1
|
Vadana M, Cecoltan S, Ciortan L, Macarie RD, Mihaila AC, Tucureanu MM, Gan AM, Simionescu M, Manduteanu I, Droc I, Butoi E. Parathyroid Hormone Induces Human Valvular Endothelial Cells Dysfunction That Impacts the Osteogenic Phenotype of Valvular Interstitial Cells. Int J Mol Sci 2022; 23:ijms23073776. [PMID: 35409134 PMCID: PMC8998852 DOI: 10.3390/ijms23073776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Parathyroid hormone (PTH) is a key regulator of calcium, phosphate and vitamin D metabolism. Although it has been reported that aortic valve calcification was positively associated with PTH, the pathophysiological mechanisms and the direct effects of PTH on human valvular cells remain unclear. Here we investigated if PTH induces human valvular endothelial cells (VEC) dysfunction that in turn could impact the switch of valvular interstitial cells (VIC) to an osteoblastic phenotype. Human VEC exposed to PTH were analyzed by qPCR, western blot, Seahorse, ELISA and immunofluorescence. Our results showed that exposure of VEC to PTH affects VEC metabolism and functions, modifications that were accompanied by the activation of p38MAPK and ERK1/2 signaling pathways and by an increased expression of osteogenic molecules (BMP-2, BSP, osteocalcin and Runx2). The impact of dysfunctional VEC on VIC was investigated by exposure of VIC to VEC secretome, and the results showed that VIC upregulate molecules associated with osteogenesis (BMP-2/4, osteocalcin and TGF-β1) and downregulate collagen I and III. In summary, our data show that PTH induces VEC dysfunction, which further stimulates VIC to differentiate into a pro-osteogenic pathological phenotype related to the calcification process. These findings shed light on the mechanisms by which PTH participates in valve calcification pathology and suggests that PTH and the treatment of hyperparathyroidism represent a therapeutic strategy to reduce valvular calcification.
Collapse
Affiliation(s)
- Mihaela Vadana
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Sergiu Cecoltan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Razvan D. Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Andreea C. Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Monica M. Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ana-Maria Gan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Maya Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, 010825 Bucharest, Romania;
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
- Correspondence:
| |
Collapse
|
2
|
Cohn-Schwartz D, Schary Y, Yalon E, Krut Z, Da X, Schwarz EM, Gazit D, Pelled G, Gazit Z. PTH-Induced Bone Regeneration and Vascular Modulation Are Both Dependent on Endothelial Signaling. Cells 2022; 11:cells11050897. [PMID: 35269519 PMCID: PMC8909576 DOI: 10.3390/cells11050897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022] Open
Abstract
The use of a bone allograft presents a promising approach for healing nonunion fractures. We have previously reported that parathyroid hormone (PTH) therapy induced allograft integration while modulating angiogenesis at the allograft proximity. Here, we hypothesize that PTH-induced vascular modulation and the osteogenic effect of PTH are both dependent on endothelial PTH receptor-1 (PTHR1) signaling. To evaluate our hypothesis, we used multiple transgenic mouse lines, and their wild-type counterparts as a control. In addition to endothelial-specific PTHR1 knock-out mice, we used mice in which PTHR1 was engineered to be constitutively active in collagen-1α+ osteoblasts, to assess the effect of PTH signaling activation exclusively in osteoprogenitors. To characterize resident cell recruitment and osteogenic activity, mice in which the Luciferase reporter gene is expressed under the Osteocalcin promoter (Oc-Luc) were used. Mice were implanted with calvarial allografts and treated with either PTH or PBS. A micro-computed tomography-based structural analysis indicated that the induction of bone formation by PTH, as observed in wild-type animals, was not maintained when PTHR1 was removed from endothelial cells. Furthermore, the induction of PTH signaling exclusively in osteoblasts resulted in significantly less bone formation compared to systemic PTH treatment, and significantly less osteogenic activity was measured by bioluminescence imaging of the Oc-Luc mice. Deletion of the endothelial PTHR1 significantly decreased the PTH-induced formation of narrow blood vessels, formerly demonstrated in wild-type mice. However, the exclusive activation of PTH signaling in osteoblasts was sufficient to re-establish the observed PTH effect. Collectively, our results show that endothelial PTHR1 signaling plays a key role in PTH-induced osteogenesis and has implications in angiogenesis.
Collapse
Affiliation(s)
- Doron Cohn-Schwartz
- Department of Internal Medicine B, Division of Internal Medicine, Rambam Healthcare Campus, Haifa 3109601, Israel;
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
| | - Yeshai Schary
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
| | - Eran Yalon
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
| | - Zoe Krut
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaoyu Da
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, Department of Orthopaedics, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA;
| | - Dan Gazit
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zulma Gazit
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (E.Y.); (D.G.); (G.P.)
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
3
|
Sun Q, Zhen G, Li TP, Guo Q, Li Y, Su W, Xue P, Wang X, Wan M, Guan Y, Dong X, Li S, Cai M, Cao X. Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. eLife 2021; 10:e66532. [PMID: 33646122 PMCID: PMC8012060 DOI: 10.7554/elife.66532] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis, a highly prevalent degenerative joint disorder, is characterized by joint pain and disability. Available treatments fail to modify osteoarthritis progression and decrease joint pain effectively. Here, we show that intermittent parathyroid hormone (iPTH) attenuates osteoarthritis pain by inhibiting subchondral sensory innervation, subchondral bone deterioration, and articular cartilage degeneration in a destabilized medial meniscus (DMM) mouse model. We found that subchondral sensory innervation for osteoarthritis pain was significantly decreased in PTH-treated DMM mice compared with vehicle-treated DMM mice. In parallel, deterioration of subchondral bone microarchitecture in DMM mice was attenuated by iPTH treatment. Increased level of prostaglandin E2 in subchondral bone of DMM mice was reduced by iPTH treatment. Furthermore, uncoupled subchondral bone remodeling caused by increased transforming growth factor β signaling was regulated by PTH-induced endocytosis of the PTH type 1 receptor-transforming growth factor β type 2 receptor complex. Notably, iPTH improved subchondral bone microarchitecture and decreased level of prostaglandin E2 and sensory innervation of subchondral bone in DMM mice by acting specifically through PTH type 1 receptor in Nestin+ mesenchymal stromal cells. Thus, iPTH could be a potential disease-modifying therapy for osteoarthritis.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Gehua Zhen
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Tuo Peter Li
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Qiaoyue Guo
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Yusheng Li
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Weiping Su
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Peng Xue
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xiao Wang
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xinzhong Dong
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
- Department of Dermatology, The Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
- Center of Sensory Biology, The Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Shaohua Li
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biomedical Engineering, The Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Nilsson IL. Primary hyperparathyroidism: should surgery be performed on all patients? Current evidence and residual uncertainties. J Intern Med 2019; 285:149-164. [PMID: 30289185 DOI: 10.1111/joim.12840] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Primary hyperparathyroidism (pHPT) is the third most common endocrine disease and is characterized by hypercalcaemia and elevated or inappropriately 'normal' levels of the parathyroid hormone (PTH). The main target organs of PTH are the skeletal system and the kidneys. Before the 1970s, pHPT was a rarely detected disease associated with notable morbidity and premature mortality. Introduction of biochemical screening, allowing for a wide range of indications, has contributed to the detection of the full spectrum of the disease. A new entity with an isolated elevation of PTH, normocalcaemic HP, has emerged and is currently being explored. The highest incidence of pHPT, 3-5%, is observed amongst women, and the prevalence increases with age. The female-to-male ratio is 3-4 : 1 except in younger patients where distribution is equal and known hereditary causes account for approximately 10% of the cases. In the last few decades, it has become evident that fewer patients than previously believed are truly asymptomatic. The cause of pHPT is often a benign tumour, a parathyroid adenoma, and the only definite treatment is parathyroidectomy (PTX). No medical treatment, single or combined, can achieve a curing of pHPT. Recent data indicate that PTX, despite being proven to be cost-effective compared to conservative treatment, is underutilized, especially in elderly pHPT patients. The decision of PTX should always be based on a safe diagnosis, and the potential benefits of curative treatment should not be outweighed by the risks of surgery or anaesthesia.
