1
|
Baba B, Ceylani T, Gurbanov R, Acikgoz E, Keskin S, Allahverdi H, Samgane G, Tombuloglu H, Teker HT. Promoting longevity in aged liver through NLRP3 inflammasome inhibition using tauroursodeoxycholic acid (TUDCA) and SCD probiotics. Arch Gerontol Geriatr 2024; 125:105517. [PMID: 38851091 DOI: 10.1016/j.archger.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
This investigation explores the combined influence of SCD Probiotics and tauroursodeoxycholic acid (TUDCA) on liver health in elderly male Sprague-Dawley rats. Through the administration of intravenous TUDCA (300 mg/kg) and oral SCD Probiotics (3 mL at 1 × 10^8 CFU) daily for one week, this study evaluates the biomolecular composition, histopathological alterations, and inflammasome activity in the liver. Analytical methods encompassed ATR-FTIR spectroscopy integrated with machine learning for the assessment of biomolecular structures, RT-qPCR for quantifying inflammasome markers (NLRP3, ASC, Caspase-1, IL18, IL1β), and histological examinations to assess liver pathology. The findings reveal that TUDCA prominently enhanced lipid metabolism by reducing cholesterol esters, while SCD Probiotics modulated both lipid and protein profiles, notably affecting fatty acid chain lengths and protein configurations. Histological analysis showed significant reductions in cellular degeneration, lymphatic infiltration, and hepatic fibrosis. Furthermore, the study noted a decrease in the immunoreactivity for NLRP3 and ASC, suggesting suppressed inflammasome activity. While SCD Probiotics reduced the expression of certain inflammasome-related genes, they also paradoxically increased AST and LDH levels. Conversely, an exclusive elevation in albumin levels was observed in the group treated with SCD Probiotics, implying a protective role against liver damage. These results underscore the therapeutic potential of TUDCA and SCD Probiotics for managing age-associated liver disorders, illustrating their individual and synergistic effects on liver health and pathology. This study provides insights into the complex interactions of these agents, advocating for customized therapeutic approaches to combat liver fibrosis, enhance liver functionality, and decrease inflammation in aging populations.
Collapse
Affiliation(s)
- Burcu Baba
- Department of Medical Biochemistry, Yüksek İhtisas University, Ankara, Turkey
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey; Department of Food Quality Control and Analysis, Muş Alparslan University Muş, Turkey.
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Eda Acikgoz
- Department of Neuroscience, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Seda Keskin
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey
| | - Gizem Samgane
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University Ankara, Turkey.
| |
Collapse
|
2
|
Basudkar V, Gujrati G, Ajgaonkar S, Gandhi M, Mehta D, Nair S. Emerging Vistas for the Nutraceutical Withania somnifera in Inflammaging. Pharmaceuticals (Basel) 2024; 17:597. [PMID: 38794167 PMCID: PMC11123800 DOI: 10.3390/ph17050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammaging, a coexistence of inflammation and aging, is a persistent, systemic, low-grade inflammation seen in the geriatric population. Various natural compounds have been greatly explored for their potential role in preventing and treating inflammaging. Withania somnifera has been used for thousands of years in traditional medicine as a nutraceutical for its numerous health benefits including regenerative and adaptogenic effects. Recent preclinical and clinical studies on the role of Withania somnifera and its active compounds in treating aging, inflammation, and oxidative stress have shown promise for its use in healthy aging. We discuss the chemistry of Withania somnifera, the etiology of inflammaging and the protective role(s) of Withania somnifera in inflammaging in key organ systems including brain, lung, kidney, and liver as well as the mechanistic underpinning of these effects. Furthermore, we elucidate the beneficial effects of Withania somnifera in oxidative stress/DNA damage, immunomodulation, COVID-19, and the microbiome. We also delineate a putative protein-protein interaction network of key biomarkers modulated by Withania somnifera in inflammaging. In addition, we review the safety/potential toxicity of Withania somnifera as well as global clinical trials on Withania somnifera. Taken together, this is a synthetic review on the beneficial effects of Withania somnifera in inflammaging and highlights the potential of Withania somnifera in improving the health-related quality of life (HRQoL) in the aging population worldwide.
Collapse
Affiliation(s)
- Vivek Basudkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Gunjan Gujrati
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Manav Gandhi
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
3
|
Weigel R, Schilling L, Krauss JK. The pathophysiology of chronic subdural hematoma revisited: emphasis on aging processes as key factor. GeroScience 2022; 44:1353-1371. [DOI: 10.1007/s11357-022-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
|
4
|
Armistead B, Johnson E, VanderKamp R, Kula-Eversole E, Kadam L, Drewlo S, Kohan-Ghadr HR. Placental Regulation of Energy Homeostasis During Human Pregnancy. Endocrinology 2020; 161:5838263. [PMID: 32417921 DOI: 10.1210/endocr/bqaa076] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Successful pregnancies rely on sufficient energy and nutrient supply, which require the mother to metabolically adapt to support fetal needs. The placenta has a critical role in this process, as this specialized organ produces hormones and peptides that regulate fetal and maternal metabolism. The ability for the mother to metabolically adapt to support the fetus depends on maternal prepregnancy health. Two-thirds of pregnancies in the United States involve obese or overweight women at the time of conception. This poses significant risks for the infant and mother by disrupting metabolic changes that would normally occur during pregnancy. Despite well characterized functions of placental hormones, there is scarce knowledge surrounding placental endocrine regulation of maternal metabolic trends in pathological pregnancies. In this review, we discuss current efforts to close this gap of knowledge and highlight areas where more research is needed. As the intrauterine environment predetermines the health and wellbeing of the offspring in later life, adequate metabolic control is essential for a successful pregnancy outcome. Understanding how placental hormones contribute to aberrant metabolic adaptations in pathological pregnancies may unveil disease mechanisms and provide methods for better identification and treatment. Studies discussed in this review were identified through PubMed searches between the years of 1966 to the present. We investigated studies of normal pregnancy and metabolic disorders in pregnancy that focused on energy requirements during pregnancy, endocrine regulation of glucose metabolism and insulin resistance, cholesterol and lipid metabolism, and placental hormone regulation.
Collapse
Affiliation(s)
- Brooke Armistead
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Eugenia Johnson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Robert VanderKamp
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Elzbieta Kula-Eversole
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Sascha Drewlo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
5
|
Abstract
Alpha-1 antitrypsin (AAT) protects the lung by inhibiting neutrophil proteinases, but AAT has many other non-proteolytic functions that are anti-inflammatory, antiviral and homeostatic. Approximately 1 in 1600 to 1 in 5000 people have the homozygous Z mutation, which causes AAT misfolding, accumulation in (predominantly) liver cells and low circulating levels of AAT, leading to AAT deficiency (AATD). AATD is classically a disease of neutrophilic inflammation, with an aggressive and damaging innate immune response contributing to emphysema and other pathologies. AATD is one of the most common genetic disorders but considerably under-recognised. Most patients are diagnosed later in life, by which time they may have accumulated significant lung, liver and multisystem damage. Disease presentation is heterogeneous and not fully explained by deficiency levels alone or exposure to cigarette smoking. This suggests other factors influence AATD-associated pathological processes. Aging itself is associated with organ dysfunction, including emphysema and airflow obstruction, inflammation, altered immune cell responses (termed immunosenescence) and a loss of proteostasis. Many of these processes are present in AATD but at an earlier age and more advanced stage compared with chronological aging alone. Augmentation therapy does not completely abrogate the manifold disease processes present in AATD. New approaches are needed. There is emerging evidence that both age- and AATD-related disease processes are amenable to correction by targeting proteostasis, autophagy, immunosenescence and epigenetic factors. This review explores the impact of the aging process on AATD presentation and discusses novel therapeutic strategies to mitigate low levels of AAT or misfolded AAT in an aging host.
Collapse
|
6
|
Royce GH, Brown-Borg HM, Deepa SS. The potential role of necroptosis in inflammaging and aging. GeroScience 2019; 41:795-811. [PMID: 31721033 PMCID: PMC6925091 DOI: 10.1007/s11357-019-00131-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
An age-associated increase in chronic, low-grade sterile inflammation termed "inflammaging" is a characteristic feature of mammalian aging that shows a strong association with occurrence of various age-associated diseases. However, the mechanism(s) responsible for inflammaging and its causal role in aging and age-related diseases are not well understood. Age-associated accumulation of damage-associated molecular patterns (DAMPs) is an important trigger in inflammation and has been proposed as a potential driver of inflammaging. DAMPs can initiate an inflammatory response by binding to the cell surface receptors on innate immune cells. Programmed necrosis, termed necroptosis, is one of the pathways that can release DAMPs, and cell death due to necroptosis is known to induce inflammation. Necroptosis-mediated inflammation plays an important role in a variety of age-related diseases such as Alzheimer's disease, Parkinson's disease, and atherosclerosis. Recently, it was reported that markers of necroptosis increase with age in mice and that dietary restriction, which retards aging and increases lifespan, reduces necroptosis and inflammation. Genetic manipulations that increase lifespan (Ames Dwarf mice) and reduce lifespan (Sod1-/- mice) are associated with reduced and increased necroptosis and inflammation, respectively. While necroptosis evolved to protect cells/tissues from invading pathogens, e.g., viruses, we propose that the age-related increase in oxidative stress, mTOR signaling, and cell senescence results in cells/tissues in old animals being more prone to undergo necroptosis thereby releasing DAMPs, which contribute to the chronic inflammation observed with age. Approach to decrease DAMPs release by reducing/blocking necroptosis is a potentially new approach to reduce inflammaging, retard aging, and improve healthspan.
