1
|
Mohamed LA, Qosa H, Kaddoumi A. Age-Related Decline in Brain and Hepatic Clearance of Amyloid-Beta is Rectified by the Cholinesterase Inhibitors Donepezil and Rivastigmine in Rats. ACS Chem Neurosci 2015; 6:725-36. [PMID: 25782004 PMCID: PMC5248655 DOI: 10.1021/acschemneuro.5b00040] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In Alzheimer's disease (AD), accumulation of brain amyloid-β (Aβ) depends on imbalance between production and clearance of Aβ. Several pathways for Aβ clearance have been reported including transport across the blood-brain barrier (BBB) and hepatic clearance. The incidence of AD increases with age and failure of Aβ clearance correlates with AD. The cholinesterase inhibitors (ChEIs) donepezil and rivastigmine are used to ease the symptoms of dementia associated with AD. Besides, both drugs have been reported to provide neuroprotective and disease-modifying effects. Here, we investigated the effect of ChEIs on age-related reduced Aβ clearance. Findings from in vitro and in vivo studies demonstrated donepezil and rivastigmine to enhance (125)I-Aβ40 clearance. Also, the increase in brain and hepatic clearance of (125)I-Aβ40 was more pronounced in aged compared to young rats, and was associated with significant reduction in brain Aβ endogenous levels determined by ELISA. Furthermore, the enhanced clearance was concomitant with up-regulation in the expression of Aβ major transport proteins P-glycoprotein and LRP1. Collectively, our findings that donepezil and rivastigmine enhance Aβ clearance across the BBB and liver are novel and introduce an additional mechanism by which both drugs could affect AD pathology. Thus, optimizing their clinical use could help future drug development by providing new drug targets and possible mechanisms involved in AD pathology.
Collapse
Affiliation(s)
- Loqman A. Mohamed
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201, United States
| | - Hisham Qosa
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201, United States
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201, United States
| |
Collapse
|
2
|
Tachikawa M, Ikeda S, Fujinawa J, Hirose S, Akanuma SI, Hosoya KI. γ-Aminobutyric acid transporter 2 mediates the hepatic uptake of guanidinoacetate, the creatine biosynthetic precursor, in rats. PLoS One 2012; 7:e32557. [PMID: 22384273 PMCID: PMC3288109 DOI: 10.1371/journal.pone.0032557] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 02/01/2012] [Indexed: 12/14/2022] Open
Abstract
Guanidinoacetic acid (GAA) is the biosynthetic precursor of creatine which is involved in storage and transmission of phosphate-bound energy. Hepatocytes readily convert GAA to creatine, raising the possibility that the active uptake of GAA by hepatocytes is a regulatory factor. The purpose of this study is to investigate and identify the transporter responsible for GAA uptake by hepatocytes. The characteristics of [(14)C]GAA uptake by hepatocytes were elucidated using the in vivo liver uptake method, freshly isolated rat hepatocytes, an expression system of Xenopus laevis oocytes, gene knockdown, and an immunohistochemical technique. In vivo injection of [(14)C]GAA into the rat femoral vein and portal vein results in the rapid uptake of [(14)C]GAA by the liver. The uptake was markedly inhibited by γ-aminobutyric acid (GABA) and nipecotinic acid, an inhibitor of GABA transporters (GATs). The characteristics of Na(+)- and Cl(-)-dependent [(14)C]GAA uptake by freshly isolated rat hepatocytes were consistent with those of GAT2. The Km value of the GAA uptake (134 µM) was close to that of GAT2-mediated GAA transport (78.9 µM). GABA caused a marked inhibition with an IC(50) value of 8.81 µM. The [(14)C]GAA uptake exhibited a significant reduction corresponding to the reduction in GAT2 protein expression. GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. This distribution pattern was consistent with that of the creatine biosynthetic enzyme, S-adenosylmethionine:guanidinoacetate N-methyltransferase. GAT2 makes a major contribution to the sinusoidal GAA uptake by periportal hepatocytes, thus regulating creatine biosynthesis in the liver.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Saori Ikeda
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Jun Fujinawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shirou Hirose
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
3
|
|
4
|
Abstract
Pharmacological and physiological phenomena suggest that cells somewhere inside the central nervous system are responsive to aldosterone. Here, we present the fundamental physiological limitations for aldosterone action in the brain, including its limited blood-brain barrier penetration and its substantial competition from glucocorticoids. Recently, a small group of neurons with unusual sensitivity to circulating aldosterone were identified in the nucleus of the solitary tract. We review the discovery and characterization of these neurons, which express the enzyme 11beta-hydroxysteroid dehydrogenase type 2, and consider alternative proposals regarding sites and mechanisms for mineralocorticoid action within the brain.
