1
|
Bråtveit M, Van Parys A, Olsen T, Strand E, Marienborg I, Laupsa-Borge J, Haugsgjerd TR, McCann A, Dhar I, Ueland PM, Dierkes J, Dankel SN, Nygård OK, Lysne V. Association between dietary macronutrient composition and plasma one-carbon metabolites and B-vitamin cofactors in patients with stable angina pectoris. Br J Nutr 2024; 131:1678-1690. [PMID: 38361451 PMCID: PMC11063666 DOI: 10.1017/s0007114524000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Elevated plasma concentrations of several one-carbon metabolites are associated with increased CVD risk. Both diet-induced regulation and dietary content of one-carbon metabolites can influence circulating concentrations of these markers. We cross-sectionally analysed 1928 patients with suspected stable angina pectoris (geometric mean age 61), representing elevated CVD risk, to assess associations between dietary macronutrient composition (FFQ) and plasma one-carbon metabolites and related B-vitamin status markers (GC-MS/MS, LC-MS/MS or microbiological assay). Diet-metabolite associations were modelled on the continuous scale, adjusted for age, sex, BMI, smoking, alcohol and total energy intake. Average (geometric mean (95 % prediction interval)) intake was forty-nine (38, 63) energy percent (E%) from carbohydrate, thirty-one (22, 45) E% from fat and seventeen (12, 22) E% from protein. The strongest associations were seen for higher protein intake, i.e. with higher plasma pyridoxal 5'-phosphate (PLP) (% change (95 % CI) 3·1 (2·1, 4·1)), cobalamin (2·9 (2·1, 3·7)), riboflavin (2·4 (1·1, 3·7)) and folate (2·1 (1·2, 3·1)) and lower total homocysteine (tHcy) (-1·4 (-1·9, -0·9)) and methylmalonic acid (MMA) (-1·4 (-2·0, -0·8)). Substitution analyses replacing MUFA or PUFA with SFA demonstrated higher plasma concentrations of riboflavin (5·0 (0·9, 9·3) and 3·3 (1·1, 5·6)), tHcy (2·3 (0·7, 3·8) and 1·3 (0·5, 2·2)) and MMA (2·0 (0·2, 3·9) and 1·7 (0·7, 2·7)) and lower PLP (-2·5 (-5·3, 0·3) and -2·7 (-4·2, -1·2)). In conclusion, a higher protein intake and replacing saturated with MUFA and PUFA were associated with a more favourable metabolic phenotype regarding metabolites associated with CVD risk.
Collapse
Affiliation(s)
- Marianne Bråtveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Strand
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Marienborg
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Indu Dhar
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Kjell Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Azevedo-Pouly A, Hale MA, Swift GH, Hoang CQ, Deering TG, Xue J, Wilkie TM, Murtaugh LC, MacDonald RJ. Key transcriptional effectors of the pancreatic acinar phenotype and oncogenic transformation. PLoS One 2023; 18:e0291512. [PMID: 37796967 PMCID: PMC10553828 DOI: 10.1371/journal.pone.0291512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.