Collapse
Affiliation(s)
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sathyaseelan S Deepa
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1368A, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Farkhondeh T, Abedi F, Samarghandian S. Chrysin attenuates inflammatory and metabolic disorder indices in aged male rat. Biomed Pharmacother 2019; 109:1120-1125. [PMID: 30551362 DOI: 10.1016/j.biopha.2018.10.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
Advanced age is a major risk factor for metabolic disorders. Accelerated inflammatory processes with increased age can contribute to the pathogenesis of metabolic disturbances. Chrysin is a natural flavonoid ingredient of honey and propolis. Chrysin has been effective in decreasing cholesterol and glucose levels preventing metabolic disturbances. The aim of this study was to evaluate the effects of chrysin against age-associated inflammation, hyperglycemia, and hypercholesterolemia. Male Wistar rats (2, 10, and 20 month-old) were intraperitoneally (i.p.) injected with chrysin (20 mg/kg) for 30 days. The findings showed elevated inflammatory cytokines, glucose, and lipid parameters in the sera of aged rats when compared with young ones. However, chrysin treatment ameliorated these alterations. Furthermore, chrysin reduced the levels of adiponectin, HDL-C, and insulin in 20 month-old rats. The current study showed that chrysin was effective in attenuating age-related lipid abnormalities, glucose elevation, and inflammation.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Iran Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farshid Abedi
- Department of Infectious Disease, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Ferbeyre G. Aberrant signaling and senescence associated protein degradation. Exp Gerontol 2018; 107:50-54. [DOI: 10.1016/j.exger.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/17/2022]
|
9
|
Rai R, Ghosh AK, Eren M, Mackie AR, Levine DC, Kim SY, Cedernaes J, Ramirez V, Procissi D, Smith LH, Woodruff TK, Bass J, Vaughan DE. Downregulation of the Apelinergic Axis Accelerates Aging, whereas Its Systemic Restoration Improves the Mammalian Healthspan. Cell Rep 2018; 21:1471-1480. [PMID: 29117554 DOI: 10.1016/j.celrep.2017.10.057] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/24/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022] Open
Abstract
Aging drives the occurrence of numerous diseases, including cardiovascular disease (CVD). Recent studies indicate that blood from young mice reduces age-associated pathologies. However, the "anti-aging" factors in juvenile circulation remain poorly identified. Here, we characterize the role of the apelinergic axis in mammalian aging and identify apelin as an anti-aging factor. The expression of apelin (apln) and its receptor (aplnr) exhibits an age-dependent decline in multiple organs. Reduced apln signaling perturbs organismal homeostasis; mice harboring genetic deficiency of aplnr or apln exhibit enhanced cardiovascular, renal, and reproductive aging. Genetic or pharmacological abrogation of apln signaling also induces cellular senescence mediated, in part, by the activation of senescence-promoting transcription factors. Conversely, restoration of apln in 15-month-old wild-type mice reduces cardiac hypertrophy and exercise-induced hypertensive response. Additionally, apln-restored mice exhibit enhanced vigor and rejuvenated behavioral and circadian phenotypes. Hence, a declining apelinergic axis promotes aging, whereas its restoration extends the murine healthspan.
Collapse
Affiliation(s)
- Rahul Rai
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Asish K Ghosh
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mesut Eren
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexander R Mackie
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel C Levine
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Department of Medicine, Division of Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jonathan Cedernaes
- Department of Medicine, Division of Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Veronica Ramirez
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniele Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Layton H Smith
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL 32827, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Douglas E Vaughan
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Monteiro-Junior RS, de Tarso Maciel-Pinheiro P, da Matta Mello Portugal E, da Silva Figueiredo LF, Terra R, Carneiro LSF, Rodrigues VD, Nascimento OJM, Deslandes AC, Laks J. Effect of Exercise on Inflammatory Profile of Older Persons: Systematic Review and Meta-Analyses. J Phys Act Health 2018; 15:64-71. [PMID: 28771081 DOI: 10.1123/jpah.2016-0735] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Inflammatory cytokines and acute phase proteins increase with aging, promoting a chronic low-grade inflammation. Studies have shown a positive effect of exercise on inflammatory markers in older persons. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) are the main biomarkers investigated. However, it is unclear if exercise could decrease all these biomarkers. PURPOSE The aim was to analyze the effect of chronic exercise on IL-6, TNF-α, and CRP levels in older persons. METHODS Preferred Reporting Items in Systematic Reviews and Meta-analyses guidelines were adopted. Original articles that investigated the effect of chronic exercise on inflammatory profile of the elderly persons were eligible for this review. The databases PubMed, PEDro, EBSCO, and BioMed Central were searched. Three reviewers evaluated each publication for reducing bias. Data about IL-6, TNF-α, and CRP were collected and analyzed. A standardized mean difference based on estimated pooled effect size was calculated considering heterogeneity index (I2) and random effect. RESULTS Seventy-six studies were retrieved from databases, and 8 of them were analyzed. IL-6 and CRP levels decreased after chronic exercise (overall effect P < .05). CONCLUSION Regular exercise decreases IL-6 and CRP levels in older persons. The effect of exercise on TNF-α remains unclear.
Collapse
|
11
|
Gong Z, Tas E, Yakar S, Muzumdar R. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol Cell Endocrinol 2017; 455:115-130. [PMID: 28017785 DOI: 10.1016/j.mce.2016.12.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Aging is associated with dysregulation of glucose and lipid metabolism. Various factors that contribute to the dysregulation include both modifiable (e.g. obesity, insulin resistance) and non-modifiable risk factors (age-associated physiologic changes). Although there is no linear relationship between aging and prevalence of non-alcoholic fatty liver disease, current data strongly suggests that advanced age leads to more severe histological changes and poorer clinical outcomes. Hepatic lipid accumulation could lead to significant hepatic and systemic consequences including steatohepatitis, cirrhosis, impairment of systemic glucose metabolism and metabolic syndrome, thereby contributing to age-related diseases. Insulin, leptin and adiponectin are key regulators of the various physiologic processes that regulate hepatic lipid metabolism. Recent advances have expanded our understanding in this field, highlighting the role of novel mediators such as FGF 21, and mitochondria derived peptides. In this review, we will summarize the mediators of hepatic lipid metabolism and how they are altered in aging.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Emir Tas
- Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Radhika Muzumdar
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, 5362 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
12
|
Association of TNF-α-3959T/C Gene Polymorphisms in the Chinese Population with Intracranial Aneurysms. J Mol Neurosci 2017; 63:349-354. [PMID: 29027627 DOI: 10.1007/s12031-017-0985-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
Recent studies have demonstrated that cytokines play an important role in the pathogenesis of intracranial aneurysm (IA). Tumor necrosis factor-α (TNF-α) is an important proinflammatory cytokine, which was shown to influence the development of IA, but there is no research data from China. Hence, the purpose of this study was to explore the relationship between TNF-α polymorphisms and IA in China. The association of genetic variants of TNF-α gene expression was investigated in a Chinese population with IA. The TNF-α-3959T>C(rs1799964), 4127C>A(rs1800630), 4133C>T(rs1799724), 4184C>T(rs4248158), and 4752G>A(rs361525) gene polymorphisms in 192 IA cases and 112 controls were analyzed using polymerase chain reaction (PCR). Differences in genotype and allele frequencies between patients and controls were tested. There were no significant differences in 4127C>A (p = 0.072), 4133C>T (p = 0.373), 4184C>T (p = 0.749), and 4752G>A (p = 0.184) genotype frequencies between the IA group and the control group. But this case-control association study revealed that TNF-α-3959T>C (p < 0.001) was significantly associated with increased risk of IA. These results suggested that a novel TNF-α locus was found to be closely correlated with the occurrence of IA in Chinese.
Collapse
|
13
|
Ghebre YT, Yakubov E, Wong WT, Krishnamurthy P, Sayed N, Sikora AG, Bonnen MD. Vascular Aging: Implications for Cardiovascular Disease and Therapy. TRANSLATIONAL MEDICINE (SUNNYVALE, CALIF.) 2016; 6:183. [PMID: 28932625 PMCID: PMC5602592 DOI: 10.4172/2161-1025.1000183] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The incidence and prevalence of cardiovascular disease is highest among the elderly, in part, due to deleterious effects of advancing age on the heart and blood vessels. Aging, a known cardiovascular risk factor, is progressively associated with structural and functional changes to the vasculature including hemodynamic disturbance due to increased oxidative stress, premature cellular senescence and impairments in synthesis and/or secretion of endothelium-derived vasoactive molecules. These molecular and physiological changes lead to vessel wall stiffening and thickening, as well as other vascular complications that culminate to loss of vascular tone regulation and endothelial function. Intriguingly, the vessel wall, a biochemically active structure composed of collagen, connective tissue, smooth muscle and endothelial cells, is adversely affected by processes involved in premature or normal aging. Notably, the inner most layer of the vessel wall, the endothelium, becomes senescent and dysfunctional with advancing age. As a result, its ability to release vasoactive molecules such as acetylcholine (ACh), prostacyclin (PGI2), endothelium-derived hyperpolarizing factor (EDHF), and nitric oxide (NO) is reduced and the cellular response to these molecules is also impaired. By contrast, the vascular endothelium increases its generation and release of reactive oxygen (ROS) and nitrogen (RNS) species, vasoconstrictors such as endothelin (ET) and angiotensin (AT), and endogenous inhibitors of NO synthases (NOSs) to block NO. This skews the balance of the endothelium in favor of the release of highly tissue reactive and harmful molecules that promote DNA damage, telomere erosion, senescence, as well as stiffened and hardened vessel wall that is prone to the development of hypertension, diabetes, atherosclerosis and other cardiovascular risk factors. This Review discusses the impact of advancing age on cardiovascular health, and highlights the cellular and molecular mechanisms that underlie age-associated vascular changes. In addition, the role of pharmacological interventions in preventing or delaying age-related cardiovascular disease is discussed.
Collapse
Affiliation(s)
- Yohannes T Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Eduard Yakubov
- phaRNA Comprehensive RNA Technologies, Houston, Texas, USA
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nazish Sayed
- Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Mark D Bonnen
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
14
|
Williamson DL, Dungan CM, Mahmoud AM, Mey JT, Blackburn BK, Haus JM. Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics. Am J Physiol Regul Integr Comp Physiol 2015; 309:R855-63. [PMID: 26269521 PMCID: PMC4666944 DOI: 10.1152/ajpregu.00285.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022]
Abstract
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob T Mey
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Brian K Blackburn
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Babenko NA, Kharchenko VS. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats. BIOCHEMISTRY (MOSCOW) 2015; 80:104-12. [PMID: 25754045 DOI: 10.1134/s0006297915010125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingolipids play an important role in the development of insulin resistance. Ceramides are the most potent inhibitors of insulin signal transduction. Ceramides are generated in response to stress stimuli and in old age. In this work, we studied the possible contribution of different pathways of sphingolipid metabolism in age-dependent insulin resistance development in liver cells. Inhibition of key enzymes of sphingolipid synthesis (serine palmitoyl transferase, ceramide synthase) and degradation (neutral and acidic SMases) by means of specific inhibitors (myriocin, fumonisin B1, imipramine, and GW4869) was followed with the reduction of ceramide level and partly improved insulin regulation of glucose metabolism in "old" hepatocytes. Imipramine and GW4869 decreased significantly the acidic and neutral SMase activities, respectively. Treatment of "old" cells with myriocin or fumonisin B1 reduced the elevated in old age ceramide and SM synthesis. Ceramide and SM levels and glucose metabolism regulation by insulin could be improved with concerted action of all tested inhibitors of sphingolipid turnover on hepatocytes. The data demonstrate that not only newly synthesized ceramide and SM but also neutral and acidic SMase-dependent ceramide accumulation plays an important role in development of age-dependent insulin resistance.
