired with OCTs to mediate transepithelial OC secretion, with the OCTs typically supporting basolateral OC entry and the MATEs supporting apical OC efflux. The SLC44 family contains the choline transporter-like (CTL) transporters. Largely restricted to choline and a limited set of structural congeners, the CTLs appear to support the Na-independent, electrogenic uniport of choline, thereby providing choline for membrane biogenesis. The solution of X-ray crystal structures of representative prokaryotic MFS and MATE transporters has led to the development of homology models of mammalian OAT, OCT, and MATE transporters that, in turn, have supplemented studies of the molecular basis of the complex interactions of ligands with these multiselective proteins.
Collapse
Affiliation(s)
- Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen H Wright
- Department of Physiology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
17
|
Zhou F, Lee AC, Krafczyk K, Zhu L, Murray M. Protein kinase C regulates the internalization and function of the human organic anion transporting polypeptide 1A2. Br J Pharmacol 2011; 162:1380-8. [PMID: 21133891 DOI: 10.1111/j.1476-5381.2010.01144.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The human organic anion transporting polypeptide 1A2 (OATP1A2) is expressed in cells from several regions of the human body, including the kidney, cholangiocytes and the blood-brain barrier, and mediates the cellular flux of various anionic substances, including drugs in clinical use. Several related mammalian transporters have been shown to be subject to post-translational regulation, including kinase-induced internalization. In the present study the role of protein kinase C (PKC) in the regulation of OATP1A2 was investigated in an in vitro cell model. EXPERIMENTAL APPROACH COS-7 cells in which OATP1A2 was overexpressed were treated with the PKC-specific activator (phorbol 12-myristate 13-acetate; PMA) and the PKC-specific inhibitor (Go6976). The impact of these treatments on the function and regulation of OATP1A2 was determined. KEY RESULTS PKC activation decreased the transport function of OATP1A2 in a time- and concentration-dependent manner. PMA (0.1 µM) decreased the V(max) of oestrone-3-sulphate uptake and decreased the cell surface expression of OATP1A2 immunoreactive protein; these effects of PMA were prevented by the PKC specific inhibitor Go6976. In further studies, PMA treatment accelerated the internalization of OATP1A2 but did not affect its recycling. The disruption of clathrine-dependent endocytosis attenuated both the constitutive and PKC-modulated internalization of OATP1A2. In contrast, blocking the caveolin-dependent pathway was without effect. CONCLUSIONS AND IMPLICATIONS PKC regulates the transport function of OATP1A2 by modulating protein internalization; this effect of PKC is mediated in part by clathrine-dependent pathways.
Collapse
Affiliation(s)
- Fanfan Zhou
- Pharmacogenomics and Drug Development Laboratory, Faculty of Pharmacy, The University of Sydney, Australia.
| | | | | | | | | |
Collapse
|
18
|
Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 2011:29-104. [PMID: 21103968 DOI: 10.1007/978-3-642-14541-4_2] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organic anion transporters 1-10 (OAT1-10) and the urate transporter 1 (URAT1) belong to the SLC22A gene family and accept a huge variety of chemically unrelated endogenous and exogenous organic anions including many frequently described drugs. OAT1 and OAT3 are located in the basolateral membrane of renal proximal tubule cells and are responsible for drug uptake from the blood into the cells. OAT4 in the apical membrane of human proximal tubule cells is related to drug exit into the lumen and to uptake of estrone sulfate and urate from the lumen into the cell. URAT1 is the major urate-absorbing transporter in the apical membrane and is a target for uricosuric drugs. OAT10, also located in the luminal membrane, transports nicotinate with high affinity and interacts with drugs. Major extrarenal locations of OATs include the blood-brain barrier for OAT3, the placenta for OAT4, the nasal epithelium for OAT6, and the liver for OAT2 and OAT7. For all transporters we provide information on cloning, tissue distribution, factors influencing OAT abundance, interaction with endogenous compounds and different drug classes, drug/drug interactions and, if known, single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Gerhard Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie und Pathophysiologie, Göttingen, Germany.