Collapse
Affiliation(s)
- Ana Azevedo-Pouly
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael A. Hale
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Galvin H. Swift
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chinh Q. Hoang
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tye G. Deering
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jumin Xue
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas M. Wilkie
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Raymond J. MacDonald
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
3
|
Garibotto G, Picciotto D, Verzola D, Valli A, Sofia A, Costigliolo F, Saio M, Viazzi F, Esposito P. Homocysteine exchange across skeletal muscle in patients with chronic kidney disease. Physiol Rep 2023; 11:e15573. [PMID: 36945836 PMCID: PMC10031238 DOI: 10.14814/phy2.15573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 03/23/2023] Open
Abstract
Sites and mechanisms regulating the supply of homocysteine (Hcy) to the circulation are unexplored in humans. We studied the exchange of Hcy across the forearm in CKD patients (n = 17, eGFR 20 ± 2 ml/min), in hemodialysis (HD)-treated patients (n = 14) and controls (n = 9). Arterial Hcy was ~ 2.5 folds increased in CKD and HD patients (p < 0.05-0.03 vs. controls). Both in controls and in patients Hcy levels in the deep forearm vein were consistently greater (+~7%, p < 0.05-0.01) than the corresponding arterial levels, indicating the occurrence of Hcy release from muscle. The release of Hcy from the forearm was similar among groups. In all groups arterial Hcy varied with its release from muscle (p < 0.03-0.02), suggesting that muscle plays an important role on plasma Hcy levels. Forearm Hcy release was inversely related to folate plasma level in all study groups but neither to vitamin B12 and IL-6 levels nor to muscle protein net balance. These data indicate that the release of Hcy from peripheral tissue metabolism plays a major role in influencing its Hcy plasma levels in humans and patients with CKD, and that folate is a major determinant of Hcy release.
Collapse
Affiliation(s)
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Daniela Verzola
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Alessando Valli
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Antonella Sofia
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Francesca Costigliolo
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Francesca Viazzi
- Department of Internal MedicineUniversity of GenovaGenovaItaly
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Pasquale Esposito
- Department of Internal MedicineUniversity of GenovaGenovaItaly
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
4
|
Shahal T, Segev E, Konstantinovsky T, Marcus Y, Shefer G, Pasmanik-Chor M, Buch A, Ebenstein Y, Zimmet P, Stern N. Deconvolution of the epigenetic age discloses distinct inter-personal variability in epigenetic aging patterns. Epigenetics Chromatin 2022; 15:9. [PMID: 35255955 PMCID: PMC8900303 DOI: 10.1186/s13072-022-00441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epigenetic age can now be extrapolated from one of several epigenetic clocks, which are based on age-related changes in DNA methylation levels at specific multiple CpG sites. Accelerated aging, calculated from the discrepancy between the chronological age and the epigenetic age, has shown to predict morbidity and mortality rate. We assumed that deconvolution of epigenetic age to its components could shed light on the diversity of epigenetic, and by inference, on inter-individual variability in the causes of biological aging. RESULTS Using the Horvath original epigenetic clock, we identified several CpG sites linked to distinct genes that quantitatively explain much of the inter-personal variability in epigenetic aging, with CpG sites related to secretagogin and malin being the most variable. We show that equal epigenetic age in different subjects can result from variable contribution size of the same CpG sites to the total epigenetic age. In a healthy cohort, the most variable CpG sites are responsible for accelerated and decelerated epigenetic aging, relative to chronological age. CONCLUSIONS Of the 353 CpG sites that form the basis for the Horvath epigenetic age, we have found the CpG sites that are responsible for accelerated and decelerated epigenetic aging in healthy subjects. However, the relative contribution of each site to aging varies between individuals, leading to variable personal aging patterns. Our findings pave the way to form personalized aging cards allowing the identification of specific genes related to CpG sites, as aging markers, and perhaps treatment of these targets in order to hinder undesirable age drifting.