Collapse
Affiliation(s)
- N A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, Kharkov, 61077, Ukraine.
| | | |
Collapse
|
16
|
Malin SK, Kirwan JP, Sia CL, González F. Pancreatic β-cell dysfunction in polycystic ovary syndrome: role of hyperglycemia-induced nuclear factor-κB activation and systemic inflammation. Am J Physiol Endocrinol Metab 2015; 308:E770-7. [PMID: 25714674 PMCID: PMC4420895 DOI: 10.1152/ajpendo.00510.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
In polycystic ovary syndrome (PCOS), oxidative stress is implicated in the development of β-cell dysfunction. However, the role of mononuclear cell (MNC)-derived inflammation in this process is unclear. We determined the relationship between β-cell function and MNC-derived nuclear factor-κB (NF-κB) activation and tumor necrosis factor-α (TNF-α) secretion in response to a 2-h 75-g oral glucose tolerance test (OGTT) in normoglycemic women with PCOS (15 lean, 15 obese) and controls (16 lean, 14 obese). First- and second-phase β-cell function was calculated as glucose-stimulated insulin secretion (insulin/glucose area under the curve for 0-30 and 60-120 min, respectively) × insulin sensitivity (Matsuda Index derived from the OGTT). Glucose-stimulated NF-κB activation and TNF-α secretion from MNC, and fasting plasma thiobarbituric acid-reactive substances (TBARS) and high-sensitivity C-reactive protein (hs-CRP) were also assessed. In obese women with PCOS, first- and second-phase β-cell function was lower compared with lean and obese controls. Compared with lean controls, women with PCOS had greater change from baseline in NF-κB activation and TNF-α secretion, and higher plasma TBARS. β-Cell function was inversely related to NF-κB activation (1st and 2nd) and TNF-α secretion (1st), and plasma TBARS and hs-CRP (1st and 2nd). First- and second-phase β-cell function also remained independently linked to NF-κB activation after adjustment for body fat percentage and TBARS. In conclusion, β-cell dysfunction in PCOS is linked to hyperglycemia-induced NF-κB activation from MNC and systemic inflammation. These data suggest that in PCOS, inflammation may play a role in impairing insulin secretion before the development of overt hyperglycemia.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Chang Ling Sia
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Frank González
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
17
|
González F, Kirwan JP, Rote NS, Minium J, O'Leary VB. Glucose and lipopolysaccharide regulate proatherogenic cytokine release from mononuclear cells in polycystic ovary syndrome. J Reprod Immunol 2014; 103:38-44. [PMID: 24576416 DOI: 10.1016/j.jri.2014.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) have chronic low-grade inflammation, which can increase the risk of atherogenesis. We examined the effect of glucose ingestion and lipopolysaccharide (LPS) on markers of proatherogenic inflammation in the mononuclear cells (MNC) and plasma of women with PCOS. Sixteen women with PCOS (8 lean, 8 obese) and 15 weight-matched controls (8 lean, 7 obese) underwent a 3-h oral glucose tolerance test (OGTT). Interleukin-6 (IL-6) and interleukin-1β (IL-1β) release from MNC cultured in the presence of LPS and plasma IL-6, C-reactive protein (CRP), and soluble vascular adhesion molecule-1 (sVCAM-1) were measured from blood samples drawn while fasting and 2h after glucose ingestion. Truncal fat was measured by dual-energy absorptiometry (DEXA). Lean women with PCOS and obese controls failed to suppress LPS-stimulated IL-6 and IL-1β release from MNC after glucose ingestion. In contrast, obese women with PCOS suppressed these MNC-derived cytokines under the same conditions. In response to glucose ingestion, plasma IL-6 and sVCAM-1 increased and CRP suppression was attenuated in both PCOS groups and obese controls compared with lean controls. Fasting plasma IL-6 and CRP correlated positively with percentage of truncal fat. The absolute change in plasma IL-6 correlated positively with testosterone. We conclude that glucose ingestion promotes proatherogenic inflammation in PCOS with a systemic response that is independent of obesity. Based on the suppressed MNC-derived cytokine responses suggestive of LPS tolerance, chronic low-grade inflammation may be more profound in obese women with PCOS. Excess abdominal adiposity and hyperandrogenism may contribute to atherogenesis in PCOS.
Collapse
Affiliation(s)
- Frank González
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - John P Kirwan
- Departments of Gastroenterology/Hepatology and PathoBiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Neal S Rote
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Judi Minium
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Valerie B O'Leary
- Helmholtz Zentrum Munchen, Institute of Radiation Biology, Neuherberg, Germany
| |
Collapse
|
18
|
Malin SK, Kirwan JP, Sia CL, González F. Glucose-stimulated oxidative stress in mononuclear cells is related to pancreatic β-cell dysfunction in polycystic ovary syndrome. J Clin Endocrinol Metab 2014; 99:322-9. [PMID: 24203060 PMCID: PMC3879676 DOI: 10.1210/jc.2013-3177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Oxidative stress induced by reactive oxygen species (ROS) is involved in the development of pancreatic β-cell dysfunction. OBJECTIVE We determined the relationship between mononuclear cell (MNC)-derived ROS generation and p47phox protein content in response to glucose ingestion and β-cell function in women with polycystic ovary syndrome (PCOS). DESIGN This was a cross-sectional study. SETTING This study was conducted at an academic medical center. PARTICIPANTS Twenty-nine normoglycemic women with PCOS (13 lean, 16 obese) and 25 ovulatory controls (16 lean, 9 obese) underwent a 3-h 75-g oral glucose tolerance test (OGTT). MAIN OUTCOME VARIABLES Pancreatic β-cell function was calculated as glucose-stimulated insulin secretion (insulin/glucose area under the curve0-30 min; GSIS)×Matsuda index-derived insulin sensitivity (ISOGTT). ROS generation was measured by chemiluminescence, and p47phox protein was quantified by Western blotting in MNC isolated from blood samples obtained at 0 and 2 hours of the OGTT. RESULTS Compared with controls, women with PCOS exhibited a higher percent change from baseline in ROS generation and p47phox protein in conjunction with greater GSIS and a tendency toward lower β-cell function. Lean women with PCOS exhibited a greater percent change from baseline in ROS generation and p47phox protein yet had similar GSIS responses compared with lean controls despite having lower ISOGTT. For the combined groups, β-cell function was inversely related to ROS generation and p47phox protein. GSIS was directly related to body mass index, central obesity, and circulating androgens. CONCLUSION In normoglycemic women, obesity plays a role in exaggerating GSIS. However, MNC-derived oxidative stress is independent of obesity and may contribute to the decline in β-cell function in women with PCOS.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Pathobiology (S.K.M., J.P.K.), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195; Department of Nutrition (S.K.M., J.P.K.), School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; and Department of Obstetrics and Gynecology (C.L.S., F.G.), Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | | | | |
Collapse
|
19
|
Tumor necrosis factor-α modulates cerebral aneurysm formation and rupture. Transl Stroke Res 2013; 5:269-77. [PMID: 24323710 DOI: 10.1007/s12975-013-0287-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
Inflammation is a critical process behind cerebral aneurysm formation and rupture. Tumor necrosis factor alpha (TNF-α) is a key immune modulator that has been implicated in cerebral aneurysm pathophysiology. This may occur through TNF-α-mediated endothelial injury, smooth muscle cell phenotypic modulation, recruitment of macrophages, activation of chemotactic cytokines, upregulation of matrix remodeling genes, production of free radicals leading to oxidative stress, and ultimately cellular apoptosis. Recent studies have indicated that TNF-α may be a potential target for the development of novel medical therapies, but additional experimental data is needed to clarify the intricacies of TNF-α activation and its critical downstream targets in cerebral aneurysms. This review provides an update on the mechanisms underlying TNF-α-induced molecular modulation in cerebral aneurysms.
Collapse
|
20
|
Mitsuhashi M, Taub DD, Kapogiannis D, Eitan E, Zukley L, Mattson MP, Ferrucci L, Schwartz JB, Goetzl EJ. Aging enhances release of exosomal cytokine mRNAs by Aβ1-42-stimulated macrophages. FASEB J 2013; 27:5141-50. [PMID: 24014820 DOI: 10.1096/fj.13-238980] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Amyloid-β1-42 (Aβ) peptide effects on human models of central nervous system (CNS)-patrolling macrophages (Ms) and CD4 memory T-cells (CD4-Tms) were investigated to examine immune responses to Aβ in Alzheimer's disease. Aβ and lipopolysaccharide (LPS) elicited similar M cytokine and exosomal mRNA (ex-mRNA) responses. Aβ- and LPS-stimulated Ms from 20 ≥65-yr-old subjects generated significantly more IL-1, TNF-α, and IL-6, but not IL-8 or IL-12, and significantly more ex-mRNAs for IL-6, TNF-α, and IL-12, but not for IL-8 or IL-1, than Ms from 20 matched 21- to 45-yr-old subjects. CD4-Tm generation of IL-2, IL-4, and IFN-γ and, for young subjects, IL-10, but not IL-6, evoked by Aβ was significantly lower than with anti-T-cell antigen receptor antibodies (Abs). Abs significantly increased all CD4-Tm ex-mRNAs, but only IL-2 and IL-6 ex-mRNAs were increased by Aβ. There were no significant differences between cytokine and ex-mRNA responses of CD4-Tms from the old compared to the young subjects. M-derived serum exosomes from the old subjects had significantly higher IL-6 and IL-12 ex-mRNA levels than those from the young subjects, whereas there were no differences for CD4-Tm-derived serum exosomes. An Aβ level relevant to neurodegeneration elicited broad M cytokine and ex-mRNA responses that were significantly greater in the old subjects, but only narrow and age-independent CD4-Tm responses.