Collapse
Affiliation(s)
- I-L Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department ofBreast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Pascale AV, Finelli R, Giannotti R, Visco V, Fabbricatore D, Matula I, Mazzeo P, Ragosa N, Massari A, Izzo R, Coscioni E, Illario M, Ciccarelli M, Trimarco B, Iaccarino G. Vitamin D, parathyroid hormone and cardiovascular risk: the good, the bad and the ugly. J Cardiovasc Med (Hagerstown) 2018; 19:62-66. [PMID: 29252600 PMCID: PMC5757656 DOI: 10.2459/jcm.0000000000000614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
25-Hydroxyvitamin D insufficiency and increased cardiovascular risk (CVR) association is still debated. The vitamin D (VitD)-dependent parathyroid hormone (PTH) is considered as the possible actuator of VitD effects on CVR. To investigate the association of CVR, PTH and VitD, we carried out blood pressure measurements and blood samples and collected information on dietary habits, anamnestic, clinical and metabolic data of 451 participants in the Salerno area (Southern Italy) during the World Hypertension Day (17 May). CVR was calculated according to the Framingham CVR charts. The overall population mean age was 51.6 ± 0.7 years, and female sex was slightly prevalent (55%). VitD deficiency (<20 ng/ml) was most frequent (59.7%). In this population, VitD and CVR did not correlate. VitD and PTH inversely correlated (r = −0.265, P < 0.001) as expected. PTH was in direct correlation (r = 0.225, P < 0.001) with CVR. Elevated PTH (75 percentile; ≥49.5 pg/ml) levels identify a population with higher CVR (11.8 ± 0.5 vs. 8.5 ± 0.3, P < 0.001). In a multivariate analysis, both age and PTH correlate to CVR, but not VitD. In conclusion, VitD does not directly affect CVR in the overall population. Rather, increased PTH might be a better predictor of CVR.
Collapse
Affiliation(s)
| | - Rosa Finelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi
| | - Rocco Giannotti
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi
| | - Davide Fabbricatore
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi
| | - Ida Matula
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi
| | - Pietro Mazzeo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi
| | - Nicola Ragosa
- Department of Cardiology, San Luca Hospital, Vallo della Lucania
| | - Angelo Massari
- San Giovanni di Dio e Rugi d'Aragona University Hospital, Salerno, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, Federico II University
| | - Enrico Coscioni
- San Giovanni di Dio e Rugi d'Aragona University Hospital, Salerno, Italy
| | - Maddalena Illario
- Division of Health Innovation, Directorate General for Health Protection and Coordination of the Regional Health System.,Depatment of Medical and Translational Sciences, Federico II University and Hospital, Napoli, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi
| |
Collapse
|
6
|
Hochane M, Raison D, Coquard C, Béraud C, Danilin S, Bethry A, Massfelder T, Barthelmebs M. Parathyroid Hormone–Related Protein Contributes to Early Healing of Habu Snake Venom–Induced Glomerulonephritis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:863-875. [DOI: 10.1016/j.ajpath.2017.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/29/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
|
7
|
Cheng ZY, Ye T, Ling QY, Wu T, Wu GY, Zong GJ. Parathyroid hormone promotes osteoblastic differentiation of endothelial cells via the extracellular signal-regulated protein kinase 1/2 and nuclear factor-κB signaling pathways. Exp Ther Med 2017; 15:1754-1760. [PMID: 29434762 DOI: 10.3892/etm.2017.5545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 09/22/2017] [Indexed: 01/17/2023] Open
Abstract
Vascular calcification (VC) occurs in patients with chronic kidney disease (CKD) and contributes to cardiovascular dysfunction and mortality. Parathyroid hormone (PTH) is a crucial regulator of VC. High PTH serum levels constitute as a major risk factor for patients with CKD. However, the effect and mechanism of PTH on osteoblastic differentiation in endothelial cells have not been fully elucidated. In the present study, the role of PTH in VC was investigated using an in vitro calcification model. Endothelial cells were stimulated with PTH in the femto- to picomolar range. As determined by western blot analysis and ELISA, osteoblastic differentiation, as indicated by the BMP2 marker, occurred with maximum effect at 1×10-10 mmol/l PTH. The results indicate that PTH promotes osteoblastic differentiation of endothelial cells, as demonstrated by the increased expression of bone morphogenetic protein (BMP) 2 and BMP4. In addition, western blot analysis revealed that PTH activated the extracellular signal-regulated protein kinase (Erk)1/2 and nuclear factor (NF)-κB signaling pathways. However, reverse transcription-quantitative polymerase chain reaction demonstrated that inhibitors specific to Erk1/2 and NF-κB eradicated the effect of PTH treatment on BMP2, BMP4, ALP and RUNX2 expression. These results demonstrate that PTH promotes the osteoblastic differentiation of endothelial cells via the Erk1/2 and NF-κB signaling pathways, which suggests a potential role of PTH in the promotion of VC. These findings provide an insight into the association between PTH and cardiovascular disease.