Collapse
Affiliation(s)
- Tamar Shahal
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Elad Segev
- Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - Thomas Konstantinovsky
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - Yonit Marcus
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Gabi Shefer
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Buch
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University School of Medicine, Melbourne, Australia
| | - Naftali Stern
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Neacsu M, Vaughan NJ, Multari S, Haljas E, Scobbie L, Duncan GJ, Cantlay L, Fyfe C, Anderson S, Horgan G, Johnstone AM, Russell WR. Hemp and buckwheat are valuable sources of dietary amino acids, beneficially modulating gastrointestinal hormones and promoting satiety in healthy volunteers. Eur J Nutr 2021; 61:1057-1072. [PMID: 34716790 PMCID: PMC8854285 DOI: 10.1007/s00394-021-02711-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Purpose This study evaluated the postprandial effects following consumption of buckwheat, fava bean, pea, hemp and lupin compared to meat (beef); focussing on biomarkers of satiety, gut hormones, aminoacids and plant metabolites bioavailability and metabolism. Methods Ten subjects (n = 3 men; n = 7 women; 42 ± 11.8 years of age; BMI 26 ± 5.8 kg/m2) participated in six 1-day independent acute interventions, each meal containing 30 g of protein from buckwheat, fava bean, pea, hemp, lupin and meat (beef). Blood samples were collected during 24-h and VAS questionnaires over 5-h. Results Volunteers consumed significantly higher amounts of most amino acids from the meat meal, and with few exceptions, postprandial composition of plasma amino acids was not significantly different after consuming the plant-based meals. Buckwheat meal was the most satious (300 min hunger scores, p < 0.05).Significant increase in GLP-1 plasma (AUC, iAUC p = 0.01) found after hemp compared with the other plant-based meals. Decreased plasma ghrelin concentrations (iAUC p < 0.05) found on plant (hemp) vs. meat meal. Several plasma metabolites after hemp meal consumption were associated with hormone trends (partial least squares-discriminant analysis (PLS-DA): 4-hydroxyphenylpyruvic acid, indole 3-pyruvic acid, 5-hydoxytryptophan, genistein and biochanin A with GLP-1, PYY and insulin; 3-hydroxymandelic acid and luteolidin with GLP-1 and ghrelin and 4-hydroxymandelic acid, benzoic acid and secoisolariciresinol with insulin and ghrelin. Plasma branched-chain amino acids (BCAAs), (iAUC, p < 0.001); and phenylalanine and tyrosine (iAUC, p < 0.05) were lower after buckwheat comparison with meat meal. Conclusion Plants are valuable sources of amino acids which are promoting satiety. The impact of hemp and buckwheat on GLP-1 and, respectively, BCAAs should be explored further as could be relevant for aid and prevention of chronic diseases such as type 2 diabetes. Study registered with clinicaltrial.gov on 12th July 2013, study ID number: NCT01898351. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02711-z.
Collapse
Affiliation(s)
- Madalina Neacsu
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - Nicholas J Vaughan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Salvatore Multari
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Elisabeth Haljas
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Lorraine Scobbie
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Gary J Duncan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Louise Cantlay
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Claire Fyfe
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Susan Anderson
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Wendy R Russell
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| |
Collapse
|
6
|
Strmiska V, Michalek P, Lackova Z, Guran R, Krizkova S, Vanickova L, Zitka O, Stiborova M, Eckschlager T, Klejdus B, Pacik D, Tvrdikova E, Keil C, Haase H, Adam V, Heger Z. Sarcosine is a prostate epigenetic modifier that elicits aberrant methylation patterns through the SAMe-Dnmts axis. Mol Oncol 2019; 13:1002-1017. [PMID: 30628163 PMCID: PMC6487735 DOI: 10.1002/1878-0261.12439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/23/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
DNA hypermethylation is one of the most common epigenetic modifications in prostate cancer (PCa). Several studies have delineated sarcosine as a PCa oncometabolite that increases the migration of malignant prostate cells while decreasing their doubling time. Here, we show that incubation of prostate cells with sarcosine elicited the upregulation of sarcosine N‐demethylation enzymes, sarcosine dehydrogenase and pipecolic acid oxidase. This process was accompanied by a considerable increase in the production of the major methyl‐donor S‐adenosylmethionine (SAMe), together with an elevation of cellular methylation potential. Global DNA methylation analyses revealed increases in methylated CpG islands in distinct prostate cell lines incubated with sarcosine, but not in cells of nonprostate origin. This phenomenon was further associated with marked upregulation of DNA methyltransferases (Dnmts). Epigenetic changes were recapitulated through blunting of Dnmts using the hypomethylating agent 5‐azacytidine, which was able to inhibit sarcosine‐induced migration of prostate cells. Moreover, spatial mapping revealed concomitant increases in sarcosine, SAMe and Dnmt1 in histologically confirmed malignant prostate tissue, but not in adjacent or nonmalignant tissue, which is in line with the obtained in vitro data. In summary, we show here for the first time that sarcosine acts as an epigenetic modifier of prostate cells and that this may contribute to its oncometabolic role.