Collapse
Affiliation(s)
- Masato Mitsuhashi
- 3UCSF Geriatric Research Center, 1719 Broderick Street, San Francisco, CA 94115-2525, USA. E-mail
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Asemi Z, Samimi M, Tabassi Z, Shakeri H, Esmaillzadeh A. Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women. J Nutr 2013; 143:1432-8. [PMID: 23884390 DOI: 10.3945/jn.113.177550] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Unfavorable metabolic profiles and oxidative stress in pregnancy are associated with several complications. This study was conducted to determine the effects of vitamin D supplementation on serum concentrations of high-sensitivity C-reactive protein (hs-CRP), metabolic profiles, and biomarkers of oxidative stress in healthy pregnant women. This randomized, double-blind, placebo-controlled clinical trial was conducted in 48 pregnant women aged 18-40 y old at 25 wk of gestation. Participants were randomly assigned to receive either 400 IU/d cholecalciferol supplements (n = 24) or placebo (n = 24) for 9 wk. Fasting blood samples were taken at study baseline and after 9 wk of intervention to quantify serum concentrations of hs-CRP, lipid concentrations, insulin, and biomarkers of oxidative stress. After 9 wk of intervention, the increases in serum 25-hydroxyvitamin D and calcium concentrations were greater in the vitamin D group (+3.7 μg/L and +0.20 mg/dL, respectively) than in the placebo group (-1.2 μg/L and -0.12 mg/dL, respectively; P < 0.001 for both). Vitamin D supplementation resulted in a significant decrease in serum hs-CRP (vitamin D vs. placebo groups: -1.41 vs. +1.50 μg/mL; P-interaction = 0.01) and insulin concentrations (vitamin D vs. placebo groups: -1.0 vs. +2.6 μIU/mL; P-interaction = 0.04) and a significant increase in the Quantitative Insulin Sensitivity Check Index score (vitamin D vs. placebo groups: +0.02 vs. -0.02; P-interaction = 0.006), plasma total antioxidant capacity (vitamin D vs. placebo groups: +152 vs. -20 mmol/L; P-interaction = 0.002), and total glutathione concentrations (vitamin D vs. placebo groups: +205 vs. -32 μmol/L; P-interaction = 0.02) compared with placebo. Intake of vitamin D supplements led to a significant decrease in fasting plasma glucose (vitamin D vs. placebo groups: -0.65 vs. -0.12 mmol/L; P-interaction = 0.01), systolic blood pressure (vitamin D vs. placebo groups: -0.2 vs. +5.5 mm Hg; P-interaction = 0.01), and diastolic blood pressure (vitamin D vs. placebo groups: -0.4 vs. +3.1 mm Hg; P-interaction = 0.01) compared with placebo. In conclusion, vitamin D supplementation for 9 wk among pregnant women has beneficial effects on metabolic status.
Collapse
Affiliation(s)
- Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | | | | |
Collapse
|
22
|
Kullman EL, Campbell WW, Krishnan RK, Yarasheski KE, Evans WJ, Kirwan JP. Age attenuates leucine oxidation after eccentric exercise. Int J Sports Med 2013; 34:695-9. [PMID: 23325713 PMCID: PMC3834767 DOI: 10.1055/s-0032-1327659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aging may alter protein metabolism during periods of metabolic and physiologic challenge. The purpose of this study was to assess the effects of age on whole-body amino acid turnover in response to eccentric exercise and hyperglycemia-induced hyperinsulinemia. 16 healthy men were divided into young (N=8) and older (N=8) groups. Protein metabolism was assessed using a [1-13C]-leucine isotopic tracer approach. Measures were obtained under fasted basal conditions and during 3-h hyperglycemic clamps that were performed without (control) and 48 h after eccentric exercise. Exercise reduced leucine oxidation in the younger men (P<0.05), but not in older men. Insulin sensitivity was inversely correlated with leucine oxidation (P<0.05), and was lower in older men (P<0.05). Healthy aging is associated with an impaired capacity to adjust protein oxidation in response to eccentric exercise. The decreased efficiency of protein utilization in older men may contribute to impaired maintenance, growth, and repair of body tissues with advancing age.
Collapse
Affiliation(s)
- E L Kullman
- Cleveland Clinic, Pathobiology, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
23
|
Haus JM, Solomon TPJ, Kelly KR, Fealy CE, Kullman EL, Scelsi AR, Lu L, Pagadala MR, McCullough AJ, Flask CA, Kirwan JP. Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 2013; 98:E1181-8. [PMID: 23616151 PMCID: PMC3701282 DOI: 10.1210/jc.2013-1229] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Hepatic steatosis, insulin resistance, inflammation, low levels of polyunsaturated lipids, and adiponectin are implicated in the development and progression of nonalcoholic fatty liver disease (NAFLD). OBJECTIVE We examined the effects of short-term aerobic exercise on these metabolic risk factors. DESIGN AND PARTICIPANTS Obese individuals (N = 17, 34.3 ± 1.0 kg/m²) with clinically confirmed NAFLD were enrolled in a short-term aerobic exercise program that consisted of 7 consecutive days of treadmill walking at ~85% of maximal heart rate for 60 minutes per day. Preintervention and postintervention measures included hepatic triglyceride content, and a lipid saturation index and polyunsaturated lipid index (PUI) of the liver, obtained by (1)H magnetic resonance spectroscopy (N = 14). Insulin sensitivity was estimated from an oral glucose tolerance test (OGTT), and mononuclear cells were isolated to assess reactive oxygen species production during the OGTT. Circulating glucose, insulin, and high molecular weight (HMW) adiponectin were determined from plasma. MAIN OUTCOME Short-term aerobic exercise training improved hepatic lipid composition in patients with NAFLD. RESULTS Exercise training resulted in an increase in liver PUI (P < .05), increased insulin sensitivity (Matsuda Index: P < .05), HMW adiponectin (P < .05), and maximal oxygen consumption (P < .05). Reactive oxygen species production during the OGTT was reduced following exercise training (P < .05). HMW adiponectin was increased after the exercise program and the increase was positively correlated with the increase in liver PUI (r = 0.52, P = .05). Body weight remained stable during the program (P > .05). CONCLUSION Short-term exercise can target hepatic lipid composition, which may reduce the risk of NAFLD progression. The improvement in hepatic lipid composition may be driven by adiponectin.
Collapse
Affiliation(s)
- Jacob M Haus
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miles MP, Keller JM, Kordick LK, Kidd JR. Basal, circadian, and acute inflammation in normal versus overweight men. Med Sci Sports Exerc 2013; 44:2290-8. [PMID: 22776879 DOI: 10.1249/mss.0b013e318267b209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Increased inflammation is present in obese compared with normal weight individuals, but inflammation characteristics of nonobese, overweight individuals are less clear. PURPOSE The objective of this study was to determine whether basal, circadian, and posteccentric exercise inflammation levels differ between normal and overweight men. METHODS Men (18-35 yr old) classified as normal weight (body mass index ≤25 kg·m, n = 20) and overweight (body mass index = 25-30 kg·m, n = 10) completed exercise (EX) and control (CON) conditions in random order. Maximal voluntary effort and eccentric actions (3 × 15) using the elbow flexor muscles of one arm were performed, and blood was collected preexercise and 4, 8, 12, and 24 h postexercise at 7:00 a.m., 12:00 p.m., 4:00 p.m., 8:00 p.m., and 7:00 a.m. Blood was collected on a time-matched schedule without exercise for CON. Soluble tumor necrosis factor receptor-1, interleukin-6, C-reactive protein (CRP), and cortisol responses (EX value - time-matched CON value) were measured. RESULTS Basal CRP was higher in the overweight compared with normal weight group (mean ± SD, 0.542 ± 0.578 vs 1.395 ± 1.041 mg·L). Soluble tumor necrosis factor receptor-1 increased (P < 0.05) 8 h postexercise in both groups, and the response was greater 12 and 24 h postexercise in the overweight compared with normal weight groups. Interleukin-6 increased (P < 0.05) 8 h postexercise, with a trend (P = 0.09) to be greater in the overweight group. CRP and cortisol responses were not detected. CONCLUSIONS The low-grade inflammation state in overweight compared with normal weight men includes both higher basal CRP concentrations and enhanced acute inflammation, but not in changes to the circadian patterns of cortisol and inflammation variables.
Collapse
Affiliation(s)
- Mary P Miles
- Department of Health and Human Development, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
25
|
Golbidi S, Laher I. Potential mechanisms of exercise in gestational diabetes. J Nutr Metab 2013; 2013:285948. [PMID: 23691290 PMCID: PMC3649306 DOI: 10.1155/2013/285948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/31/2013] [Accepted: 02/10/2013] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance first diagnosed during pregnancy. This condition shares same array of underlying abnormalities as occurs in diabetes outside of pregnancy, for example, genetic and environmental causes. However, the role of a sedentary lifestyle and/or excess energy intake is more prominent in GDM. Physically active women are less likely to develop GDM and other pregnancy-related diseases. Weight gain in pregnancy causes increased release of adipokines from adipose tissue; many adipokines increase oxidative stress and insulin resistance. Increased intramyocellular lipids also increase cellular oxidative stress with subsequent generation of reactive oxygen species. A well-planned program of exercise is an important component of a healthy lifestyle and, in spite of old myths, is also recommended during pregnancy. This paper briefly reviews the role of adipokines in gestational diabetes and attempts to shed some light on the mechanisms by which exercise can be beneficial as an adjuvant therapy in GDM. In this regard, we discuss the mechanisms by which exercise increases insulin sensitivity, changes adipokine profile levels, and boosts antioxidant mechanisms.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
26
|
Chae JS, Paik JK, Kang R, Kim M, Choi Y, Lee SH, Lee JH. Mild weight loss reduces inflammatory cytokines, leukocyte count, and oxidative stress in overweight and moderately obese participants treated for 3 years with dietary modification. Nutr Res 2013; 33:195-203. [DOI: 10.1016/j.nutres.2013.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 11/15/2012] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
|
27
|
Salmon AB. Oxidative stress in the etiology of age-associated decline in glucose metabolism. LONGEVITY & HEALTHSPAN 2012; 1:7. [PMID: 24764512 PMCID: PMC3922939 DOI: 10.1186/2046-2395-1-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/09/2012] [Indexed: 12/25/2022]
Abstract
One of the most common pathologies in aging humans is the development of glucose metabolism dysfunction. The high incidence of metabolic dysfunction, in particular type 2 diabetes mellitus, is a significant health and economic burden on the aging population. However, the mechanisms that regulate this age-related physiological decline, and thus potential preventative treatments, remain elusive. Even after accounting for age-related changes in adiposity, lean mass, blood lipids, etc., aging is an independent factor for reduced glucose tolerance and increased insulin resistance. Oxidative stress has been shown to have significant detrimental impacts on the regulation of glucose homeostasis in vitro and in vivo. Furthermore, oxidative stress has been shown to be modulated by age and diet in several model systems. This review provides an overview of these data and addresses whether increases in oxidative stress with aging may be a primary determinant of age-related metabolic dysfunction.
Collapse
Affiliation(s)
- Adam B Salmon
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, Audie L. Murphy Hospital, San Antonio, TX, 78229, USA ; Department of Molecular Medicine, The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, MSC 7755, San Antonio, TX, 78245-3207, USA
| |
Collapse
|
28
|
Saraya MA, Al-Fadhli MA, Qasem JA. Diabetic status of patients with leprosy in Kuwait. J Infect Public Health 2012; 5:360-5. [PMID: 23164565 DOI: 10.1016/j.jiph.2012.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/29/2012] [Accepted: 08/09/2012] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The aim of this study was to screen for diabetes mellitus in leprosy patients to elucidate whether leprosy infection may play a role in the pathogenesis of diabetes mellitus in this population. SUBJECTS AND METHODS Thirty patients of different ages and of both sexes with various types of leprosy were included in this study. In addition, 15 healthy individuals of comparable age and sex who had no family history of diabetes mellitus were identified as controls. In both groups, determinations of fasting and postprandial blood sugar, an oral glucose tolerance test (OGTT), measures of fasting serum insulin and pro-inflammatory cytokine tumor necrosis factor alpha (TNFα), as well as calculations using the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR), were carried out. RESULT Approximately 13.3% of the leprosy patients were diabetic, and 37.7% were in pre-diabetic. The highest incidences of diabetes and pre-diabetes were in lepromatous leprosy (10% and 20%, respectively); a lower incidence of pre-diabetes (6.6%) was observed in tuberculoid leprosy; and the lowest incidence of diabetes (0.0%) was noted in borderline leprosy patients. Although normal healthy persons were not diabetic (0%), 20% were pre-diabetic. CONCLUSION This study revealed that the incidence of diabetes was higher in the leprosy patients than in the control group. As a result, we recommend that all leprosy patients should be screened for diabetes.