Collapse
Affiliation(s)
- Joel C Geerling
- Dept. of Anatomy and Neurobiology-Box 8108, Washington Univ. School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | |
Collapse
|
5
|
Tamaki C, Ohtsuki S, Iwatsubo T, Hashimoto T, Yamada K, Yabuki C, Terasaki T. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res 2006; 23:1407-16. [PMID: 16779710 DOI: 10.1007/s11095-006-0208-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To identify the molecules responsible for amyloid beta-peptide (1-40) (Abeta(1-40)) uptake by the liver, which play a major role in the systemic clearance of Abeta(1-40). METHODS The liver uptake index method was used to examine the mechanisms of Abeta(1-40) uptake by the liver in vivo. RESULTS [125I]Abeta(1-40) uptake by the rat liver was concentration-dependent (50% saturation concentration = 302 nM). The inhibitory spectrum of Abeta fragments indicated that 17-24 in Abeta (LVFFAEDV) was the putative sequence responsible for hepatic Abeta(1-40) uptake. Receptor-associated protein (RAP) inhibited [125I]Abeta(1-40) uptake by 48%. RAP-deficient mice, in which low-density lipoprotein receptor-related protein 1 (LRP-1) expression was suppressed, showed a 46% reduction in [125I]Abeta(1-40) uptake by the liver. siRNA-mediated suppression of LRP-1 expression in the liver resulted in a reduction in [125I]Abeta(1-40) uptake by 64%. Both the expression of LRP-1 in the liver and the hepatic Abeta(1-40) uptake were significantly reduced in 13-month-old rats compared with 7-week-old rats. CONCLUSIONS LRP-1 is the major receptor responsible for the saturable uptake of plasma free Abeta(1-40) by the liver. Reduction of LRP-1 expression will play a role in the age-related reduction in hepatic Abeta(1-40) clearance.
Collapse
Affiliation(s)
- Chihiro Tamaki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Ko HC, Almon RR, Jusko WJ. Effect of corticosteroid binding globulin on the pharmacokinetics of prednisolone in rats. Pharm Res 1995; 12:902-4. [PMID: 7667198 DOI: 10.1023/a:1016225423795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE The effect of exogenous corticosteroid binding globulin (CBG) on the pharmacokinetics of intravenous prednisolone was determined in rats to test the "free hormone hypothesis." METHODS A dose of CBG to yield 95% binding with 1000 ng/ml of prednisolone in vitro in rat plasma or saline was administered before dosing 2 mg/kg of prednisolone hemisuccinate or methylprednisolone intravenously. Drug concentrations in plasma samples were assayed by HPLC. RESULTS Single administration of CBG decreased apparent prednisolone clearance by 56% (155 to 66 ml/min/kg) and reduced apparent VSS by 35% (4.1 to 2.7 L/kg) (p < 0.001). Methylprednisolone pharmacokinetics, studied as a negative control because the drug does not bind to CBG, did not change. CONCLUSIONS The corticosteroid bound to CBG does not appear to be available for removal by clearance organs.