Collapse
Affiliation(s)
- Zhi-Yuan Cheng
- Department of Cardiology, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Ting Ye
- Department of Cardiology, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Qiu-Yang Ling
- Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Ting Wu
- Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Gang-Yong Wu
- Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Gang-Jun Zong
- Department of Cardiology, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China.,Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
8
|
Smogorzewski MJ. Skin Blood Flow and Vascular Endothelium Function in Uremia. J Ren Nutr 2017; 27:465-469. [DOI: 10.1053/j.jrn.2017.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/04/2017] [Indexed: 11/11/2022] Open
|
9
|
Evaluation of left ventricular functions in patients with primary hyperparathyroidism: is there any effect of parathyroidectomy? Wien Klin Wochenschr 2017; 129:329-336. [DOI: 10.1007/s00508-017-1186-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 10/19/2022]
|
10
|
Deska M, Romuk E, Segiet OA, Buła G, Truchanowski W, Stolecka D, Birkner E, Gawrychowski J. Oxidative stress and angiogenesis in primary hyperparathyroidism. Eur Surg 2016; 49:118-126. [PMID: 28596785 PMCID: PMC5438426 DOI: 10.1007/s10353-016-0457-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022]
Abstract
Background The inappropriate elevation of parathormone (PTH), which regulates the process of angiogenesis in parathyroid tissue, causes the changes of activity of enzymes responsible for the removal of free radicals. Parathyroidectomy (PTX) in patients with primary hyperparathyroidism (PHPT) lowers the level of PTH and leads to the reduction of risk of cardiovascular and all-cause mortality by normalization of the antioxidant status. Therefore, the aims of the study were to assess the activity of antioxidant enzymes and free radical reaction products in patients after parathyroidectomy, and to evaluate the correlation between the systemic oxidative stress and angiogenic parameters. Materials and methods Patients with PHPT treated surgically were enrolled into the study. Total antioxidant capacity (TAC), total oxidative status (TOS), oxidative stress index (OSI), superoxide dismutase (SOD), ceruloplasmin (CER), lipid hydroperoxides (LHP) and malondialdehyde (MDA) were measured before and after parathyroidectomy. The immunohistological expression of angiogenic factors in parathyroid specimens was assessed by the BrightVision method from ImmunoLogic using murine monoclonal anti-human: anti-VEGF, anti-CD31 and anti-CD106 antibodies. Results The significant increase of TAC, CER, reduction of TOS, MDA, SOD, especially for cytoplasmic form, and significant decrease of OSI, LHP were observed after PTX. There was no significant correlation between changes of oxidative stress markers and angiogenic parameters: VEGF, CD-31, CD-106 in parathyroid tissue. The correlation level was low and medium. Conclusions Parathyroidectomy causes down-regulation of lipid peroxidation processes and leads to reduction of oxidative stress in patients with PHPT. The decrease in the OSI is the results of down-regulation of oxidative stress in the postoperative period. The change of the antioxidant status has no impact on angiogenesis processes in parathyroid tissue.
Collapse
Affiliation(s)
- Mariusz Deska
- School of Medicine with the Division of Dentistry, Department of General and Endocrine Surgery, Medical University of Silesia, Bytom, Poland
| | - Ewa Romuk
- School of Medicine with the Division of Dentistry, Department of Biochemistry, Medical University of Silesia, Zabrze, Poland
| | - Oliwia Anna Segiet
- School of Medicine with the Division of Dentistry, Department of Histology and Embryology, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Grzegorz Buła
- School of Medicine with the Division of Dentistry, Department of General and Endocrine Surgery, Medical University of Silesia, Bytom, Poland
| | - Witold Truchanowski
- School of Medicine with the Division of Dentistry, Department of General and Endocrine Surgery, Medical University of Silesia, Bytom, Poland
| | - Dominika Stolecka
- School of Medicine with the Division of Dentistry, Department of Biochemistry, Medical University of Silesia, Zabrze, Poland
| | - Ewa Birkner
- School of Medicine with the Division of Dentistry, Department of Biochemistry, Medical University of Silesia, Zabrze, Poland
| | - Jacek Gawrychowski
- School of Medicine with the Division of Dentistry, Department of General and Endocrine Surgery, Medical University of Silesia, Bytom, Poland
| |
Collapse
|
11
|
Parathyroid hormone and the risk of incident hypertension: the Atherosclerosis Risk in Communities study. J Hypertens 2016; 34:196-203. [PMID: 26867053 DOI: 10.1097/hjh.0000000000000794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent evidence suggests that parathyroid hormone (PTH) has effects on vascular smooth muscle cells, the rennin-angiotensin system and kidney function, but less is known about its role in the development of hypertension. The distribution of serum PTH also varies by race. METHODS AND RESULTS Therefore, we examined the relation between PTH and incident hypertension and tested for interaction by race among 7504 Atherosclerosis Risk in Communities participants (1264 black, 6240 white, median age 56 years) without initial hypertension in 1990-1992. During a median follow-up of 6 years, 1487 white and 509 black participants developed hypertension. In the overall study population, PTH was not associated with incident hypertension after adjustment for demographics and behavioral risk factors [hazard ratio highest vs. lowest quintiles, 95% confidence interval: 1.11 (0.96-1.28); P for linear trend 0.02]. Although the interaction was not statistically significant (P = 0.60), there was some evidence that the PTH-hypertension association differed by race. Among blacks, PTH was positively associated with incident hypertension, independent of demographics, and behavioral risk factors (P for linear trend 0.003). Among whites, PTH was not associated with hypertension risk. Results were similar when comparing participants with elevated versus nonelevated PTH (≥65 vs. <65 pg/ml): hazard ratio in blacks: 1.24 (1.02-1.54); hazard ratio in whites: 0.95 (0.78-1.16). CONCLUSIONS In this large community-based cohort, PTH levels, overall, were not independently associated with the risk of hypertension. However, we found some evidence that PTH may be associated with hypertension in blacks. Future research should continue to explore potential race differences in the PTH-hypertension association.