Collapse
Affiliation(s)
- Mohammad A Saraya
- Department of Medicine, Infectious Disease Hospital, Ministry of Health, Kuwait
| | | | | |
Collapse
|
29
|
Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab 2012; 32:1659-76. [PMID: 22781330 PMCID: PMC3434628 DOI: 10.1038/jcbfm.2012.84] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracranial aneurysms (IAs) linger as a potentially devastating clinical problem. Despite intense investigation, our understanding of the mechanisms leading to aneurysm development, progression and rupture remain incompletely defined. An accumulating body of evidence implicates inflammation as a critical contributor to aneurysm pathogenesis. Intracranial aneurysm formation and progression appear to result from endothelial dysfunction, a mounting inflammatory response, and vascular smooth muscle cell phenotypic modulation producing a pro-inflammatory phenotype. A later final common pathway appears to involve apoptosis of cellular constituents of the vessel wall. These changes result in degradation of the integrity of the vascular wall leading to aneurysmal dilation, progression and eventual rupture in certain aneurysms. Various aspects of the inflammatory response have been investigated as contributors to IA pathogenesis including leukocytes, complement, immunoglobulins, cytokines, and other humoral mediators. Furthermore, gene expression profiling of IA compared with control arteries has prominently featured differential expression of genes involved with immune response/inflammation. Preliminary data suggest that therapies targeting the inflammatory response may have efficacy in the future treatment of IA. Further investigation, however, is necessary to elucidate the precise role of inflammation in IA pathogenesis, which can be exploited to improve the prognosis of patients harboring IA.
Collapse
Affiliation(s)
- Nohra Chalouhi
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular and Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
González F, Nair KS, Daniels JK, Basal E, Schimke JM. Hyperandrogenism sensitizes mononuclear cells to promote glucose-induced inflammation in lean reproductive-age women. Am J Physiol Endocrinol Metab 2012; 302:E297-306. [PMID: 22045316 PMCID: PMC3287360 DOI: 10.1152/ajpendo.00416.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperandrogenism and chronic low-grade inflammation are related in polycystic ovary syndrome (PCOS), but it is unknown whether hyperandrogenemia can activate inflammation. We determined the effect of oral androgen administration on fasting and glucose-stimulated nuclear factor-κB (NF-κB) activation and expression and related markers of inflammation in mononuclear cells (MNC) of lean reproductive-age women. Sixteen lean, ovulatory reproductive-age women were treated with 130 mg of DHEA or placebo (n = 8 each) for 5 days in a randomized, controlled, double-blind fashion. Nuclear activation of NF-κB, p65 and p105 NF-κB subunit RNA, TNFα and IL-1β mRNA, and NF-κB p65 and inhibitory-κB (IκB) protein were quantified from MNC obtained while fasting and 2 h after glucose ingestion, before and after DHEA or placebo administration. Before treatment, subjects receiving DHEA or placebo exhibited no differences in androgens or any inflammatory markers while fasting and after glucose ingestion. Compared with placebo, DHEA administration raised levels of testosterone, androstenedione, and DHEA-S, increased the percent change in fasting and glucose-challenged activated NF-κB, p65, p105, TNFα, and IL-1β RNA and p65 protein, and decreased the percent change in fasting and glucose-challenged IκB protein. We conclude that elevation of circulating androgens to the range observed in PCOS upregulates the NF-κB inflammation pathway in lean reproductive-age women. Thus, hyperandrogenemia activates and sensitizes MNC to glucose in this population.
Collapse
Affiliation(s)
- Frank González
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Intake of carbohydrates above the dietary guidelines to support performance of physical activity is common but may be unnecessary and counterproductive. Sports nutrition guidelines have not been designed to incorporate characteristics that may make high carbohydrate consumption a source of metabolic stress that may increase oxidative stress, inflammation, and lipogenesis. This metabolic stress is linked to the physiology underlying the development of insulin resistance, type 2 diabetes mellitus, and cardiovascular diseases. This review describes research-based evidence to aid in bridging the gap between dietary guidelines for overall health and those to support physical activity. Characteristics that increase the likelihood of metabolic stress resulting from carbohydrate intake include overweight and obesity, central/visceral adiposity, older age, sedentary lifestyle, and caloric state. Carbohydrate-based foods that provide the most health benefits are whole grains, beans and legumes, fruits, and vegetables. Carbohydrate-based foods that most readily elicit metabolic stress are those with added sugars and refined grains or that have a high glycemic index. A checklist that incorporates both the number of these characteristics and prevailing guidelines for nutrition and physical activity is presented. This may be useful in determining whether additional carbohydrates are needed to support the physical activity level of the individual.
Collapse
Affiliation(s)
- Mary P. Miles
- Department of Health and Human Development, Montana State University, Bozeman, Montana
| |
Collapse
|
32
|
Kelly KR, Haus JM, Solomon TPJ, Patrick-Melin AJ, Cook M, Rocco M, Barkoukis H, Kirwan JP. A low-glycemic index diet and exercise intervention reduces TNF(alpha) in isolated mononuclear cells of older, obese adults. J Nutr 2011; 141:1089-94. [PMID: 21525252 PMCID: PMC3095140 DOI: 10.3945/jn.111.139964] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Low-glycemic index diets and exercise independently improve glucose tolerance and reduce diabetes risk. However, the combined effect of a low-glycemic index diet and exercise on inflammation and glucose metabolism is not known. Therefore, we randomized 28 insulin-resistant adults (age: 66 ± 1 y; BMI: 34.2 ± 0.7 kg · m(-2)) to a 12-wk, low (LGI = 40) or high- (HGI = 80) glycemic index diet plus aerobic exercise (5 d · wk(-1), 60 min · d(-1), 80-85% heart rate(max)) intervention. All food and fluids were provided during the study. Inflammation was assessed from cytokine (TNFα and IL-6) secretion using peripheral blood mononuclear cells (MNC) stimulated overnight with LPS. Glycemic response was determined following ingestion of a 75-g glucose solution. Fasting blood samples were collected for additional cytokine [TNFα, IL-6, and monocyte chemoattractant protein 1 (MCP-1)] analysis. Both interventions decreased BMI (P < 0.001), fasting plasma glucose (P = 0.01), and insulin (P = 0.02). The glycemic response was reduced only in the LGI group (P = 0.04). Plasma and MNC-derived TNFα secretion were reduced in the LGI group (P = 0.02) but increased in the HGI group (P = 0.02). Secretion of IL-6 from MNC and plasma IL-6 and MCP-1 concentrations were reduced in the LGI group. The change in MNC-derived TNFα (r = 0.43; P = 0.04) and plasma MCP-1 (r = 0.44; P = 0.04) correlated with decreases in the glycemic response. These data highlight the importance of diet composition in the treatment and prevention of inflammation and hyperglycemia. A low-glycemic index diet has antiinflammatory and antidiabetogenic effects when combined with exercise in older, obese prediabetics.
Collapse
Affiliation(s)
- Karen R. Kelly
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195,Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106
| | - Jacob M. Haus
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195,Department of Physiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106
| | - Thomas P. J. Solomon
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Aimee J. Patrick-Melin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Marc Cook
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Michael Rocco
- Department of Preventive Cardiology, Cleveland Clinic, Cleveland, OH 44195
| | - Hope Barkoukis
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106
| | - John P. Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195,Department of Gastroenterology/Hepatology, Cleveland Clinic, Cleveland, OH 44195,Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106,Department of Physiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Miles MP, Depner CM, Kirwan RD, Frederickson SJ. Influence of macronutrient intake and anthropometric characteristics on plasma insulin after eccentric exercise. Metabolism 2010; 59:1456-64. [PMID: 20153875 DOI: 10.1016/j.metabol.2010.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/20/2009] [Accepted: 01/19/2010] [Indexed: 01/04/2023]
Abstract
To increase understanding of the interaction between macronutrients and insulin resistance (IR), this study sought to determine the influence of macronutrient intake and anthropometric differences on IR and inflammation responses to eccentric resistance exercise. Men and women (n = 12, 19-36 years old) participated in a crossover study and completed 6 sets of 10 unilateral maximal eccentric contractions of the elbow flexors and extensors followed by controlled diet conditions for the first 8 hours postexercise of carbohydrate/fat/protein proportions of either 75%/15%/10% (CHO) or 6%/70%/24% (FAT/PRO). Fasting glucose, insulin, homeostatic model assessment (HOMA) variables, and interleukin (IL)-1β were measured preexercise and 23 hours postexercise (additional measures of glucose and insulin 1 hour after meals consumed 0.5, 3, and 7 hours postexercise). Insulin increased more (P < .01) in the CHO compared with the FAT/PRO condition at 1.5, 4, and 8 hours postexercise. Insulin, HOMA-IR, and HOMA-β-cell function increased 23 hours postexercise in both conditions, whereas IL-1β increased 23 hours postexercise only in the CHO condition. Magnitude of change (Δ) for these variables associated positively with body mass index (BMI) and waist to hip ratio (WHR) in the CHO and inversely in the FAT/PRO condition; that is, r = 0.53 (P = .10) and r = -0.82 (P < .01) for BMI vs Δ insulin in CHO and FAT/PRO conditions, respectively. The Δ IL-1β associated with BMI (r = 0.62, P < .05) and WHR (r = 0.84, P < .01) in the CHO condition. The CHO enhanced IR and inflammation as BMI and WHR increased, whereas fat and protein enhanced IR as BMI and WHR decreased. Thus, BMI and WHR may need to be taken into account in the development of nutritional strategies to prevent IR.