Collapse
Affiliation(s)
- H C Ko
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo, New York 14260, USA
| | | | | |
Collapse
|
7
|
Sato H, Terasaki T, Okumura K, Tsuji A. Effect of receptor up-regulation on insulin pharmacokinetics in streptozotocin-treated diabetic rats. Pharm Res 1991; 8:563-9. [PMID: 1866369 DOI: 10.1023/a:1015888203572] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study investigated the mechanism by which the disposition of insulin is altered in streptozotocin (STZ)-treated diabetic rats as compared with 48-hr-fasted normal (control) rats. It was shown by an indocyanine green infusion method that the hepatic plasma flow rate (QH) in diabetic rats (1.64 ml/min/g liver) is significantly higher than that in control rats (0.982 ml/min/g liver). The portal injection technique revealed that the unidirectional clearance (CLon), which represents the binding of A14-125I-insulin to surface receptors in the liver, is significantly elevated in diabetic rats, suggesting an increase in the surface receptor number (RT), i.e., up-regulation in the liver. In both control and diabetic rats, the total-body clearance (CLtot) and steady-state volume of distribution (Vdss) of labeled insulin decreased significantly with a simultaneous injection of unlabeled insulin (8 U/kg), confirming that the disposition of insulin is affected largely by specific, saturable receptor-mediated processes. The CLtot and Vdss increased significantly in diabetic rats, while nonspecific portions of these parameters were not changed. From the increases in CLtot (80%) and QH (67%) in diabetic rats, a pharmacokinetic analysis has revealed a 40% increase in the hepatic intrinsic clearance (CLint,sp) of A14-125I-insulin via a specific mechanism in diabetic rats. In conclusion, we have provided in vivo evidence for a small increase in CLint,sp of insulin in STZ-diabetic rats compared with control rats, which may be caused by an increase in the surface receptor number in the livers of diabetic rats.
Collapse
Affiliation(s)
- H Sato
- Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | | | | | | |
Collapse
|
8
|
Dubey RK, McAllister CB, Inoue M, Wilkinson GR. Plasma binding and transport of diazepam across the blood-brain barrier. No evidence for in vivo enhanced dissociation. J Clin Invest 1989; 84:1155-9. [PMID: 2794052 PMCID: PMC329772 DOI: 10.1172/jci114279] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The tissue uptake of extensively plasma-bound compounds is reportedly inconsistent with the conventional free-drug hypothesis limiting transport to unbound moiety in rapid intracapillary equilibrium with bound complex. Instead, protein-mediated/cell surface enhancement of dissociation has been postulated to occur in the microvasculature. This possibility was investigated by studying the passive transport of diazepam across the blood-brain barrier. Microdialysis probes placed within the vena cava and brain cortex were used to directly compare steady-state, interstitial unbound diazepam levels in both Wistar and genetically analbuminemic rats. The absence of albumin in the latter increased the unbound fraction of diazepam by almost fivefold; however, in both groups, the ratio of unbound concentrations in brain and blood at equilibrium was equal to unity. If enhanced dissociation occurred in the microvasculature, then the unbound brain level should have been greater than that in the systemic circulation. It is probable that earlier findings suggestive of protein-mediated transport reflect a nonequilibrium phenomenon. Comparison of the extent of diazepam's in vivo binding in blood by microdialysis to that estimated in vitro using conventional equilibrium dialysis with microcells showed good agreement, thus validating a widely accepted assumption of equivalency of these two values.
Collapse
Affiliation(s)
- R K Dubey
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | |
Collapse
|
9
|
Boudinot FD, Jusko WJ. Dose-dependent pharmacokinetics of prednisolone in normal and adrenalectomized rats. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1986; 14:453-67. [PMID: 3806371 DOI: 10.1007/bf01059655] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pharmacokinetics of prednisolone after 5- and 50-mg/kg doses given as the sodium succinate salt was examined in normal and adrenalectomized rats. Prednisolone, prednisone, and corticosterone concentrations in plasma were determined by HPLC and free prednisolone measured by equilibrium dialysis. Prednisolone sodium succinate was rapidly and completely hydrolyzed to prednisolone as indicated by the absence of the ester from plasma within 5 min after intravenous injection. Prednisolone was rapidly metabolized to prednisone, while corticosterone concentrations in normal rats declined rapidly and were undetectable by 1 hr. Adrenalectomy had no effect on the disposition and protein binding of prednisolone. Dose, however, had a marked effect on prednisolone pharmacokinetics, with mean plasma clearance decreasing from 6.18 to 3.07 L/h per kg and mean steady-state volume of distribution decreasing from 2.14 to 1.05 L/kg from the lower to higher steroid dose. Half-life (0.50 hr) and mean residence time (0.35 hr) were unaffected by dose. Prednisolone plasma protein binding was nonlinear due to saturation of transcortin binding. Changes in pharmacokinetic parameters were not related to the nonlinear plasma binding, but were more likely caused by saturation of elimination pathways and tissue binding sites.