| | | |
Collapse
|
19
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 581] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
20
|
Regulation of human organic anion transporter 4 by protein kinase C and NHERF-1: altering the endocytosis of the transporter. Pharm Res 2010; 27:589-96. [PMID: 20140636 DOI: 10.1007/s11095-009-9983-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/15/2009] [Indexed: 01/27/2023]
Abstract
PURPOSE Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs. We have previously shown that the activity of hOAT4 was down-regulated by activation of PKC and up-regulated by PDZ protein NHERF-1. Here, we investigated the mechanisms underlying such regulations. METHODS COS-7 cells expressing hOAT4 were treated with PKC activator phorbol 12-myristate 13-acetate (PMA) or transfected with dominant negative mutants of dynamin-2 or Eps15 or transfected with NHERF-1. The internalization and the function of hOAT4 were then determined. RESULTS We showed that hOAT4 constitutively internalized from and recycled back to plasma membrane. Transfection of dominant negative mutants of dynamin-2 or Eps15 into the cells, all of which block clathrin-dependent endocytotic pathway, significantly blocked hOAT4 internalization. Treatment of cells with PMA accelerated hOAT4 internalization, whereas transfection of cells with NHERF-1 attenuated hOAT4 internalization. CONCLUSION Our studies demonstrated that i) hOAT4 undergoes constitutive trafficking between cell surface and intracellular compartments, ii) hOAT4 internalization partly occurs through clathrin-dependent pathway, iii) the down-regulation of hOAT4 activity by activation of PKC and the up-regulation of hOAT4 activity by NHERF-1 are mediated through alteration of hOAT4 internalization.
Collapse
|
21
|
Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol 2009; 159:419-27. [PMID: 20015291 DOI: 10.1111/j.1476-5381.2009.00545.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The human organic anion transporter (hOAT) family of transmembrane carrier proteins mediate the cellular flux of anionic substances, including certain hormones and anti-cancer drugs. hOAT4 is highly expressed at the apical membrane of the renal tubular cell and facilitates drug re-absorption in the kidney. In the present study, the impact of 10 nonsynonymous single nucleotide polymorphisms (SNPs) of hOAT4 on transport function in COS-7 cells was characterized. EXPERIMENTAL APPROACH Transport uptake assay was used to assess the function of the variant transporters. Cell surface biotinylation and western blot analysis were used to investigate the expression characteristics of the transporter proteins. Comparative modelling was used to interpret the influence of nonsynonymous changes in terms of hOAT4 structure. KEY RESULTS Four naturally occurring hOAT4 variants (L29P, R48Y, V155G and T392I) exhibited a significant loss of function. Substitution of leucine-29, which is a conserved residue in OATs, with a proline residue, impaired the synthesis or the apparent stability of the transporter and membrane insertion was disrupted in the R48Y variant. In the case of the V155G and T392I variants, impaired function was due to decreased affinity of the transporter for oestrone sulphate and impaired transporter-substrate turnover respectively. The T392I variant was inhibited more extensively than the wild-type transporter by the cationic substrate tetraethyl ammonium. CONCLUSIONS AND IMPLICATIONS Several naturally occurring SNPs encode variant hOAT4s that may impair the renal tubular re-absorption of important drug substrates.