Collapse
Affiliation(s)
- Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Zuzana Lackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Lucie Vanickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague 5, Czech Republic
| | - Borivoj Klejdus
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Mendel University in Brno, Czech Republic
| | - Dalibor Pacik
- Department of Urology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliska Tvrdikova
- Department of Pathology, University Hospital Brno, Czech Republic
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Technical University of Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technical University of Berlin, Germany
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| |
Collapse
|
7
|
Rees WD. Interactions between nutrients in the maternal diet and the implications for the long-term health of the offspring. Proc Nutr Soc 2019; 78:88-96. [PMID: 30378511 DOI: 10.1017/s0029665118002537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nutritional science has traditionally used the reductionist approach to understand the roles of individual nutrients in growth and development. The macronutrient dense but micronutrient poor diets consumed by many in the Western world may not result in an overt deficiency; however, there may be situations where multiple mild deficiencies combine with excess energy to alter cellular metabolism. These interactions are especially important in pregnancy as changes in early development modify the risk of developing non-communicable diseases later in life. Nutrient interactions affect all stages of fetal development, influencing endocrine programming, organ development and the epigenetic programming of gene expression. The rapidly developing field of stem cell metabolism reveals new links between cellular metabolism and differentiation. This review will consider the interactions between nutrients in the maternal diet and their influence on fetal development, with particular reference to energy metabolism, amino acids and the vitamins in the B group.
Collapse
Affiliation(s)
- William D Rees
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
8
|
McBreairty LE, Bertolo RF. The dynamics of methionine supply and demand during early development. Appl Physiol Nutr Metab 2016; 41:581-7. [PMID: 27177124 DOI: 10.1139/apnm-2015-0577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Methionine is an indispensable amino acid that, when not incorporated into protein, is converted into the methyl donor S-adenosylmethionine as entry into the methionine cycle. Following transmethylation, homocysteine is either remethylated to reform methionine or irreversibly trans-sulfurated to form cysteine. Methionine flux to transmethylation and to protein synthesis are both high in the neonate and this review focuses on the dynamics of methionine supply and demand during early development, when growth requires expansion of pools of protein and transmethylation products such as creatine and phosphatidylcholine (PC). The nutrients folate and betaine (derived from choline) donate a methyl group during remethylation, providing an endogenous supply of methionine to meet the methionine demand. During early development, variability in the dietary supply of these methionine cycle-related nutrients can affect both the supply and the demand of methionine. For example, a greater need for creatine synthesis can limit methionine availability for protein and PC synthesis, whereas increased availability of remethylation nutrients can increase protein synthesis if dietary methionine is limiting. Moreover, changes to methyl group availability early in life can lead to permanent changes in epigenetic patterns of DNA methylation, which have been implicated in the early origins of adult disease phenomena. This review aims to summarize how changes in methyl supply and demand can affect the availability of methionine for various functions and highlights the importance of variability in methionine-related nutrients in the infant diet.
Collapse
Affiliation(s)
- Laura E McBreairty
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
9
|
Lysne V, Bjørndal B, Vik R, Nordrehaug JE, Skorve J, Nygård O, Berge RK. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats. Nutrients 2015; 7:4498-511. [PMID: 26053618 PMCID: PMC4488798 DOI: 10.3390/nu7064498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP), with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.
Collapse
Affiliation(s)
- Vegard Lysne
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Rita Vik
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | | | - Jon Skorve
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
- KG Jebsen Centre for Diabetes Research, University of Bergen, 5020 Bergen, Norway.