Collapse
|
10
|
Szefler SJ, Ebling WF, Georgitis JW, Jusko WJ. Methylprednisolone versus prednisolone pharmacokinetics in relation to dose in adults. Eur J Clin Pharmacol 1986; 30:323-9. [PMID: 3732369 DOI: 10.1007/bf00541537] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The disposition and plasma binding of methylprednisolone were examined in seven normal volunteers following the administration of 5, 20 and 40 mg of intravenous methylprednisolone sodium succinate. Methylprednisolone exhibits linear plasma protein binding averaging 77%. The mean plasma methylprednisolone clearance of 337 ml X h-1 X kg-1 was independent of dose. The steroid appears to moderately distribute into tissue spaces with a mean volume of distribution of 1.41 X kg-1. Methylprednisolone disposition parameters were compared with the non-transcortin bound parameters for prednisolone. The prednisolone plasma clearance based on the transcortin free-drug is similar to methylprednisolone total plasma clearance. However, the corrected volume of distribution of prednisolone is only one-half that of methylprednisolone. The disposition rate of these two steroids is thus similar, in spite of their metabolic control by different enzymatic pathways and major influence of saturable transcortin binding on prednisolone elimination.
Collapse
|
11
|
Pardridge WM, Sakiyama R, Fierer G. Transport of propranolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J Clin Invest 1983; 71:900-8. [PMID: 6833493 PMCID: PMC436947 DOI: 10.1172/jci110844] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Basic lipophilic drugs such as propranolol and lidocaine are strongly bound by alpha(1)-acid glycoprotein, also called orosomucoid. Although the liver is known to rapidly clear plasma protein-bound propranolol or lidocaine, it is generally regarded that peripheral tissues, such as brain or heart, are only exposed to the small fraction of drug that is free or dialyzable in vitro. The "free drug" hypothesis is subjected to direct empiric testing in the present studies using human sera and an in vivo rat brain paradigm. Serum from 27 human subjects (normal individuals, newborns, or patients with either metastatic cancer or rheumatoid arthritis) were found to have up to a sevenfold variation in orosomucoid concentrations. The free propranolol or lidocaine as determined in vitro by equilibrium dialysis at 37 degrees C varied inversely with the orosomucoid concentration. Similarly the rate of transport of propranolol or lidocaine through the blood-brain barrier (BBB) was inversely related to the existing serum concentration of orosomucoid. However, the inhibition of rat brain extraction of drug by orosomucoid in vivo was only about one-fifth of that predicted by free drug measurements in vitro. This large discrepancy suggested orosomucoid-bound drug was readily available for transport into brain in vivo. Studies using purified human orosomucoid in the rat brain extraction assay also showed that orosomucoidbound propranolol or lidocaine is readily transported through the BBB. Conversely, albumin-bound propranolol or lidocaine was not transported through the BBB. The studies using albumin provide evidence that the in vivo rat brain paradigm used in the present investigations is capable of confirming, when possible, predictions made by the "free drug" hypothesis. These data suggest that the amount of circulating propranolol or lidocaine that is available for transport into a peripheral tissue such as brain is not restricted to the free (dialyzable) moiety but includes the much larger globulin-bound fraction. Therefore, existing pharmacokinetic models should be expanded to account for the transport of protein-bound drugs into peripheral tissues similar to what is known to occur in liver.