Collapse
Affiliation(s)
- Fanfan Zhou
- Pharmacogenomics and Drug Development Laboratory, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
22
|
Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol 2009. [PMID: 20015291 DOI: 10.1111/j.1476-5381.2009.00545.xbph545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The human organic anion transporter (hOAT) family of transmembrane carrier proteins mediate the cellular flux of anionic substances, including certain hormones and anti-cancer drugs. hOAT4 is highly expressed at the apical membrane of the renal tubular cell and facilitates drug re-absorption in the kidney. In the present study, the impact of 10 nonsynonymous single nucleotide polymorphisms (SNPs) of hOAT4 on transport function in COS-7 cells was characterized. EXPERIMENTAL APPROACH Transport uptake assay was used to assess the function of the variant transporters. Cell surface biotinylation and western blot analysis were used to investigate the expression characteristics of the transporter proteins. Comparative modelling was used to interpret the influence of nonsynonymous changes in terms of hOAT4 structure. KEY RESULTS Four naturally occurring hOAT4 variants (L29P, R48Y, V155G and T392I) exhibited a significant loss of function. Substitution of leucine-29, which is a conserved residue in OATs, with a proline residue, impaired the synthesis or the apparent stability of the transporter and membrane insertion was disrupted in the R48Y variant. In the case of the V155G and T392I variants, impaired function was due to decreased affinity of the transporter for oestrone sulphate and impaired transporter-substrate turnover respectively. The T392I variant was inhibited more extensively than the wild-type transporter by the cationic substrate tetraethyl ammonium. CONCLUSIONS AND IMPLICATIONS Several naturally occurring SNPs encode variant hOAT4s that may impair the renal tubular re-absorption of important drug substrates.
Collapse
Affiliation(s)
- Fanfan Zhou
- Pharmacogenomics and Drug Development Laboratory, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
23
|
Duan P, Li S, You G. Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter. Eur J Pharmacol 2009; 627:49-55. [PMID: 19878671 DOI: 10.1016/j.ejphar.2009.10.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/22/2009] [Accepted: 10/14/2009] [Indexed: 01/11/2023]
Abstract
Human organic anion transporter 3 (hOAT3) belongs to a family of organic anion transporters that play critical roles in the body disposition of numerous clinically important drugs. In the kidney, hOAT3 functions through a tertiary transport mechanism involving two other membrane proteins Na/K-ATPase and Na-dicarboxylate cotransporter. In the current study, we established COS-7 cells stably expressing hOAT3 and examined the regulation of hOAT3 by protein kinase C (PKC) and angiotensin II. Both PKC activation and angiotensin II inhibited hOAT3 transport activity. Angiotensin II induced inhibition of hOAT3 activity could be prevented by treating hOAT3-expressing cells with staurosporine, a general inhibitor for PKC, and with Gö6976 (5,6,7,13-Tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile), a PKCalpha-specific inhibitor. Examination of hOAT3 expression and transport kinetics revealed that angiotensin II induced inhibition of hOAT3 activity mainly resulted from a decreased cell surface expression kinetically reflected as a decreased V(max) without a significant change in K(m). Such angiotensin II induced decrease in cell surface expression of hOAT3 was caused by an increase in hOAT3 endocytosis. However, angiotensin II induced endocytosis of Na/K-ATPase did not occur under such condition. We concluded that angiotensin II inhibited hOAT3 activity through the activation of PKCalpha, which led to an acceleration of hOAT3 endocytosis.
Collapse
Affiliation(s)
- Peng Duan
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, United States
| | | | | |
Collapse
|
24
|
Vähäkangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol 2009; 158:665-78. [PMID: 19788499 DOI: 10.1111/j.1476-5381.2009.00336.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies on the increasing number of transporters found in the placental barrier are gaining momentum, because of their tissue-specific expression, significance in physiology and disease, and the possible utilization of the emerging knowledge in pharmacology. In the placenta, both syncytiotrophoblast and fetal capillary endothelium express transporters. Fetal exposure is determined by the net effect of combination of transporters, their nature and localization in relation to placental cells and their substrate specificity. Although the significance of placental transporters on human fetal drug exposure is almost an unstudied field so far, their potential use to design drugs that do not cross the placenta is already being pursued. It is thus of interest to review the existing knowledge of human placental transporters. Transporters in all groups which take part in drug transport are found in human placenta. Especially, ATP-binding cassette transporters ABCG2/breast cancer resistance protein, ABCB1/P-glycoprotein and ABCC2/MRP2 are all expressed at the apical surface of syncytiotrophoblast facing maternal blood and are putatively important protective proteins both for placental tissue and the fetus, because they are efflux transporters and their substrates include many drugs and also environmental chemicals. Such protective effect has been shown in animals, but these results cannot be directly extrapolated to humans due to interspecies differences in placental structure and function. Experimental models utilizing human placental tissue, especially human placental perfusion, offer valuable possibilities, which have been insufficiently studied so far.