Collapse
Affiliation(s)
- Mary P Miles
- Department of Health and Human Development, Montana State University, Box 173540, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
34
|
Das UN. Obesity: genes, brain, gut, and environment. Nutrition 2009; 26:459-73. [PMID: 20022465 DOI: 10.1016/j.nut.2009.09.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 01/04/2023]
Abstract
Obesity, which is assuming alarming proportions, has been attributed to genetic factors, hypothalamic dysfunction, and intestinal gut bacteria and an increase in the consumption of energy-dense food. Obesity predisposes to the development of type 2 diabetes mellitus, hypertension, coronary heart disease, and certain forms of cancer. Recent studies have shown that the intestinal bacteria in obese humans and mice differ from those in lean that could trigger a low-grade systemic inflammation. Consumption of a calorie-dense diet that initiates and perpetuates obesity could be due to failure of homeostatic mechanisms that regulate appetite, food consumption, and energy balance. Hypothalamic factors that regulate energy needs of the body, control appetite and satiety, and gut bacteria that participate in food digestion play a critical role in the onset of obesity. Incretins, cholecystokinin, brain-derived neurotrophic factor, leptin, long-chain fatty acid coenzyme A, endocannabinoids and vagal neurotransmitter acetylcholine play a role in the regulation of energy intake, glucose homeostasis, insulin secretion, and pathobiology of obesity and type 2 diabetes mellitus. Thus, there is a cross-talk among the gut, liver, pancreas, adipose tissue, and hypothalamus. Based on these evidences, it is clear that management of obesity needs a multifactorial approach.
Collapse
|
35
|
González F, Rote NS, Minium J, Kirwan JP. Evidence of proatherogenic inflammation in polycystic ovary syndrome. Metabolism 2009; 58:954-62. [PMID: 19375763 PMCID: PMC2737595 DOI: 10.1016/j.metabol.2009.02.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 02/03/2009] [Indexed: 01/04/2023]
Abstract
Women with polycystic ovary syndrome (PCOS) have chronic low-level inflammation that can increase the risk of atherogenesis. We measured circulating proatherogenic inflammatory mediators in women with PCOS (8 lean: body mass index, 18-25 kg/m(2); 8 obese: body mass index, 30-40 kg/m(2)) and weight-matched controls (8 lean, 8 obese). Blood samples were obtained fasting and 2 hours after glucose ingestion to measure interleukin-6 (IL-6), soluble intercellular adhesion molecule-1 (sICAM-1), monocyte chemotactic protein-1 (MCP-1), C-reactive protein (CRP), matrix metalloproteinase-2, plasminogen activator inhibitor-1 (PAI-1), and activated nuclear factor kappaB in mononuclear cells. Truncal fat was determined by dual-energy x-ray absorptiometry. Fasting MCP-1 levels were elevated in lean women with PCOS compared with lean controls (159.9 +/- 14.1 vs 121.2 +/- 5.4 pg/mL, P < .02). Hyperglycemia failed to suppress matrix metalloproteinase-2 in lean women with PCOS compared with lean controls (1.7 +/- 1.2 vs -4.8 +/- 1.6 pg/mL, P < .002). Among women with PCOS, obese individuals exhibited higher fasting sICAM-1 (16.1 +/- 0.8 vs 10.5 +/- 1.0 ng/mL, P < .03) and PAI-1 (6.1 +/- 0.7 vs 3.4 +/- 0.8 ng/mL, P < .03) levels. Trend analysis revealed higher (P < .005) IL-6, sICAM-1, CRP, PAI-1, systolic and diastolic blood pressures, triglycerides, fasting insulin, and homeostasis model assessment of insulin resistance index in women with PCOS compared with weight-matched controls, and the highest levels in the obese regardless of PCOS status. Fasting MCP-1 levels correlated with activated nuclear factor kappaB during hyperglycemia (P < .05) and androstenedione (P < .004). Truncal fat correlated with fasting IL-6 (P < .004), sICAM-1 (P < .006), CRP (P < .0009), and PAI-1 (P < .02). We conclude that both PCOS and obesity contribute to a proatherogenic state; but in women with PCOS, abdominal adiposity and hyperandrogenism may exacerbate the risk of atherosclerosis.
Collapse
Affiliation(s)
- Frank González
- Department of Obstetrics and Gynecology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
36
|
Yassine HN, Marchetti CM, Krishnan RK, Vrobel TR, Gonzalez F, Kirwan JP. Effects of exercise and caloric restriction on insulin resistance and cardiometabolic risk factors in older obese adults--a randomized clinical trial. J Gerontol A Biol Sci Med Sci 2009; 64:90-5. [PMID: 19164269 DOI: 10.1093/gerona/gln032] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The prevalence of insulin resistance, metabolic syndrome, and cardiovascular disease is greatest in older obese patients, and effective evidence-based treatment strategies are lacking. METHODS A prospective controlled study was conducted on 24 older (65.5 +/- 5.0 years) obese (body mass index, 34.3 +/- 5.2 kg/m(2)) adults with clinically diagnosed metabolic syndrome. We examined the effect of exercise alone (EX) or exercise combined with moderate caloric restriction (-500 kcal, EX + CR) on metabolic and cardiovascular risk factors. Measures of insulin sensitivity assessed by euglycemic hyperinsulinemic clamp and by oral glucose tolerance test, lipid profiles, blood pressure, body composition, abdominal fat, and aerobic capacity were all obtained before and after the interventions. RESULTS Both groups experienced significant weight loss, but the reduction was greater in the EX + CR group than in the EX group (-6.8 +/- 2.7 kg vs -3.7 +/- 3.4 kg, respectively, p = .02). Both interventions improved insulin sensitivity (2.4 +/- 2.4 mg/kg FFM/min and 1.4 +/- 1.7 mg/kgFFM/min, respectively, p < .001) and indices of metabolic syndrome (systolic/diastolic blood pressure, waist circumference, glucose, and triglycerides; p < .05). High-density lipoprotein levels remained unchanged. Total abdominal, subcutaneous, and visceral fat; aerobic capacity; and total and low-density lipoprotein cholesterol were also improved. With the exception of weight loss and subcutaneous fat, there was no difference in the magnitude of improvement between the interventions. CONCLUSION These data suggest that exercise alone is an effective nonpharmacological treatment strategy for insulin resistance, metabolic syndrome, and cardiovascular disease risk factors in older obese adults.
Collapse
Affiliation(s)
- Hussein N Yassine
- Schwartz Center for Metabolism and Nutrition, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
37
|
Stegenga ME, van der Crabben SN, Dessing MC, Pater JM, van den Pangaart PS, de Vos AF, Tanck MW, Roos D, Sauerwein HP, van der Poll T. Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 2008; 25:157-64. [PMID: 18290856 PMCID: PMC2268957 DOI: 10.1111/j.1464-5491.2007.02348.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Type 2 diabetes is frequently associated with infectious complications. Swift activation of leucocytes is important for an adequate immune response. We determined the selective effects of hyperglycaemia and hyperinsulinaemia on lipopolysaccharide (LPS)-induced proinflammatory gene expression and cytokine production in leucocytes and on neutrophil functions. METHODS Six healthy humans were studied on four occasions for 6 h during: (i) lower insulinaemic euglycaemic clamp, (ii) lower insulinaemic hyperglycaemic clamp, (iii) hyperinsulinaemic euglycaemic clamp, and (iv) hyperinsulinaemic hyperglycaemic clamp. Target levels of plasma glucose were 12.0 mmol/l (hyperglycaemic clamps) or 5.0 mmol/l (euglycaemic clamps). Target plasma insulin levels were 400 pmol/l (hyperinsulinaemic clamps) or 100 pmol/l (lower insulinaemic clamps). RESULTS Hyperglycaemia reduced LPS-induced mRNA expression of nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (NFKBIA), interleukin-1 alpha (IL1A) and chemokine (C-C motif) ligand 3 (CCL3), whereas during hyperinsulinaemia enhanced mRNA levels occurred in six out of eight measured inflammation-related genes, irrespective of plasma glucose levels. Combined hyperglycaemia and hyperinsulinaemia led to enhanced IL1A, interleukin-1 beta (IL1B) and CCL3 mRNA levels upon LPS stimulation. Neither hyperglycaemia nor hyperinsulinaemia altered cytokine protein production, neutrophil migration, phagocytic capacity or oxidative burst activity. CONCLUSIONS These results suggest that short-term hyperglycaemia and hyperinsulinaemia influence the expression of several inflammatory genes in an opposite direction, that the acute effects of hyperinsulinaemia on inflammatory mRNA levels may be stronger than those of hyperglycaemia, and that the effects of insulin, in particular, may be relevant in the concurrent presence of hyperglycaemia.
Collapse
Affiliation(s)
- M E Stegenga
- Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jayaraman T, Paget A, Shin YS, Li X, Mayer J, Chaudhry H, Niimi Y, Silane M, Berenstein A. TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture. Vasc Health Risk Manag 2008; 4:805-17. [PMID: 19065997 PMCID: PMC2597764 DOI: 10.2147/vhrm.s2700] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Intracranial aneurysm (IA) rupture is one of the leading causes of stroke in the United States and remains a major health concern today. Most aneurysms are asymptomatic with a minor percentage of rupture annually. Regardless, IA rupture has a devastatingly high mortality rate and does not have specific drugs that stabilize or prevent aneurysm rupture, though other preventive therapeutic options such as clipping and coiling of incidental aneurysms are available to clinicians. The lack of specific drugs to limit aneurysm growth and rupture is, in part, attributed to the limited knowledge on the biology of IA growth and rupture. Though inflammatory macrophages and lymphocytes infiltrate the aneurysm wall, a link between their presence and aneurysm growth with subsequent rupture is not completely understood. Given our published results that demonstrate that the pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), is highly expressed in human ruptured aneurysms, we hypothesize that pro-inflammatory cell types are the prime source of TNF-alpha that initiate damage to endothelium, smooth muscle cells (SMC) and internal elastic lamina (IEL). To gain insights into TNF-alpha expression in the aneurysm wall, we have examined the potential regulators of TNF-alpha and report that higher TNF-alpha expression correlates with increased expression of intracellular calcium release channels that regulate intracellular calcium (Ca2+), and Toll like receptors (TLR) that mediate innate immunity. Moreover, the reduction of tissue inhibitor of metalloproteinase-1 (TIMP-1) expression provides insights on why higher matrix metalloproteinase (MMP) activity is noted in ruptured IA. Because TNF-alpha is known to amplify several signaling pathways leading to inflammation, apoptosis and tissue degradation, we will review the potential role of TNF-alpha in IA formation, growth and rupture. Neutralizing TNF-alpha action in the aneurysm wall may have a beneficial effect in preventing aneurysm growth by reducing inflammation and arterial remodeling.
Collapse
Affiliation(s)
- Thottala Jayaraman
- Department of Neurosurgery, St. Luke's Roosevelt Hospital Center, New York, NY 10025, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lowry SF, Calvano SE. Challenges for modeling and interpreting the complex biology of severe injury and inflammation. J Leukoc Biol 2007; 83:553-7. [PMID: 17984288 DOI: 10.1189/jlb.0607377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human injury is associated with inflammatory responses that are modulated by the acute and chronic activity of endogenous factors and exogenous interventions. A characteristic feature of chronic, severe inflammatory states is the diminished signal output variability of many organ systems, including innate immune responsiveness and endogenous neural and endocrine-mediated functions. The attenuation of signal/response variability and integration of feedback capacity may contribute to systemic and tissue-specific deterioration of function. Some well-intentioned therapies directed toward support of systemic and tissue functions may actually promote the loss of system(s) adaptability and contribute to adverse outcomes in severely stressed patients. In vivo and in silico models of stress, injury, and infection have yet to fully define the influences of ongoing stressful stimulae as well as genetic variation and epigenetic factors in the context of an evolving inflammatory state. Experimental and human models incorporating variable, antecedent stress(es) and altered neuroendocrine rhythms might approximate the altered adaptability in immune and organ function responses. Such models may also provide insights into the salient mechanisms of risk and outcome more precisely than do the constrained study conditions of current animal or human models of systemic inflammation.