Collapse
|
12
|
Rose JQ, Yurchak AM, Jusko WJ. Dose dependent pharmacokinetics of prednisone and prednisolone in man. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1981; 9:389-417. [PMID: 7310640 DOI: 10.1007/bf01060885] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Six healthy male volunteers were given 5, 20, and 50 mg of oral prednisone and 5, 20, and 400 mg doses of intravenous prednisolone. Plasma and urine concentrations of prednisone and prednisolone were determined by HPLC, and the binding of prednisolone to plasma proteins was measured by radioisotopic and equilibrium dialysis techniques. The pharmacokinetics of both oral prednisone and intravenous prednisolone were dose-dependent. The mean oral dose plasma clearances of prednisone ranged from 572 ml/min/1.73 m 2 for the 5 mg dose to 2271 ml/min/1.73 m 2 for the 50 mg dose. Changes in prednisone half-life were insignificant, but increases in the half-life of its metabolite were dose-dependent. The systemic plasma clearance of i.v. prednisolone was dose-dependent and increased from 111 to 194 ml/min/1.73 m 2 over the 5 to 40 mg i.v. dosage range. The steady-state volume of distribution also increased, but little change in mean transit time and half-life was found. The binding of prednisolone to plasma proteins was markedly concentration-dependent, and a two compartment, nonlinear equation was used to characterize the effective binding of prednisolone to transcortin and albumin. The apparent pharmacokinetic parameters of protein-free and transcortin-free prednisolone were relatively constant with dose. The interconversion of prednisone and prednisolone varied with time and dose, although prednisolone concentrations dominated by 4- to 10-fold over prednisone. In urine, 2-5% of either administered drug was excreted as prednisone and 11-24% as prednisolone. The apparent renal clearances of both steroids were also nonlinear and unrelated to protein binding. These studies indicate that the pharmacokinetics of prednisone and prednisolone are dose-dependent and that protein binding does not fully explain their apparent nonlinear distribution and disposition.
Collapse
|
13
|
Pardridge WM, Mietus LJ. Influx of thyroid hormones into rat liver in vivo. Differential availability of thyroxine and triiodothyronine bound by plasma proteins. J Clin Invest 1980; 66:367-74. [PMID: 6772672 PMCID: PMC371719 DOI: 10.1172/jci109865] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The transport of [(125)I]thyroxine (T(4)) and [(125)I]triiodothyronine (T(3)) into liver was investigated with a tissue sampling-portal vein injection technique in the anesthetized rat. The method allows the investigation of the effects of plasma proteins in human serum on the unidirectional influx of T(4) or T(3) into liver cells. The percent extraction of unidirectional clearance of T(3) and T(4) was 77+/-2% and 43+/-2%, respectively, after portal injection of a bolus of Ringer's solution. Cell membrane transport of T(4) or T(3) was nonsaturable because 50-muM concentrations of unlabeled hormone had no effect on transport. The addition of bovine albumin in concentrations of 1, 5, or 10 g/100 ml bound >98% of T(4) or T(3) in vitro, but had no significant effect on T(3) or T(4) transport in vivo. Conversely, 10% rabbit antisera specific for T(3) or T(4), completely abolished the intracellular distribution of thyroid hormone into liver. In the presence of rat serum, which contains albumin and thyroid hormone binding pre-albumin (TBPA), 18 and 81% of total plasma T(4) and T(3), respectively, were available for transport in vivo. The fraction of hormone available for transport in the presence of normal human serum, which contains albumin, TBPA, and thyroid hormone binding globulin (TBG) was 11% for T(4) and 72% for T(3). The fraction of hormone transported into liver after injection of serum obtained from pregnant or birth control pilltreated volunteers was 4% for T(4) (but this was not significantly different from zero) and 54% for T(3). THESE DATA SUGGEST: (a) The mechanism by which T(4) and T(3) traverse the liver cell membrane is probably free diffusion. (b) Albumin-bound T(4) or T(3) is freely cleared by liver, approximately 50% of TBG-bound T(3) is transported, but little, if any, of TBPA-bound T(4) or TBG-bound T(4) is cleared by liver cells. (c) Although the albumin-bound fraction of T(4) greatly exceeds the free (dialyzable) moiety, the two fractions are both inversely related to the existing TBA or TBG level; therefore, in vitro measurements of free T(4) would be expected to accurately reflect what is available for transport in vivo. Conversely, TBG-bound T(3) is readily transported in vivo; therefore, it is proposed that in vitro measurements of free T(3) do not reliably predict the fraction of T(3) available for transport into liver in vivo.
Collapse
|