Collapse
|
12
|
Benson T, Menezes T, Campbell J, Bice A, Hood B, Prisby R. Mechanisms of vasodilation to PTH 1-84, PTH 1-34, and PTHrP 1-34 in rat bone resistance arteries. Osteoporos Int 2016; 27:1817-26. [PMID: 26733378 DOI: 10.1007/s00198-015-3460-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Parathyroid hormone (PTH) augments bone metabolism and bone mass when given intermittently. Enhanced blood flow is requisite to support high tissue metabolism. The bone arteries are responsive to all three PTH analogs, which may serve to augment skeletal blood flow during intermittent PTH administration. INTRODUCTION PTH augments bone metabolism. Yet, mechanisms by which PTH regulates bone blood vessels are unknown. We deciphered (1) endothelium-dependent and endothelium-independent vasodilation to PTH 1-84, PTH 1-34, and PTHrP 1-34, (2) the signaling pathways (i.e., endothelial nitric oxide synthase [eNOS], cyclooxygenase [COX], protein kinase C [PKC], and protein kinase A [PKA]), and (3) receptor activation. METHODS Femoral principal nutrient arteries (PNAs) were given cumulative doses (10(-13)-10(-8) M) of PTH 1-84, PTH 1-34, and PTHrP 1-34 with and without signaling pathway blockade. Vasodilation was also determined following endothelial cell removal (i.e., denudation), PTH 1 receptor (PTH1R) inhibition and to sodium nitroprusside (SNP; a nitric oxide [NO] donor). RESULTS Vasodilation was lowest to PTH 1-34, and maximal dilation was highest to PTHrP 1-34. Inhibition of eNOS reduced vasodilation to PTH 1-84 (-80 %), PTH 1-34 (-66 %), and PTHrP 1-34 (-48 %), evidencing the contribution of NO. Vasodilation following denudation was eliminated (PTH 1-84 and PTHrP 1-34) and impaired (PTH 1-34, 17 % of maximum), highlighting the importance of endothelial cells for PTH signaling. Denuded and intact PNAs responded similarly to SNP. Both PKA and PKC inhibition diminished vasodilation in all three analogs to varying degrees. PTH1R blockade reduced vasodilation to 1, 12, and 12 % to PTH 1-84, PTH 1-34, and PTHrP 1-34, respectively. CONCLUSIONS Vasodilation of femoral PNAs to the PTH analogs occurred via activation of the endothelial cell PTH1R for NO-mediated events. PTH 1-84 and PTHrP 1-34 primarily stimulated PKA signaling, and PTH 1-34 equally stimulated PKA and PKC signaling.
Collapse
Affiliation(s)
- T Benson
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - T Menezes
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - J Campbell
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - A Bice
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, 19713, USA
| | - B Hood
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, 19713, USA
| | - R Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
13
|
Prisby R, Menezes T, Campbell J. Vasodilation to PTH (1-84) in bone arteries is dependent upon the vascular endothelium and is mediated partially via VEGF signaling. Bone 2013; 54:68-75. [PMID: 23356989 DOI: 10.1016/j.bone.2013.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Intermittent PTH administration directly stimulates osteoblasts; however, mechanisms of bone accrual that are independent of the direct actions on osteoblasts may be under-appreciated. Our aims were to decipher (1) whether PTH 1-84 augments vasodilation of the femoral principal nutrient artery (PNA), (2) whether 15 days of intermittent PTH 1-84 augments endothelium-dependent and/or -independent vasodilation of the femoral PNA, and (3) the signaling mechanisms involved. METHODS Experiment 1: Femoral PNAs from male Wistar rats were exposed to cumulative doses of PTH 1-84 with and without an anti-vascular endothelial growth factor antibody and/or the endothelial NO synthase inhibitor l-NAME. Experiment 2: Male Wistar rats were administered PTH and/or the anti-VEGF antibody for 2 weeks. Subsequently, endothelium-dependent vasodilation to acetylcholine and endothelium-independent vasodilation to sodium nitroprusside were assessed. In addition, endothelium-dependent signaling pathways were analyzed by use of l-NAME and/or and the cyclooxygenase inhibitor indomethacin. RESULTS Cumulative doses of PTH 1-84 induced vasodilation of the femoral PNA, which was reduced by 38% and 87% with the anti-VEGF antibody and l-NAME, respectively. Secondly, 2 weeks of intermittent PTH 1-84 administration doubled trabecular bone volume, augmented bone formation parameters and reduced osteoclast activity. In addition, PTH enhanced endothelium-dependent vasodilation via up-regulation of NO. Co-administration of the anti-VEGF antibody (1) inhibited the PTH-induced increase in bone volume and remodeling parameters and (2) blunted the augmented vasodilator responsiveness of the PNA. Finally, endothelium-dependent vasodilation in PTH-treated rats was highly correlated with trabecular bone volume. CONCLUSION As hypothesized, PTH enhanced endothelium-dependent vasodilation of the femoral PNA via augmented NO production and was mediated partially through VEGF signaling. Further, vasodilation to PTH appears independent of vascular smooth muscle cell participation. More importantly, the strong association between vasodilation and bone volume suggests that bone arteriolar function is critical for PTH-induced bone anabolism.
Collapse
Affiliation(s)
- Rhonda Prisby
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA.
| | | | | |
Collapse
|
14
|
Functional characterization of the parathyroid hormone 1 receptor in human periodontal ligament cells. Clin Oral Investig 2013; 18:461-70. [PMID: 23604700 DOI: 10.1007/s00784-013-0985-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Intermittent parathyroid hormone (PTH) exerts anabolic effects on bone and has been approved for osteoporosis therapy. The dual actions of PTH are mediated primarily through the parathyroid hormone 1 receptor (PTH1R). Upon ligand binding, PTH1R activates diverse signaling pathways, including cAMP/protein kinase A (PKA)- and phospholipase C/protein kinase C (PLC/PKC)-dependent pathways. PTH1R has been abundantly studied in bone cells. Knowledge on PTH1R characteristics and physiology in periodontal ligament (PDL) cells is still in its infancy. MATERIALS AND METHODS We characterized PTH1R in PDL cells in terms of its cellular localization, binding affinity, and signal transduction and compared these characteristics to those of MG63 osteoblast-like cells. RESULTS PTH1R mRNA/protein was identified in PDL and MG63 cells. PTH1R was mainly localized on the plasma membrane, in vesicular structures inside the cell, and, to some extent, in the nucleus of both cell types. Binding characteristics of PTH1R were cell type specific, with PDL cells demonstrating a lower binding affinity. The response of cAMP and active PKC production in MG63 cells was dose dependent with increasing PTH(1-34) concentration, whereas in PDL cells, it was regulated biphasically. However, we observed a cross talk between the cAMP/PKA and PLC/PKC signaling pathways, which were regulated diametrically opposed at a given concentration of PTH(1-34). CONCLUSION These data indicate that, albeit the similarity in its subcellular distribution, PTH1R in PDL cells exhibits characteristics different from those in MG63 cells, pointing to the cell type specificity of this receptor. CLINICAL RELEVANCE The findings further elucidate the characteristics of PTH action in dental tissues and widen the theoretical basis for the development of anabolic treatment strategies.