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
10
|
Responses in gut hormones and hunger to diets with either high protein or a mixture of protein plus free amino acids supplied under weight-loss conditions. Br J Nutr 2015; 113:1254-70. [PMID: 25809236 DOI: 10.1017/s0007114515000069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-protein diets are an effective means for weight loss (WL), but the mechanisms are unclear. One hypothesis relates to the release of gut hormones by either protein or amino acids (AA). The present study involved overweight and obese male volunteers (n 18, mean BMI 36·8 kg/m2) who consumed a maintenance diet for 7 d followed by fully randomised 10 d treatments with three iso-energetic WL diets, i.e. with either normal protein (NP, 15% of energy) or high protein (HP, 30%) or with a combination of protein and free AA, each 15% of energy (NPAA). Psychometric ratings of appetite were recorded hourly. On day 10, plasma samples were taken at 30 min intervals over two consecutive 5 h periods (covering post-breakfast and post-lunch) and analysed for AA, glucose and hormones (insulin, total glucose-dependent insulinotropic peptide, active ghrelin and total peptide YY (PYY)) plus leucine kinetics (first 5 h only). Composite hunger was 16% lower for the HP diet than for the NP diet (P<0·01) in the 5 h period after both meals. Plasma essential AA concentrations were greatest within 60 min of each meal for the NPAA diet, but remained elevated for 3-5 h after the HP diet. The three WL diets showed no difference for either fasting concentrations or the postprandial net incremental AUC (net AUCi) for insulin, ghrelin or PYY. No strong correlations were observed between composite hunger scores and net AUCi for either AA or gut peptides. Regulation of hunger may involve subtle interactions, and a range of signals may need to be integrated to produce the overall response.
Collapse
|
11
|
Neacsu M, Fyfe C, Horgan G, Johnstone AM. Appetite control and biomarkers of satiety with vegetarian (soy) and meat-based high-protein diets for weight loss in obese men: a randomized crossover trial. Am J Clin Nutr 2014; 100:548-58. [PMID: 24944057 DOI: 10.3945/ajcn.113.077503] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND There is limited evidence with regard to the effect of different sources of protein on appetite during weight loss. Vegetarian and meat-based high-protein diets may have contrasting effects on appetite and biomarkers of protein-induced satiety. OBJECTIVE The aim was to assess appetite response to meat or vegetarian high-protein weight-loss (HPWL) diets in obese men to monitor plasma amino acid profile and gut peptide response as potential satiety biomarkers. DESIGN Twenty obese [body mass index (in kg/m²): 34.8] men participated in a dietary intervention study. After 3 d of a maintenance diet, they were provided in a crossover design with either a vegetarian HPWL (Soy-HPWL) or a meat-based HPWL (Meat-HPWL) diet for 2 wk. Both diets comprised 30% protein, 30% fat, and 40% carbohydrate, provided to measured resting metabolic rate. Body weight and the motivation to eat were measured daily. Plasma satiety biomarkers were collected during a test-meal challenge (5 h) at the end of each diet period. RESULTS Over the 2 wk, subjects lost, on average, 2.41 and 2.27 kg with consumption of the Soy- and Meat-HPWL diets, respectively [P = 0.352; SE of the difference (SED): 0.1]. ANOVA confirmed that subjectively rated hunger (P = 0.569; SED: 3.8), fullness (P = 0.404; SED: 4.1), desire to eat (P = 0.356; SED: 3.7), preservation of lean body mass (P = 0.334; SED: 0.2), and loss of percentage fat mass (P = 0.179; SED: 0.2) did not differ between the 2 HPWL diets. There were differences in absolute concentrations of ghrelin and peptide YY between the 2 HPWL diets, although the response as net area under the curve was not different. CONCLUSIONS Appetite control and weight loss were similar for both HPWL diets. Gut hormone profile was similar between the diets, which suggests that vegetarian diets can be as effective as meat-based diets for appetite control during weight loss.