Collapse
Affiliation(s)
- Kirsi Vähäkangas
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
25
|
Short-term regulation of organic anion transporters. Pharmacol Ther 2009; 125:55-61. [PMID: 19744520 DOI: 10.1016/j.pharmthera.2009.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/19/2022]
Abstract
Organic anion transporters (OATs), which belong to the superfamily SLC22A, are key determinants in the absorption, distribution, and excretion of a diverse array of environmental toxins, and clinically important drugs, and, therefore, are critical for the survival of mammalian species. Alteration in the function of these drug transporters plays important roles in intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs. As a result, the activity of OATs must be under tight regulation so as to carry out their normal functions. This review article highlights the recent advances from our laboratory as well as from others in delineating the short-term regulation of OATs. These advances provide important insights into strategies to maximize therapeutic efficacy in drug development.
Collapse
|
26
|
Ahn SY, Nigam SK. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol 2009; 76:481-90. [PMID: 19515966 PMCID: PMC2730381 DOI: 10.1124/mol.109.056564] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/09/2009] [Indexed: 01/12/2023] Open
Abstract
Organic anion transporters (Oats) are located in the barrier epithelia of diverse organs, where they mediate the absorption and excretion of a wide range of metabolites, signaling molecules, and xenobiotics. Although their interactions with a broad group of substrates have been extensively studied and described, the primary physiological role of Oats remains elusive. The presence of overlapping substrate specificities among the different Oat isoforms, together with recent metabolomic data from the Oat1, Oat3, and renal-specific transporter (RST/URAT1) knockout mice, suggests a possible role in remote signaling wherein substrates excreted through one Oat isoform in one organ are taken up by another Oat isoform located in a different organ, thereby mediating communication between different organ systems, or even between different organisms. Here we further develop this "remote sensing and signaling hypothesis" and suggest how the regulation of SLC22 subfamily members (including those of the organic cation, organic carnitine, and unknown substrate transporter subfamilies) can be better understood by considering the organism's broader need to communicate between epithelial and other tissues by simultaneous regulation of transport of metabolites, signaling molecules, drugs, and toxins. This systems biology perspective of remote signaling (sensing) could help reconcile an enormous array of tissue-specific data for various SLC22 family genes and, possibly, other multispecific transporters, such as those of the organic anion transporting polypeptide (OATP, SLC21) and multidrug resistance-associated protein (MRP) families.
Collapse
Affiliation(s)
- Sun-Young Ahn
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
27
|
Duan P, You G. Novobiocin is a potent inhibitor for human organic anion transporters. Drug Metab Dispos 2009; 37:1203-10. [PMID: 19282394 PMCID: PMC2683688 DOI: 10.1124/dmd.109.026880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/10/2009] [Indexed: 11/22/2022] Open
Abstract
Organic anion transporters (OATs) mediate the body disposition of a diverse array of environmental toxins and clinically important drugs. Previous studies have shown that novobiocin, an inhibitor for breast cancer resistance proteins (BCRP), inhibited organic anion transport. However, its interactions with specific OATs are unknown. In the current study, we characterized the inhibitory effects of novobiocin on the function of human OATs (hOAT)1, hOAT3, and hOAT4. Kinetic study revealed that novobiocin inhibited OAT-mediated uptake in a competitive manner, with K(i) of 14.87 +/- 0.40 microM for hOAT1, K(i) of 4.77 +/- 1.12 microM for hOAT3, and K(i) of 90.50 +/- 7.50 microM for hOAT4. Furthermore, the cis- and trans-inhibition feature of novobiocin demonstrated that novobiocin was a potent inhibitor but not a substrate for hOAT1 (IC(50) = 34.76 +/- 0.31 microM), hOAT3 (IC(50) = 4.987 +/- 0.35 microM), and hOAT4 (IC(50) = 92.68 +/- 0.34 microM). We further showed that the effects of novobiocin on OATs were not mediated through a change in transporter protein abundance on the plasma membrane. Taken together, we conclude that novobiocin seems to interact with the substrate-binding sites of OATs from both the intracellular and the extracellular sides, and this interaction interferes with the substrate-binding site(s) on respective carriers, leading to an apparent reduction in carriers available for the substrates. Because BCRP is often expressed in the same tissue where multiple OATs are identified such as liver, kidney and placenta, when dissecting the contribution of BCRP to drug disposition using novobiocin as an inhibitor, its inhibitory effect to OATs has to be taken into consideration.