Collapse
|
15
|
Gray C, Bratt D, Lees J, daCosta M, Plant K, Watson OJ, Solaymani-Kohal S, Tazzyman S, Serbanovic-Canic J, Crossman DC, Keavney BD, Haase A, McMahon K, Gering M, Roehl H, Evans PC, Chico TJA. Loss of function of parathyroid hormone receptor 1 induces Notch-dependent aortic defects during zebrafish vascular development. Arterioscler Thromb Vasc Biol 2013; 33:1257-63. [PMID: 23559631 DOI: 10.1161/atvbaha.112.300590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Coarctation of the aorta is rarely associated with known gene defects. Blomstrand chondrodysplasia, caused by mutations in the parathyroid hormone receptor 1 (PTHR1) is associated with coarctation of the aorta in some cases, although it is unclear whether PTHR1 deficiency causes coarctation of the aorta directly. The zebrafish allows the study of vascular development using approaches not possible in other models. We therefore examined the effect of loss of function of PTHR1 or its ligand parathyroid hormone-related peptide (PTHrP) on aortic formation in zebrafish. APPROACH AND RESULTS Morpholino antisense oligonucleotide knockdown of either PTHR1 or PTHrP led to a localized occlusion of the mid-aorta in developing zebrafish. Confocal imaging of transgenic embryos showed that these defects were caused by loss of endothelium, rather than failure to lumenize. Using a Notch reporter transgenic ([CSL:Venus]qmc61), we found both PTHR1 and PTHrP knockdown-induced defective Notch signaling in the hypochord at the site of the aortic defect before onset of circulation, and the aortic occlusion was rescued by inducible Notch upregulation. CONCLUSIONS Loss of function of either PTHR1 or PTHrP leads to a localized aortic defect that is Notch dependent. These findings may underlie the aortic defect seen in Blomstrand chondrodysplasia, and reveal a link between parathyroid hormone and Notch signaling during aortic development.
Collapse
Affiliation(s)
- Caroline Gray
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cianciolo G, La Manna G, Della Bella E, Cappuccilli ML, Angelini ML, Dormi A, Capelli I, Laterza C, Costa R, Alviano F, Donati G, Ronco C, Stefoni S. Effect of vitamin D receptor activator therapy on vitamin D receptor and osteocalcin expression in circulating endothelial progenitor cells of hemodialysis patients. Blood Purif 2013; 35:187-95. [PMID: 23485859 DOI: 10.1159/000347102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/15/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND The effects of vitamin D receptor (VDR) and osteocalcin (OC) expression as well as VDR agonist (VDRA) therapy on circulating endothelial progenitor cells (EPCs) has not been elucidated yet. METHODS We therefore analyzed EPCs in 30 healthy controls and 82 patients undergoing dialysis (no VDRA therapy: 28; oral calcitriol: 30, and intravenous paricalcitol, PCTA: 24). The percentage of EPCs (CD34+/CD133-/KDR+/CD45-) expressing VDR or OC, and VDR and OC expression defined by mean fluorescence intensity (MFI) were analyzed using flow cytometry. The in vitro effect of VDRAs was evaluated in EPCs isolated from each patient group. RESULTS The percentage of VDR+ EPCs correlated positively with VDRA therapy and 25(OH)D, and negatively with diabetes, C-reactive protein, hemoglobin and osteopontin. VDR-MFI correlated positively with VDRA therapy, parathyroid hormone (PTH) and 25(OH)D, and negatively with diabetes and osteopontin. The percentage of OC+ EPCs correlated positively with the calcium score, PTH and phosphate, and negatively with 25(OH)D. OC-MFI correlated positively with calcium score, PTH, phosphate and hemoglobin, and negatively with albumin, 25(OH)D and osteopontin. Cell cultures from patients without VDRA therapy had the highest levels of calcium deposition and OC expression, which both significantly decreased following in vitro VDRA administration: in particular extracellular calcium deposition was only reduced by adding PCTA. CONCLUSIONS Our data suggest that 25(OH)D serum levels and VDRA therapy influence VDR and OC expression on circulating EPCs. Since OC expression may contribute to vascular calcification, we hypothesize a putative protective role of VDRA therapy.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Section of Nephrology, Department of Internal Medicine, Aging and Renal Disease, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Osto E, Fallo F, Pelizzo MR, Maddalozzo A, Sorgato N, Corbetti F, Montisci R, Famoso G, Bellu R, Lüscher TF, Iliceto S, Tona F. Coronary microvascular dysfunction induced by primary hyperparathyroidism is restored after parathyroidectomy. Circulation 2012; 126:1031-9. [PMID: 22821942 DOI: 10.1161/circulationaha.111.081307] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Symptomatic primary hyperparathyroidism (PHPT) is associated with increased cardiovascular mortality. However, data on the association between asymptomatic PHPT and cardiovascular risk are lacking. We assessed coronary flow reserve (CFR) as a marker of coronary microvascular function in asymptomatic PHPT of recent onset. METHODS AND RESULTS We studied 100 PHPT patients (80 women; age, 58±12 years) without cardiovascular disease and 50 control subjects matched for age and sex. CFR in the left anterior descending coronary artery was detected by transthoracic Doppler echocardiography, at rest, and during adenosine infusion. CFR was the ratio of hyperemic to resting diastolic flow velocity. CFR was lower in PHPT patients than in control subjects (3.0±0.8 versus 3.8±0.7; P<0.0001) and was abnormal (≤2.5) in 27 patients (27%) compared with control subjects (4%; P=0.0008). CFR was inversely related to parathyroid hormone (PTH) levels (r=-0.3, P<0.004). In patients with CFR ≤2.5, PTH was higher (26.4 pmol/L [quartiles 1 and 3, 16 and 37 pmol/L] versus 18 [13-25] pmol/L; P<0.007), whereas calcium levels were similar (2.9±0.1 versus 2.8±0.3 mmol/L; P=0.2). In multivariable linear regression analysis, PTH, age, and heart rate were the only factors associated with CFR (P=0.04, P=0.01, and P=0.006, respectively). In multiple logistic regression analysis, only PTH increased the probability of CFR ≤2.5 (P=0.03). In all PHPT patients with CFR ≤2.5, parathyroidectomy normalized CFR (3.3±0.7 versus 2.1±0.5; P<0.0001). CONCLUSIONS PHPT patients have coronary microvascular dysfunction that is completely restored after parathyroidectomy. PTH independently correlates with the coronary microvascular impairment, suggesting a crucial role of the hormone in explaining the increased cardiovascular risk in PHPT.