Collapse
Affiliation(s)
- Madalina Neacsu
- From the Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom (MN, CF, and AMJ), and Biomathematics and Statistics Scotland, Aberdeen, United Kingdom (GH)
| | - Claire Fyfe
- From the Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom (MN, CF, and AMJ), and Biomathematics and Statistics Scotland, Aberdeen, United Kingdom (GH)
| | - Graham Horgan
- From the Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom (MN, CF, and AMJ), and Biomathematics and Statistics Scotland, Aberdeen, United Kingdom (GH)
| | - Alexandra M Johnstone
- From the Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom (MN, CF, and AMJ), and Biomathematics and Statistics Scotland, Aberdeen, United Kingdom (GH)
| |
Collapse
|
12
|
He C, Li B, Song W, Ding Z, Wang S, Shan Y. Sulforaphane attenuates homocysteine-induced endoplasmic reticulum stress through Nrf-2-driven enzymes in immortalized human hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7477-7485. [PMID: 24970331 DOI: 10.1021/jf501944u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED In the present study, we investigated the potential efficacy of cruciferous vegetable-derived sulforaphane (SFN) in improving homocysteine (HCY)-stressed cells. After human hepatocyte line HHL-5 was preincubated with SFN and subsequently with 10 mmol/L HCY, SFN improved the pathologic changes which are caused by HCY, including cell morphological abnormality, endoplasmic reticulum (ER) swelling, excessive generation of reactive oxygen species (ROS), the increased malondialdehyde (MDA) levels, as well as the increased activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Phase II enzymes, thioredoxin reductase-1 (TrxR-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), were involved in the protective effect of SFN against injury by HCY. The ER stress-specific proteins, such as glucose-regulated protein-78 (GRP78) and protein kinase RNA (PKR)-like ER kinase (PERK), were strikingly abolished by SFN. Furthermore, Nrf-2 translocation was enhanced by SFN, which lead to the induction of TrxR-1and NQO1.
Collapse
Affiliation(s)
- Canxia He
- School of Food Science and Engineering, Harbin Institute of Technology , No. 73 Huanghe Road, Harbin 150090, China
| | | | | | | | | | | |
Collapse
|
13
|
Glucose uptake by the brain on chronic high-protein weight-loss diets with either moderate or low amounts of carbohydrate. Br J Nutr 2014; 111:586-97. [PMID: 24528939 DOI: 10.1017/s0007114513002900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous work has shown that hunger and food intake are lower in individuals on high-protein (HP) diets when combined with low carbohydrate (LC) intakes rather than with moderate carbohydrate (MC) intakes and where a more ketogenic state occurs. The aim of the present study was to investigate whether the difference between HPLC and HPMC diets was associated with changes in glucose and ketone body metabolism, particularly within key areas of the brain involved in appetite control. A total of twelve men, mean BMI 34·9 kg/m², took part in a randomised cross-over trial, with two 4-week periods when isoenergetic fixed-intake diets (8·3 MJ/d) were given, with 30% of the energy being given as protein and either (1) a very LC (22 g/d; HPLC) or (2) a MC (182 g/d; HPMC) intake. An ¹⁸fluoro-deoxyglucose positron emission tomography scan of the brain was conducted at the end of each dietary intervention period, following an overnight fast (n 4) or 4 h after consumption of a test meal (n 8). On the next day, whole-body ketone and glucose metabolism was quantified using [1,2,3,4-¹³C]acetoacetate, [2,4-¹³C]3-hydroxybutyrate and [6,6-²H₂]glucose. The composite hunger score was 14% lower (P= 0·013) for the HPLC dietary intervention than for the HPMC diet. Whole-body ketone flux was approximately 4-fold greater for the HPLC dietary intervention than for the HPMC diet (P< 0·001). The 9-fold difference in carbohydrate intakes between the HPLC and HPMC dietary interventions led to a 5% lower supply of glucose to the brain. Despite this, the uptake of glucose by the fifty-four regions of the brain analysed remained similar for the two dietary interventions. In conclusion, differences in the composite hunger score observed for the two dietary interventions are not associated with the use of alternative fuels by the brain.