Collapse
Affiliation(s)
- Stephen F Lowry
- UMDNJ, Robert Wood Johnson Medical School, 125 Paterson Street, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
40
|
González F, Rote NS, Minium J, O'leary VB, Kirwan JP. Obese reproductive-age women exhibit a proatherogenic inflammatory response during hyperglycemia. Obesity (Silver Spring) 2007; 15:2436-44. [PMID: 17925469 PMCID: PMC3000558 DOI: 10.1038/oby.2007.289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The objective was to determine if physiological hyperglycemia induces a proatherogenic inflammatory response in mononuclear cells (MNCs) in obese reproductive-age women. RESEARCH METHODS AND PROCEDURES Seven obese and 6 age-matched lean women (20 to 39 years of age) underwent a 2-hour 75-g oral glucose tolerance test. The release of interleukin-6 (IL-6) and interleukin-1beta (IL-1beta) from MNCs cultured in the presence of lipopolysaccharide (LPS) was measured after isolation from blood samples drawn fasting and 2 hours after glucose ingestion. Reactive oxygen species (ROS) generation and intra-nuclear nuclear factor kappaB (NFkappaB) from MNCs were quantified from the same blood samples. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA-IR). Total body fat and truncal fat were determined by DXA. RESULTS Obese women had a higher (p < 0.03) total body fat (42.2 +/- 1.1 vs. 27.7 +/- 2.0%), truncal fat (42.1 +/- 1.2 vs. 22.3 +/- 2.4%), and HOMA-IR (3.3 +/- 0.5 vs. 1.8 +/- 0.2). LPS-stimulated IL-6 release from MNCs was suppressed during hyperglycemia in lean subjects (1884 +/- 495 vs. 638 +/- 435 pg/mL, p < 0.05) but not in obese women (1184 +/- 387 vs. 1403 +/- 498 pg/mL). There was a difference (p < 0.05) between groups in the hyperglycemia-induced MNC-mediated release of IL-6 (-1196 +/- 475 vs. 219 +/- 175 pg/mL) and IL-1beta (-79 +/- 43 vs. 17 +/- 12 pg/mL). In addition, the obese group exhibited increased (p < 0.05) MNC-derived ROS generation (39.3 +/- 9.9 vs. -1.0 +/- 12.8%) and intra-nuclear NFkappaB (9.4 +/- 7.3 vs. -23.5 +/- 13.5%). Truncal fat was positively correlated with the MNC-derived IL-6 response (rho = 0.58, p < 0.05) and intra-nuclear NFkappaB (rho = 0.64, p < 0.05). DISCUSSION These data suggest that obese reproductive-age women are unable to suppress proatherogenic inflammation during physiological hyperglycemia. Increased adiposity may be a significant contributor to this pro-inflammatory susceptibility.
Collapse
Affiliation(s)
- Frank González
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Charlton 3-117, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
41
|
Stewart LK, Flynn MG, Campbell WW, Craig BA, Robinson JP, Timmerman KL, McFarlin BK, Coen PM, Talbert E. The Influence of Exercise Training on Inflammatory Cytokines and C-Reactive Protein. Med Sci Sports Exerc 2007; 39:1714-9. [PMID: 17909397 DOI: 10.1249/mss.0b013e31811ece1c] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to examine the influence of a 12-wk exercise training program on inflammatory cytokine and C-reactive protein (CRP) concentrations. A secondary purpose was to determine whether training-induced changes in cytokines and CRP were influenced by age. METHODS Twenty-nine younger (18-35 yr) and 31 older (65-85 yr) subjects were assigned to young physically active (YPA, N = 15; 25 +/- 5 yr), young physically inactive (YPI, N= 14; 25 +/- 4.7 yr), old physically active (OPA, N = 14; 71 +/- 4 yr), or old physically inactive (OPI, N = 17; 71 +/- 4 yr) groups. The inactive groups completed 12 wk (3 d.wk) of aerobic and resistance exercises, and the physically active control groups continued their normal exercise programs. Blood samples were collected before and after the 12-wk period, and the concentrations of serum CRP, plasma interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1beta) were determined using separate ELISA. RESULTS Control (YPA and OPA) estimated VO2max was unchanged. Exercise training increased estimated VO2max an average of 10.4% and increased strength by an average of 38.1% in both PI groups. Serum CRP decreased with training (YPI and OPI) groups and was not different from the YPA and OPA groups after training. Plasma IL-6 and IL-1beta did not change, whereas TNF-alpha was higher than YPI and YPA at baseline and after the intervention period. CONCLUSION These results support the use of combined aerobic/resistance training as a modality to reduce the risk of cardiovascular disease development as defined by a decrease in serum CRP concentration in healthy humans.
Collapse
Affiliation(s)
- Laura K Stewart
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA 70803-2401, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Puder JJ, Varga S, Nusbaumer CPG, Zulewski H, Bilz S, Müller B, Keller U. Women with polycystic ovary syndrome are sensitive to the TNF-alpha-lowering effect of glucose-induced hyperinsulinaemia. Eur J Clin Invest 2006; 36:883-9. [PMID: 17087783 DOI: 10.1111/j.1365-2362.2006.01734.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Restoration of near-euglycaemia by intensive insulin therapy results in decreased serum levels of inflammatory mediators. The authors investigated whether the anti-inflammatory effect of insulin was independent of its glucose-lowering action and if this effect was intact in insulin-resistant women with the polycystic ovary syndrome (PCOS) characterized by low-grade chronic inflammation. MATERIALS AND METHODS Blood was drawn on the third and sixth days after progestin-induced withdrawal bleeding in 20 young non-diabetic women with PCOS and once between the third and sixth days of the menstrual cycle in 21 age-matched lean healthy control women during a 75-g oral glucose tolerance test (oGTT). Serum insulin, glucose and tumour necrosis factor alpha (TNF-alpha) concentrations were measured after 0, 30, 60, 90 and 120 min. RESULTS The increase in insulin and glucose concentrations during the oGTT was significantly more pronounced in patients with PCOS (one patient with impaired fasting glucose, one patient with impaired glucose tolerance, three patients with both) compared with healthy controls. The TNF-alpha serum concentrations decreased in patients with PCOS (mean of both days, P = 0.004). In patients and in controls, there was an inverse correlation between the serum concentrations of insulin and of TNF-alpha during oGTT (for patients, a mean of both days, P = 0.009; for controls, P = 0.047), but not between the serum concentrations of glucose and TNF-alpha. CONCLUSIONS The decrease in TNF-alpha concentrations during oGTT and the inverse correlation between endogenous hyperinsulinaemia and serum TNF-alpha concentrations suggested an anti-inflammatory effect of moderately-high insulin concentrations. This occurred despite the presence of moderate hyperglycaemia. These findings also demonstrated a preserved responsiveness of inflammatory mediators to insulin in PCOS.
Collapse
Affiliation(s)
- J J Puder
- Division of Endocrinology, Diabetes and Metabolism, University Hospital, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
43
|
González F, Rote NS, Minium J, Kirwan JP. Increased activation of nuclear factor kappaB triggers inflammation and insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab 2006; 91:1508-12. [PMID: 16464947 DOI: 10.1210/jc.2005-2327] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Insulin resistance and chronic low level inflammation are often present in women with polycystic ovary syndrome (PCOS). OBJECTIVE The purpose of this study was to determine the effects of hyperglycemia on nuclear factor kappaB (NFkappaB) activation and inhibitory kappaB (IkappaB) from mononuclear cells (MNC) in PCOS. DESIGN AND SETTING This was a prospective controlled study conducted at an academic medical center. PATIENTS The study population consisted of 16 reproductive-age women with PCOS (eight lean, eight obese) and 16 age- and body composition-matched controls (eight lean, eight obese). MAIN OUTCOME MEASURES Insulin sensitivity (IS) was derived from a 2-h 75-g oral glucose tolerance test (IS(OGTT)). Intranuclear NFkappaB and IkappaB protein expression were quantitated from MNC obtained from blood drawn fasting and 2 h after glucose ingestion. RESULTS IS(OGTT) was lower in PCOS compared with controls (3.3 +/- 0.3 vs. 6.4 +/- 0.9, P < 0.004). The percent change in intranuclear NFkappaB was higher in lean and obese PCOS compared with lean controls (42.5 +/- 19.1 and 54.5 +/- 12.5 vs. -14.1 +/- 10.9, P < 0.006). The percent change in intranuclear NFkappaB correlated positively with 2-h post-glucose ingestion levels (r = 0.37; P < 0.04) and plasma testosterone (r = 0.49; P < 0.006) and correlated negatively with IS(OGTT) (r = 0.39; P < 0.04). The percent change in IkappaB was lower in lean and obese PCOS compared with lean controls (-22.3 +/- 3.2 and -17.0 +/- 5.0 vs. 8.4 +/- 11.8, P < 0.02). CONCLUSION In response to hyperglycemia, intranuclear NFkappaB increases and IkappaB decreases in MNC of women with PCOS independent of obesity. This may represent a cardinal inflammatory signal that contributes to the induction of insulin resistance and hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Frank González
- Department of Obstetrics and Gynecology, MetroHealth Medical Center, Hamann S4-44, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| | | | | | | |
Collapse
|
44
|
González F, Minium J, Rote NS, Kirwan JP. Altered tumor necrosis factor alpha release from mononuclear cells of obese reproductive-age women during hyperglycemia. Metabolism 2006; 55:271-6. [PMID: 16423637 DOI: 10.1016/j.metabol.2005.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 08/19/2005] [Indexed: 01/04/2023]
Abstract
The aim of the study was to determine whether lipopolysaccharide (LPS)-stimulated tumor necrosis factor alpha (TNF-alpha) release from mononuclear cells (MNCs) is altered in obese reproductive-age women in response to hyperglycemia. Six obese and 8 age-matched normal-weight women (18-40 years) underwent a 2-hour 75-g oral glucose tolerance test. Tumor necrosis factor alpha release was measured from MNCs cultured in the presence of LPS after isolation from blood samples drawn fasting and 2 hours after glucose ingestion. Insulin resistance was derived by homeostasis model assessment of insulin resistance. Total body fat (%) and truncal fat (%) were determined by dual-energy absorptiometry. Obese women had a higher (P < .03) body mass index (34.1 +/- 1.1 vs 21.9 +/- 0.8 kg/m2), percentage of total body fat (42.4% +/- 1.3% vs 28.7% +/- 1.8%), and percentage of truncal fat (42.1% +/- 1.2% vs 24.7% +/- 2.2%). Homeostasis model assessment of insulin resistance was greater in the obese group (58.0 +/- 10.6 vs 27.8 +/- 4.3, P < .02). Fasting plasma C-reactive protein (7787 +/- 884 vs 236 +/- 79 ng/mL, P < .0001) and TNF-alpha (2.37 +/- 0.09 vs 0.54 +/- 0.04 pg/mL, P < .05) were both elevated in obese women. Hyperglycemia resulted in a suppression of LPS-stimulated TNF-alpha release from MNCs of normal-weight subjects (154 +/- 21 vs 57 +/- 28 pg/mL, P < .003), but no change in obese women (148 +/- 36 vs 173 +/- 49 pg/mL). The TNF-alpha response was different between groups (-97 +/- 21 vs +24 +/- 22 pg/mL, P < .003). There was also a positive association between the incremental change in MNC-derived TNF-alpha and percentage of truncal fat (r = 0.75, P < .002). In conclusion, these data suggest that there is an absence of the "normal" suppression of TNF-alpha in MNCs after hyperglycemia in obese women, and this response may contribute to impaired glucose disposal and insulin resistance.