Collapse
Affiliation(s)
- Elena Osto
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Farahnak P, Lind L, Mattala K, Nilsson IL. Parathyroid Hormone's Acute Effect on Vasodilatory Function. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2010; 3:37-42. [PMID: 22879785 PMCID: PMC3411527 DOI: 10.4137/cmed.s4650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parathyroid hormone (PTH) seems to affect the risk of cardiovascular disease. The aim of the present study was to investigate PTH's acute effect on endothelial vasodilatory function in forearm resistance vessels. Ten healthy subjects underwent forearm venous occlusion plethysmography. We measured forearm blood flow at baseline and at a stable, locally increased PTH level after intra-arterial infusion of metacholine and nitroprusside. The contralateral arm served as a control. Ionized calcium (Ca++) and PTH values were normal in all subjects at baseline (1.26 ± 0.02 mM/L, 3.6 ± 1.2 pM/L). After 30 minutes of PTH infusion, the PTH level increased in the active arm (13.8 ± 4.0 pM/L P < 0.01), while the Ca++ level was unchanged (1.25 ± 0.04; mM/L). Both the PTH and the Ca++ level in the contralateral arm remained unchanged, which indicates no systemic influence. The endothelial-dependent vasodilation was inversely correlated to the Ca++ level at baseline (r = -0.75, P < 0.05) and after PTH infusion (r = -0.68, P < 0.05). The vasodilatory function was not affected during PTH-infusion.
Collapse
|
19
|
Effect of successful parathyroidectomy on 24-hour ambulatory blood pressure in patients with primary hyperparathyroidism. Int J Cardiol 2008; 142:15-21. [PMID: 19117619 DOI: 10.1016/j.ijcard.2008.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/06/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The pathogenesis of hypertension in patients with primary hyperparathyroidism (PHPT) is unclear, and the prevailing opinion is that parathyroidectomy does not affect the blood pressure (BP). Most previous studies have been based on BP measurements at rest in a clinical setting. The aim of this study was to get additional information by 24-hour ambulatory measurements. DESIGN AND PATIENTS Forty-nine consecutive patients with PHPT (age 63+/-12 years, 44 women) were examined before and 6 months after curative parathyroid surgery. MEASUREMENTS Serum concentrations of calcium and PTH, and 24-hour ambulatory mean, minimum, and maximum systolic (S) and diastolic BP, and mean arterial BP. RESULTS On average, the patients showed no BP change after parathyroidectomy. However, those with a history of hypertension (n=20) showed generally increased BP values after parathyroidectomy, with significantly increased minimum and average SBP (P=0.02 and P=0.04, respectively), whereas patients without a history of hypertension (n=29) showed unchanged or slightly reduced BP values after parathyroidectomy, with significantly decreased maximum SBP (P=0.04). Serum concentrations of PTH and calcium were not significantly related to any of the BP variables measured. CONCLUSIONS The novel finding that patients with both PHPT and hypertension may show increased BP after parathyroidectomy warrants intensified BP control postoperatively in these patients, and motivates early treatment of PHPT in order to prevent the development of complicating hypertension.
Collapse
|
20
|
Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates the endothelial expression of vascular endothelial growth factor. Eur J Clin Invest 2008; 38:798-803. [PMID: 19021696 DOI: 10.1111/j.1365-2362.2008.02033.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND We showed previously that parathyroid hormone (PTH) may stimulate the endothelial expression of pro-atherosclerotic and pro-inflammatory markers. Considering the impact of PTH on vasculature, we decided to evaluate its effect on mRNA and intra-cellular protein expressions of endothelial vascular endothelial growth factor (VEGF) taking into account that VEGF may play a role in the pathogenesis of endothelial dysfunctions. MATERIALS AND METHODS Human umbilical vein cords endothelial cells (HUVEC) were stimulated for 24 h with 10(-12)-10(-10) mol L(-1) PTH. The VEGF-165 mRNA expression (critical in stimulating endothelial cell proliferation) was evaluated by RT/PCR and the intra-cellular VEGF protein expression by flow cytometry. The pathways by which PTH may have an effect on VEGF expression were also evaluated. RESULTS PTH (10(-10) mol L(-1)) significantly increased VEGF-165 mRNA expression (P < 0.05). The addition of 50 nmol L(-1) protein kinase C (PKC) and 10 micromol L(-1) protein kinase A (PKA) inhibitors significantly reduced the VEGF-165 mRNA expression (P = 0.01). We also examined whether nitric oxide (NO) may be involved in the PTH-induced stimulation of VEGF-165 expression. Pre-treatment of the cells with 200 micromol L-nitro arginine methyl ester (L-NAME, NO synthase inhibitor) was found to inhibit VEGF-165 mRNA expression (P = 0.006). VEGF protein could not be detected in the medium of HUVEC but it was present in the cell cytoplasm. PTH had no significant effect on cytoplasmatic VEGF protein expression. CONCLUSION The stimulatory effect of PTH on endothelial VEGF-165 mRNA expression is partly through PKC and PKA pathways and is also NO dependent.
Collapse
Affiliation(s)
- G Rashid
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar-Saba, Israel
| | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE The presence of parathyroid hormone receptor mRNA in a wide variety of tissues, including the endothelium, suggests that parathyroid hormone has potentially important effects in addition to the maintenance of calcium and phosphate homeostasis. We conducted a prospective study to examine the association between plasma intact parathyroid hormone levels and the subsequent risk of developing hypertension. METHODS We measured intact parathyroid hormone in 481 men without hypertension from the Health Professionals Follow-up Study. During 10 years of follow-up, we observed 142 cases of incident hypertension. Cox proportional hazards regression was used to adjust for age, race, body mass index, alcohol use, smoking, physical activity, predicted plasma 25-hydroxyvitamin D level, and other factors. RESULTS Median baseline levels of intact parathyroid hormone were 40.1 pg/ml in individuals who developed hypertension and 36.3 pg/ml in those who did not (P = 0.01). After multivariate adjustment, the relative risk for incident hypertension in men in the highest quartile of parathyroid hormone (median 56.0 pg/ml) compared with the lowest quartile of parathyroid hormone (median 26.3 pg/ml) was 1.83 (95% confidence interval 1.10-3.03; P for trend = 0.01). Analyses restricted to men in the lowest 90th percentage of the parathyroid hormone distribution (< or =58 pg/ml) yielded similar results. Further adjustment for the intake of calcium and sodium, as well as for season and fasting status at time of blood draw, did not materially change the results. CONCLUSION Plasma levels of intact parathyroid hormone, even within ranges considered normal, are positively and independently associated with a higher risk of incident hypertension.