Collapse
Affiliation(s)
- Peng Duan
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
28
|
Li S, Duan P, You G. Regulation of human organic anion transporter 1 by ANG II: involvement of protein kinase Calpha. Am J Physiol Endocrinol Metab 2009; 296:E378-83. [PMID: 19088254 PMCID: PMC2645019 DOI: 10.1152/ajpendo.90713.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-human immunodeficiency virus therapeutics, anti-tumor drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney. In the current study, we examined the regulation of hOAT1 by ANG II in kidney COS-7 cells. ANG II induced a concentration- and time-dependent inhibition of hOAT1 transport activity. Such inhibition mainly resulted from a decreased cell surface expression without a change in total cell expression of the transporter, kinetically revealed as a decreased maximal velocity without significant change in Michaelis constant. ANG II-induced inhibition of hOAT1 activity could be prevented by treating hOAT1-expressing cells with staurosporine, a general protein kinase C (PKC) inhibitor. To obtain further information on which PKC isoform mediates ANG II regulation of hOAT1 activity, cellular distribution of various PKC isoforms was examined in cells treated with or without ANG II. We showed that ANG II treatment resulted in a significant translocation of PKCalpha from cytosol to membrane, and such translocation was blocked by treating hOAT1-expressing cells with Gö-6976, a PKCalpha-specific inhibitor. We further showed that ANG II-induced inhibition of hOAT1 activity and retrieval of hOAT1 from the cell surface could also be prevented by treating hOAT1-expressing cells with Gö-6976. We concluded that ANG II inhibited hOAT1 activity through activation of PKCalpha, which led to the redistribution of the transporter from the cell surface to the intracellular compartments.
Collapse
Affiliation(s)
- Shanshan Li
- Dept. of Pharmaceutics, Rutgers, The State Univ. of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
29
|
Lee WK, Choi JK, Cha SH. Co-localization and interaction of human organic anion transporter 4 with caveolin-1 in primary cultured human placental trophoblasts. Exp Mol Med 2009; 40:505-13. [PMID: 18985008 DOI: 10.3858/emm.2008.40.5.505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The human organic anion transporter 4 (hOAT4) has been identified as the fourth isoform of OAT family. hOAT4 contributes to move several negatively charged organic compounds between cells and their extracellular milieu. The functional characteristics and regulatory mechanisms of hOAT4 remain to be elucidated. It is well known that caveolin plays a role in modulating proteins having some biological functions. To address this issue, we investigated the co-localization and interaction between hOAT4 and caveolin-1. hOAT4 and caveolin-1 (mRNA and protein expression) were observed in cultured human placental trophoblasts isolated from placenta. The confocal microscopy of immuno-cytochemistry using primary cultured human trophoblasts showed hOAT4 and caveolin-1 were co-localized at the plasma membrane of the cell. This finding was confirmed by Western blot analysis using isolated caveolae-enriched membrane fractions and immune-precipitates from the trophoblasts. When synthesized cRNA of hOAT4 along with scrambled- or antisense-oligodeoxynucleotide (ODN) of Xenopus caveolin-1 were co-injected to Xenopus oocytes, the [3H]estrone sulfate uptake was significantly decreased by the co-injection of antisense ODN but not by scrambled ODN. These findings suggest that hOAT4 and caveolin-1 share a cellular expression in the plasma membrane and caveolin-1 up-regulates the organic anionic compound uptake by hOAT4 under the normal physiological condition.