Collapse
|
14
|
Kurpad AV, Anand P, Dwarkanath P, Hsu JW, Thomas T, Devi S, Thomas A, Mhaskar R, Jahoor F. Whole body methionine kinetics, transmethylation, transulfuration and remethylation during pregnancy. Clin Nutr 2014; 33:122-9. [DOI: 10.1016/j.clnu.2012.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 12/01/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
15
|
Abstract
Creatine is an important molecule involved in cellular energy metabolism. Creatine is spontaneously converted to creatinine at a rate of 1·7% per d; creatinine is lost in the urine. Creatine can be obtained from the diet or synthesised from endogenous amino acids via the enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). The liver has high GAMT activity and the kidney has high AGAT activity. Although the pancreas has both AGAT and GAMT activities, its possible role in creatine synthesis has not been characterised. In the present study, we examined the enzymes involved in creatine synthesis in the pancreas as well as the synthesis of guanidinoacetate (GAA) and creatine by isolated pancreatic acini. We found significant AGAT activity and somewhat lower GAMT activity in the pancreas and that pancreatic acini had measurable activities of both AGAT and GAMT and the capacity to synthesise GAA and creatine from amino acids. Creatine supplementation led to a decrease in AGAT activity in the pancreas, though it did not affect its mRNA or protein abundance. This was in contrast with the reduction of AGAT activity and mRNA and protein abundance in the kidney, suggesting that the regulatory mechanisms that control the expression of this enzyme in the pancreas are different from those in the kidney. Dietary creatine increased the concentrations of GAA, creatine and phosphocreatine in the pancreas. Unexpectedly, creatine supplementation decreased the concentrations of S-adenosylmethionine, while those of S-adenosylhomocysteine were not altered significantly.
Collapse
|
16
|
Impact of short term consumption of diets high in either non-starch polysaccharides or resistant starch in comparison with moderate weight loss on indices of insulin sensitivity in subjects with metabolic syndrome. Nutrients 2013; 5:2144-72. [PMID: 23752495 PMCID: PMC3725498 DOI: 10.3390/nu5062144] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/06/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022] Open
Abstract
This study investigated if additional non-starch polysaccharide (NSP) or resistant starch (RS), above that currently recommended, leads to better improvement in insulin sensitivity (IS) than observed with modest weight loss (WL). Obese male volunteers (n = 14) were given an energy-maintenance (M) diet containing 27 g NSP and 5 g RS daily for one week. They then received, in a cross-over design, energy-maintenance intakes of either an NSP-enriched diet (42 g NSP, 2.5 g RS) or an RS-enriched diet (16 g NSP, 25 g RS), each for three weeks. Finally, a high protein (30% calories) WL diet was provided at 8 MJ/day for three weeks. During each dietary intervention, endogenous glucose production (EGP) and IS were assessed. Fasting glycaemia was unaltered by diet, but plasma insulin and C-peptide both decreased with the WL diet (p < 0.001), as did EGP (-11%, p = 0.006). Homeostatis model assessment of insulin resistance improved following both WL (p < 0.001) and RS (p < 0.05) diets. Peripheral tissue IS improved only with WL (57%-83%, p < 0.005). Inclusion of additional RS or NSP above amounts currently recommended resulted in little or no improvement in glycaemic control, whereas moderate WL (approximately 3 kg fat) improved IS.