Collapse
|
22
|
Liao J, Li X, Koh AJ, Berry JE, Thudi N, Rosol TJ, Pienta KJ, McCauley LK. Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Cancer 2008; 123:2267-78. [PMID: 18729185 DOI: 10.1002/ijc.23602] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression of parathyroid hormone-related protein (PTHrP) correlates with prostate cancer skeletal progression; however, the impact of prostate cancer-derived PTHrP on the microenvironment and osteoblastic lesions in skeletal metastasis has not been completely elucidated. In this study, PTHrP overexpressing prostate cancer clones were stably established by transfection of full length rat PTHrP cDNA. Expression and secretion of PTHrP were verified by western blotting and IRMA assay. PTHrP overexpressing prostate cancer cells had higher growth rates in vitro, and generated larger tumors when inoculated subcutaneously into athymic mice. The impact of tumor-derived PTHrP on bone was investigated using a vossicle co-implant model. Histology revealed increased bone mass adjacent to PTHrP overexpressing tumor foci, with increased osteoblastogenesis, osteoclastogenesis and angiogenesis. In vitro analysis demonstrated pro-osteoclastic and pro-osteoblastic effects of PTHrP. PTHrP enhanced proliferation of bone marrow stromal cells and early osteoblast differentiation. PTHrP exerted a pro-angiogenic effect indirectly, as it increased angiogenesis but only in the presence of bone marrow stromal cells. These data suggest PTHrP plays a role in tumorigenesis in prostate cancer, and that PTHrP is a key mediator for communication and interactions between prostate cancer and the bone microenvironment. Prostate cancer-derived PTHrP is actively involved in osteoblastic skeletal progression.
Collapse
Affiliation(s)
- Jinhui Liao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates endothelial expression of atherosclerotic parameters through protein kinase pathways. Am J Physiol Renal Physiol 2006; 292:F1215-8. [PMID: 17190908 DOI: 10.1152/ajprenal.00406.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parathyroid hormone (PTH), the major systemic calcium-regulating hormone, has been linked to uremic vascular changes. Considering the possible deleterious action of PTH on vascular structures, it seemed logical to evaluate the impact of PTH on the receptor of advanced glycation end products (RAGE) and interleukin 6 (IL-6) mRNA and protein expression, taking into account that such parameters might be involved in the pathogenesis of vascular calcification, atherosclerosis, and/or arteriolosclerosis. Human umbilical vein cord endothelial cells (HUVEC) were stimulated for 24 h with 10(-12)-10(-10) mol/l PTH. The mRNA expression of RAGE and IL-6 was established by reverse transcriptase/PCR techniques. RAGE protein levels were determined by Western blot and IL-6 secretion was measured by ELISA. The pathways by which PTH may have an effect on HUVEC functions were evaluated. PTH (10(-11)-10(-10)mol/l) significantly increased RAGE mRNA and protein expression. PTH also significantly increased IL-6 mRNA expression without changes at protein levels. The addition of protein kinase (PKC or PKA) inhibitors or nitric oxide (NO) synthase inhibitors significantly reduced the RAGE and IL-6 mRNA expression and the RAGE protein expression. PTH stimulates the mRNA expressions of RAGE and IL-6 and the protein expression of RAGE. These stimulatory effects are probably through PKC and PKA pathways and are also NO dependent. Such data may explain the possible impact of PTH on the atherosclerotic and arteriosclerotic progression.
Collapse
Affiliation(s)
- Gloria Rashid
- Dept. of Nephrology and Hypertension, Meir Medical Center, Tchernichovsky 59, Kfar-Saba 44281, Israel.
| | | | | | | |
Collapse
|
24
|
Ding KH, Zhong Q, Xie D, Xu J, Bollag RJ, Bollag WB, Isales CM. Carboxy-terminal PTH fragments stimulate [3H]thymidine incorporation in vascular endothelial cells. Peptides 2005; 26:853-62. [PMID: 15808916 DOI: 10.1016/j.peptides.2005.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/01/2005] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
We have previously reported that the intact PTH molecule (1-84) stimulates proliferation of human umbilical vein endothelial cells (HUVECs). To define the bioactive portion of the PTH molecule we utilized amino, mid and carboxy-terminal PTH fragments. Carboxy- but not amino-terminal fragments were equivalent to the intact PTH molecule in stimulating [3H]thymidine incorporation in HUVEC. Carboxy- but not amino-terminal PTH fragments increased intracellular calcium. Blocking the rise in intracellular calcium with calcium chelators abolished PTHs proliferative effect on HUVEC. In contrast to PTH 1-84, the carboxy-terminal fragment effect on [3H]thymidine incorporation was blocked by KN-93 an inhibitor of CaM kinase II. Taken together, these data suggest that the carboxy-terminal PTH is (or contains) the bioactive fragment responsible for the changes in intracellular calcium and thymidine incorporation in HUVEC stimulated with the intact PTH molecule.
Collapse
Affiliation(s)
- Ke-Hong Ding
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, CB-2803, 1120, 15th Street, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
McCarty MF. A moderately low phosphate intake may provide health benefits analogous to those conferred by UV light - a further advantage of vegan diets. Med Hypotheses 2004; 61:543-60. [PMID: 14592785 DOI: 10.1016/s0306-9877(03)00228-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although exposure to ultraviolet light is often viewed as pathogenic owing to its role in the genesis of skin cancer and skin aging, there is growing epidemiological evidence that such exposure may decrease risk for a number of more serious cancers, may have a favorable impact on blood pressure and vascular health, and may help to prevent certain autoimmune disorders - in addition to its well-known influence on bone density. Most likely, these health benefits are reflective of improved vitamin D status. Increased synthesis or intake of vitamin D can be expected to down-regulate parathyroid hormone (PTH), and to increase autocrine synthesis of its active metabolite calcitriol in certain tissues; these effects, in turn, may impact cancer risk, vascular health, immune regulation, and bone density through a variety of mechanisms. Presumably, a truly adequate supplemental intake of vitamin D - manyfold higher than the grossly inadequate current RDA - could replicate the benefits of optimal UV exposure, without however damaging the skin. Diets moderately low in bioavailable phosphate - like many vegan diets - might be expected to have a complementary impact on disease risks, inasmuch as serum phosphate suppresses renal calcitriol synthesis while up-regulating that of PTH. A proviso is that the impact of dietary phosphorus on bone health is more equivocal than that of vitamin D. Increased intakes of calcium, on the other hand, down-regulate the production of both PTH and calcitriol - the latter effect may explain why the impact of dietary calcium on cancer risk (excepting colon cancer), hypertension, and autoimmunity is not clearly positive. An overview suggests that a vegan diet supplemented with high-dose vitamin D should increase both systemic and autocrine calcitriol production while suppressing PTH secretion, and thus should represent a highly effective way to achieve the wide-ranging health protection conferred by optimal UV exposure.