Collapse
Affiliation(s)
- Woon Kyu Lee
- The DNA Laboratory of Hankook Life Science Institute co. Ltd., Seoul 405-207, Korea
| | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Organic anion transporters (OATs) mediate the renal absorption and excretion of a wide range of metabolites and xenobiotics. We discuss the recent advances that have been made in elucidating the binding and transport characteristics of OATs, new insights into their physiological role and regulation by various factors, and pharmacogenetics. RECENT FINDINGS Overlapping substrate specificity among the OATs is well established. However, recent findings have suggested distinct differences in the structural binding determinants among the OATs, which have important implications for understanding drug interactions and drug design. A potential role for OATs in blood pressure regulation and remote sensing has been reported. Meanwhile, factors regulating the expression of OATs continue to be identified and characterized. The effect of renal ischemia on OAT expression and function is currently being explored. Finally, recent studies identifying various OAT polymorphisms may facilitate prediction of individual drug response and toxicity. SUMMARY As progress is made in unveiling the many functional aspects of the OATs, it is becoming clear that their significance is not only limited to a role in drug elimination from the body, but also extends to other vital physiological roles. Further delineation of the function and regulation of the OATs will uncover enormous potential clinical and pharmacological applications.
Collapse
|
31
|
Zhang Q, Hong M, Duan P, Pan Z, Ma J, You G. Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway. J Biol Chem 2008; 283:32570-9. [PMID: 18818201 PMCID: PMC2583290 DOI: 10.1074/jbc.m800298200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 08/21/2008] [Indexed: 11/06/2022] Open
Abstract
Organic anion transporter 1 (OAT1) mediates the body disposition of a diverse array of environmental toxins and clinically important drugs. Therefore, understanding the regulation of this transporter has profound clinical significance. We previously demonstrate that OAT1 activity was down-regulated by activation of protein kinase C (PKC), kinetically revealed as a decrease in the maximum transport velocity V(max) without significant change in the substrate affinity K(m) of the transporter. In the current study, we showed that OAT1 constitutively internalized from and recycled back to the plasma membrane, and PKC activation accelerated OAT1 internalization without affecting OAT1 recycling. We further showed that treatment of OAT1-expressing cells with concanavalin A, depletion of K(+) from the cells, or transfection of dominant negative mutants of dynamin-2 or Eps15 into the cells, all of which block the clathrin-dependent endocytotic pathway, significantly blocked constitutive and PKC-regulated OAT1 internalization. We finally showed that OAT1 colocalized with transferrin, a marker for clathrin-dependent endocytosis, at the cell surface and in the EEA1-positive early endosomes. Together, our findings demonstrated for the first time that (i) OAT1 constitutively traffics between plasma membrane and recycling endosomes, (ii) PKC activation down-regulates OAT1 activity by altering already existent OAT1 trafficking, and (iii) OAT1 internalization occurs partly through a dynamin- and clathrin-dependent pathway.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
32
|
Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica 2008; 38:889-935. [PMID: 18668434 DOI: 10.1080/00498250801927435] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. The transport of negatively charged drugs, xenobiotics, and metabolites by epithelial tissues, particularly the kidney, plays critical roles in controlling their distribution, concentration, and retention in the body. Thus, organic anion transporters (OATs) impact both their therapeutic efficacy and potential toxicity. 2. This review summarizes current knowledge of the properties and functional roles of the cloned OATs, the relationships between transporter structure and function, and those factors that determine the efficacy of transport. Such factors include plasma protein binding of substrates, genetic polymorphisms among the transporters, and regulation of transporter expression. 3. Clearly, much progress has been made in the decade since the first OAT was cloned. However, unresolved questions remain. Several of these issues--drug-drug interactions, functional characterization of newly cloned OATs, tissue differences in expression and function, and details of the nature and consequences of transporter regulation at genomic and intracellular sites--are discussed in the concluding Perspectives section.