Collapse
Affiliation(s)
- Frank González
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA.
| | | | | | | |
Collapse
|
45
|
González F, Rote NS, Minium J, Kirwan JP. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 2006; 91:336-40. [PMID: 16249279 DOI: 10.1210/jc.2005-1696] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Insulin resistance and chronic low level inflammation are often present in women with polycystic ovary syndrome (PCOS). OBJECTIVE The purpose of this study was to determine the effects of hyperglycemia on reactive oxygen species (ROS) generation from mononuclear cells (MNCs) in PCOS. DESIGN This was a prospective controlled study. SETTING The study was conducted at an academic medical center. PATIENTS The study population consisted of 16 women with PCOS (eight lean, eight obese) and 15 age- and body composition-matched controls (eight lean, seven obese). MAIN OUTCOME MEASURES Insulin sensitivity was derived from a 2-h, 75-g oral glucose tolerance test (IS(OGTT)). ROS generation and p47(phox) protein expression were quantitated from MNCs obtained from blood drawn fasting and 2 h after glucose ingestion. RESULTS IS(OGTT) was lower in PCOS, compared with controls (3.1 +/- 0.3 vs. 6.3 +/- 0.9, P < 0.003). The percent change in ROS generation from MNCs was higher in lean and obese PCOS, compared with lean controls (138.8 +/- 21.3 and 154.2 +/- 49.1 vs. 0.6 +/- 12.7, P < 0.003). The percent change in ROS generation from MNCs correlated positively with glucose area under the curve (r = 0.38, P < 0.05), and plasma levels of testosterone (r = 0.59, P < 0.002) and androstenedione (r = 0.50, P < 0.009). The percent change in p47(phox) from MNCs was also higher in lean and obese PCOS, compared with lean controls (36.2 +/- 18.2 and 39.1 +/- 8.0 vs. -13.7 +/- 8.7, P < 0.02), and correlated negatively with IS(OGTT) (r = -0.39, P < 0.05). CONCLUSION ROS generation from MNCs in response to hyperglycemia is increased in PCOS independent of obesity. The resultant oxidative stress may contribute to a proinflammatory state that induces insulin resistance and hyperandrogenism in women with this disorder.
Collapse
Affiliation(s)
- Frank González
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA.
| | | | | | | |
Collapse
|
46
|
O'Leary VB, Marchetti CM, Krishnan RK, Stetzer BP, Gonzalez F, Kirwan JP. Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat. J Appl Physiol (1985) 2005; 100:1584-9. [PMID: 16373444 PMCID: PMC7037693 DOI: 10.1152/japplphysiol.01336.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise improves glucose metabolism and delays the onset and/or reverses insulin resistance in the elderly by an unknown mechanism. In the present study, we examined the effects of exercise training on glucose metabolism, abdominal adiposity, and adipocytokines in obese elderly. Sixteen obese men and women (age = 63 +/- 1 yr, body mass index = 33.2 +/- 1.4 kg/m2) participated in a 12-wk supervised exercise program (5 days/wk, 60 min/day, treadmill/cycle ergometry at 85% of heart rate maximum). Visceral fat (VF), subcutaneous fat, and total abdominal fat were measured by computed tomography. Fat mass and fat-free mass were assessed by hydrostatic weighing. An oral glucose tolerance test was used to determine changes in insulin resistance. Exercise training increased maximal oxygen consumption (21.3 +/- 0.8 vs. 24.3 +/- 1.0 ml.kg(-1).min(-1), P < 0.0001), decreased body weight (P < 0.0001) and fat mass (P < 0.001), while fat-free mass was not altered (P > 0.05). VF (176 +/- 20 vs. 136 +/- 17 cm2, P < 0.0001), subcutaneous fat (351 +/- 34 vs. 305 +/- 28 cm2, P < 0.03), and total abdominal fat (525 +/- 40 vs. 443 +/- 34 cm2, P < 0.003) were reduced through training. Circulating leptin was lower (P < 0.003) after training, but total adiponectin and tumor necrosis factor-alpha remained unchanged. Insulin resistance was reversed by exercise (40.1 +/- 7.7 vs. 27.6 +/- 5.6 units, P < 0.01) and correlated with changes in VF (r = 0.66, P < 0.01) and maximal oxygen consumption (r = -0.48, P < 0.05) but not adipocytokines. VF loss after aerobic exercise training improves glucose metabolism and is associated with the reversal of insulin resistance in older obese men and women.
Collapse
Affiliation(s)
- Valerie B O'Leary
- Schwartz Center for Metabolism and Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | | | | | | | | | | |
Collapse
|
47
|
González F, Minium J, Rote NS, Kirwan JP. Hyperglycemia alters tumor necrosis factor-alpha release from mononuclear cells in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90:5336-42. [PMID: 15985479 DOI: 10.1210/jc.2005-0694] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Women with polycystic ovary syndrome (PCOS) are often insulin resistant and have chronic low-level inflammation. OBJECTIVE The purpose of this study was to determine the effects of hyperglycemia on lipopolysaccharide (LPS)-stimulated TNFalpha release from mononuclear cells (MNC) in PCOS. DESIGN The study was designed as a prospective controlled study. SETTING The study was carried out at an academic medical center. PATIENTS Sixteen reproductive age women with PCOS (eight lean, eight obese) and 14 age-matched controls (eight lean, six obese) participated in the study. MAIN OUTCOME MEASURES Insulin sensitivity (IS) was derived from a 2-h 75-g oral glucose tolerance test (IS(OGTT)). Percentage of truncal fat was determined by dual-energy absorptiometry. TNFalpha release was measured from MNC cultured in the presence of LPS from blood samples drawn fasting and 2 h after glucose ingestion. RESULTS IS(OGTT) was lower in women with PCOS compared with controls (3.9 +/- 0.4 vs. 6.3 +/- 1.0; P < 0.03) and was negatively correlated with percentage of truncal fat (r = 0.56; P < 0.002). Truncal fat was greater in lean women with PCOS compared with lean controls (29.8 +/- 2.6 vs. 23.8 +/- 2.5%; P < 0.04). The TNFalpha response was different between obese and lean controls (-96.9 +/- 21.2 vs. 24.4 +/- 21.6 pg/ml; P < 0.03) and obese and lean women with PCOS (-94.1 +/- 34.5 vs. 30.4 +/- 17.6 pg/ml; P < 0.002). Fasting plasma C-reactive protein was elevated (P < 0.003) in obese PCOS and obese controls compared with lean controls. CONCLUSION An increase in abdominal adiposity and increased TNFalpha release from MNC after hyperglycemia may contribute to insulin resistance in lean PCOS patients. In contrast, obese PCOS patients have more profound chronic inflammation, and thus may have LPS tolerance that protects them from relatively mild excursions in blood glucose.
Collapse
Affiliation(s)
- Frank González
- MetroHealth Medical Center, Department of Obstetrics and Gynecology, Hamann S4-44, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA.
| | | | | | | |
Collapse
|
48
|
Burdge GC, Calder PC. Plasma cytokine response during the postprandial period: a potential causal process in vascular disease? Br J Nutr 2005; 93:3-9. [PMID: 15705218 DOI: 10.1079/bjn20041282] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic inflammation of the vascular endothelium produces endothelial dysfunction and ultimately atherogenesis. Postprandial hyperlipidaemia is an independent risk factor for cardiovascular disease. Recent studies show that the magnitude of postprandial lipaemia following a single fatty meal is negatively related to vascular function. This is associated with a transient increase in the concentrations of pro-inflammatory cytokines and soluble adhesion molecules and in pro-oxidant activity. One possible interpretation is that repeated exposure of the blood vessel wall to the activities of pro-inflammatory cytokines and pro-oxidants may damage the vascular endothelium and promote atherogenesis. Based on these results, we propose a model of a causal mechanism to explain how consumption of a fatty meal may impair vascular dysfunction.
Collapse
Affiliation(s)
- Graham C Burdge
- Institute of Human Nutrition, Developmental Origins of Adult Health and Disease Division, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | |
Collapse
|
49
|
Abstract
Obesity, atherosclerosis, insulin resistance and hyperinsulinemia, hyperlipidemia, essential hypertension, type 2 diabetes mellitus, and coronary heart disease (CHD) are the components of metabolic syndrome X and are associated with elevated plasma levels of C-reactive protein, interleukin-6, and tumor necrosis factor-alpha, which are markers of inflammation. This suggests that metabolic syndrome X is a low-grade, systemic, inflammatory condition. Hence, instituting anti-inflammatory measures might be beneficial in preventing or halting the progress of metabolic syndrome X in high-risk populations.
Collapse
|
50
|
Abstract
Obesity, atherosclerosis, insulin resistance and hyperinsulinemia, hyperlipidemia, essential hypertension, type 2 diabetes mellitus, and coronary heart disease (CHD) are the components of metabolic syndrome X and are associated with elevated plasma levels of C-reactive protein, interleukin-6, and tumor necrosis factor-alpha, which are markers of inflammation. This suggests that metabolic syndrome X is a low-grade, systemic, inflammatory condition. Hence, instituting anti-inflammatory measures might be beneficial in preventing or halting the progress of metabolic syndrome X in high-risk populations.
Collapse
Affiliation(s)
- Undurti N Das
- Reflexis Systems, Inc., 1420 Providence Highway, Suite #266, Norwood, MA 02062, USA. undas@efasciences
| |
Collapse
|