Collapse
Affiliation(s)
- M F McCarty
- Pantox Laboratories, San Diego, CA 92109, USA.
| |
Collapse
|
26
|
Ding KH, Zhong Q, Xu J, Isales CM. Glucose-dependent insulinotropic peptide: differential effects on hepatic artery vs. portal vein endothelial cells. Am J Physiol Endocrinol Metab 2004; 286:E773-9. [PMID: 14709420 DOI: 10.1152/ajpendo.00507.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glucose-dependent insulinotropic peptide (GIP) has been reported to have opposing effects on splanchnic blood flow. GIP infusion in dogs results in an increase in portal vein circulation but a drop in hepatic artery blood flow. In an effort to evaluate whether these different responses were related to intrinsic differences in GIP effects, we isolated canine hepatic artery (HAEC) and portal vein endothelial cells (PVEC). We report that there are differences in GIP activation of the signal transduction pathways in these two cell types. GIP stimulates secretion of endothelin-1 (ET-1), a potent vasoconstrictor, from HAEC (EC50 0.28 nM) but not from PVEC. This effect could be abolished by preventing a rise in intracellular calcium, demonstrating the calcium dependence of GIP-induced ET-1 secretion from HAEC. The GIP effect was specific, as a GIP receptor antagonist blocked it. In contrast, GIP stimulated nitric oxide production from PVEC (EC50 0.09 nM) but not from HAEC. Taken together, our data demonstrate distinct differences in GIP effects on HAEC from those on PVEC. We conclude that differences in GIP stimulation of ET-1 vs. nitric oxide production in different vascular beds may account for some of the observed differences in its physiological effects.
Collapse
Affiliation(s)
- Ke-Hong Ding
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, CB-2803, 1120 15th St., Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
27
|
Ding KH, Zhong Q, Isales CM. Glucose-dependent insulinotropic peptide stimulates thymidine incorporation in endothelial cells: role of endothelin-1. Am J Physiol Endocrinol Metab 2003; 285:E390-6. [PMID: 12721154 DOI: 10.1152/ajpendo.00509.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously characterized the receptor for glucose-dependent insulinotropic polypeptide (GIPR) in vascular endothelial cells (EC). Different EC types were found to contain distinct GIPR splice variants. To determine whether activation of the GIPR splice variants resulted in different cellular responses, we examined GIP effects on human umbilical vein endothelial cells (HUVEC), which contain two GIPR splice variants, and compared them with a spontaneously transformed human umbilical vein EC line, ECV 304, which contains four GIPR splice variants. GIP dose-dependently stimulated HUVEC and ECV 304 proliferation as measured by [3H]thymidine incorporation. GIP increased endothelin-1 (ET-1) secretion from HUVEC but not from ECV 304. Use of the endothelin B receptor blocker BQ-788 resulted in an inhibition of [3H]thymidine incorporation in HUVEC but not in ECV 304. These findings suggest that, although GIP increases [3H]thymidine incorporation in both HUVEC and ECV 304, this proliferative response is mediated by ET-1 only in HUVEC. These differences in cellular response to GIP may be related to differences in activation of GIPR splice variants.
Collapse
Affiliation(s)
- Ke-Hong Ding
- Institute of Molecular Medicine and Genetics, Dept. of Medicine, Medical College of Georgia, 120 15th St., Augusta, GA 30912, USA
| | | | | |
Collapse
|
28
|
Macica CM, Broadus AE. PTHrP regulates cerebral blood flow and is neuroprotective. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1019-20. [PMID: 12626363 DOI: 10.1152/ajpregu.00001.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Mahon MJ, Donowitz M, Yun CC, Segre GV. Na(+)/H(+ ) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 2002; 417:858-61. [PMID: 12075354 DOI: 10.1038/nature00816] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The parathyroid hormone 1 receptor (PTH1R) is a class II G-protein-coupled receptor. PTH1R agonists include both PTH, a hormone that regulates blood calcium and phosphate, and PTH-related protein (PTHrP), a paracrine/autocrine factor that is essential for development, particularly of the skeleton. Adenylyl cyclase activation is thought to be responsible for most cellular responses to PTH and PTHrP, although many actions appear to be independent of adenylyl cyclase. Here we show that the PTH1R binds to Na(+)/H(+) exchanger regulatory factors (NHERF) 1 and 2 through a PDZ-domain interaction in vitro and in PTH target cells. NHERF2 simultaneously binds phospholipase C beta 1 and an atypical, carboxyl-terminal PDZ consensus motif, ETVM, of the PTH1R through PDZ1 and PDZ2, respectively. PTH treatment of cells that express the NHERF2 PTH1R complex markedly activates phospholipase C beta and inhibits adenylyl cyclase through stimulation of inhibitory G proteins (G(i/o) proteins). NHERF-mediated assembly of PTH1R and phospholipase C beta is a unique mechanism to regulate PTH signalling in cells and membranes of polarized cells that express NHERF, which may account for many tissue- and cell-specific actions of PTH/PTHrP and may also be relevant to signalling by many G-protein-coupled receptors.
Collapse
Affiliation(s)
- Matthew J Mahon
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
30
|
Throckmorton D, Kurscheid-Reich D, Rosales OR, Rodriguez-Commes J, Lopez R, Sumpio B, Zhong Q, Ding KH, McCarthy R, Barrett PQ, Isales CM. Parathyroid hormone effects on signaling pathways in endothelial cells vary with peptide concentration. Peptides 2002; 23:79-85. [PMID: 11814621 DOI: 10.1016/s0196-9781(01)00582-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously reported that parathyroid hormone (PTH) has specific effects on a human umbilical vein endothelial cell line. Further studies were performed to characterize the signaling cascades initiated by PTH. We report that PTH induced the appearance of voltage sensitive calcium channels. Furthermore, PTH increased ceramide but not diacylglycerol content. Since elevations in [Ca(2+)](i) and phospholipid turnover are signals for the activation of protein kinase C (PKC), the cells were screened for PKC isoforms. PTH induced a redistribution of the PKCepsilon to the particulate fractions of cell homogenates. In summary, PTH induced PKC translocation through a calcium-phospholipid pathway in an endothelial cell line.
Collapse
Affiliation(s)
- Doug Throckmorton
- Institute for Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|