Collapse
Affiliation(s)
- C Srimaroeng
- Laboratory of Pharmacology, Environmental Toxicology Program, National Institute of Environmental Health Sciences, NC 27709, USA
| | | | | |
Collapse
|
33
|
Banu SK, Lee J, Satterfield MC, Spencer TE, Bazer FW, Arosh JA. Molecular cloning and characterization of prostaglandin (PG) transporter in ovine endometrium: role for multiple cell signaling pathways in transport of PGF2alpha. Endocrinology 2008; 149:219-31. [PMID: 17901226 DOI: 10.1210/en.2007-1087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In ruminants, endometrial prostaglandin F(2alpha) (PGF(2alpha)) is the luteolytic hormone. Cellular transport of PGF(2alpha) in the uterine endometrium is critical for regulation of the estrous cycle. Molecular mechanisms responsible for control of PGF(2alpha) transport in endometrium during luteolysis are largely unknown. In the present study, we characterized the prostaglandin transporter (PGT) in ovine endometrium. Ovine PGT cDNA consists of 1935 nucleotides that encode 644 amino acids. In ovine endometria, PGT is highly expressed during the period of luteolysis, between d 14 and 16 of the estrous cycle, in luminal and glandular epithelia. Pharmacological and genomic inhibition of PGT indicates that it is responsible for influx and efflux of PGF(2alpha) in ovine endometrial epithelial cells. Inhibition of PGT during the period of luteolysis prevents the release of oxytocin-induced PGF(2alpha) pulses, and maintains functional corpus luteum and its secretion of progesterone. In ovine endometrial epithelial cells, protein kinase A and protein kinase C pathways are involved in regulating the influx of PGF(2alpha), whereas epidermal growth factor receptor pathways are implicated in regulation of influx and efflux of PGF(2alpha.) The ERK1/2 pathway is associated with efflux of PGF(2alpha), whereas Jun-amino-terminal kinase/stress-activated protein kinase pathways are involved in both efflux and influx of PGF(2alpha.) Phosphatidylinositol 3-kinase pathways are not involved in either influx or efflux of PGF(2alpha) in ovine endometrial epithelial cells. These are the first results to demonstrate a functional role for PGT in regulation of PGF(2alpha) efflux and influx in ovine endometrial cells that influence luteolytic mechanisms in ruminants.
Collapse
Affiliation(s)
- S K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhou F, Xu W, Tanaka K, You G. Comparison of the Interaction of Human Organic Anion Transporter hOAT4 with PDZ Proteins between Kidney Cells and Placental Cells. Pharm Res 2007; 25:475-80. [PMID: 17602283 DOI: 10.1007/s11095-007-9359-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE To compare the interaction of human organic anion transporter hOAT4 with PDZ proteins between kidney cells and placental cells. MATERIALS AND METHODS PDZ proteins PDZK1 and NHERF1 were transfected into kidney LLC-PK1 cells and placental BeWo cells expressing hOAT4 or hOAT4-Delta, which lacks the PDZ consensus binding site. The interaction of PDZK1 and NHERF1 with hOAT4 and hOAT4-Delta was investigated by measurement of [3H] estrone sulfate uptake, cell surface and total cell expression of hOAT4. RESULTS PDZK1 and NHERF1 enhanced hOAT4 activity in LLC-PK1 cells by increasing the cell surface expression of the transporter. In contrasts, these two PDZ proteins had no effect on hOAT4 activity in BeWo cells. CONCLUSION The interaction of PDZ proteins with hOAT4 may be cell-specific. In placenta, a different set of interacting proteins from PDZK1 and NHERF1 may be required to modulate hOAT4 activity.
Collapse
Affiliation(s)
- Fanfan Zhou
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|