Collapse
|
17
|
Ikeda S, Koyama H, Sugimoto M, Kume S. Roles of one-carbon metabolism in preimplantation period--effects on short-term development and long-term programming--. J Reprod Dev 2012; 58:38-43. [PMID: 22450283 DOI: 10.1262/jrd.2011-002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One-carbon metabolism (OCM) can be seen as integrated metabolic pathways centered on the metabolism of two nutritional substances, folate and methionine. Mammalian oocytes and preimplantation embryos express almost all enzymes that participate in OCM, suggesting that they can independently metabolize OCM nutrients. A deficiency or excess of OCM nutrients and their metabolites during in vitro culture affects preimplantation development of mammalian embryos. Recent in vivo studies have demonstrated that specific OCM dietary interventions during the periconceptional (mainly oocyte growth and preimplantation) period can cause epigenetic alterations in DNA of offspring and program the long-term consequences in their health in adulthood. The epigenetic processes are likely to be implicated in the effects of OCM nutrients; however, understanding their effects at the level of specific genes and their implications in assisted reproductive technology will require further investigations.
Collapse
Affiliation(s)
- Shuntaro Ikeda
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
18
|
Wilson FA, Holtrop G, Calder AG, Anderson SE, Lobley GE, Rees WD. Effects of methyl-deficient diets on methionine and homocysteine metabolism in the pregnant rat. Am J Physiol Endocrinol Metab 2012; 302:E1531-40. [PMID: 22454289 DOI: 10.1152/ajpendo.00668.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the importance of methyl metabolism in fetal development is well recognized, there is limited information on the dynamics of methionine flow through maternal and fetal tissues and on how this is related to circulating total homocysteine concentrations. Rates of homocysteine remethylation in maternal and fetal tissues on days 11, 19, and 21 of gestation were measured in pregnant rats fed diets with limiting or surplus amounts of folic acid and choline at two levels of methionine and then infused with L-[1-(13)C,(2)H(3)-methyl]methionine. The rate of homocysteine remethylation was highest in maternal liver and declined as gestation progressed. Diets deficient in folic acid and choline reduced the production of methionine from homocysteine in maternal liver only in the animals fed a methionine-limited diet. Throughout gestation, the pancreas exported homocysteine for methylation within other tissues. Little or no methionine cycle activity was detected in the placenta at days 19 and 21 of gestation, but, during this period, fetal tissues, especially the liver, synthesized methionine from homocysteine. Greater enrichment of homocysteine in maternal plasma than placenta, even in animals fed the most-deficient diets, shows that the placenta did not contribute homocysteine to maternal plasma. Methionine synthesis from homocysteine in fetal tissues was maintained or increased when the dams were fed folate- and choline-deficient methionine-restricted diets. This study shows that methyl-deficient diets decrease the remethylation of homocysteine within maternal tissues but that these rates are protected to some extent within fetal tissues.
Collapse
Affiliation(s)
- Fiona A Wilson
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Scotland
| | | | | | | | | | | |
Collapse
|
19
|
de Andrade Belo MA, Soares VE, de Souza LM, da Rosa Sobreira MF, Cassol DMS, Toma SB. Hepatoprotective treatment attenuates oxidative damages induced by carbon tetrachloride in rats. ACTA ACUST UNITED AC 2012; 64:155-65. [DOI: 10.1016/j.etp.2010.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 07/08/2010] [Accepted: 08/11/2010] [Indexed: 11/16/2022]
|
20
|
Koyama H, Ikeda S, Sugimoto M, Kume S. Effects of Folic Acid on the Development and Oxidative Stress of Mouse Embryos Exposed to Heat Stress. Reprod Domest Anim 2012; 47:921-7. [DOI: 10.1111/j.1439-0531.2012.01992.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Lapierre H, Holtrop G, Calder A, Renaud J, Lobley G. Is d-methionine bioavailable to the dairy cow? J Dairy Sci 2012; 95:353-62. [DOI: 10.3168/jds.2011-4553] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022]
|
22
|
Batra V, Kislay B, Devasagayam TPA. Interaction between total body gamma-irradiation and choline deficiency triggers immediate modulation of choline and choline-containing moieties. Int J Radiat Biol 2011; 87:1196-207. [PMID: 21923302 DOI: 10.3109/09553002.2011.624153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The objective of this study was to examine the effect of 60Co-gamma (γ) radiation on acute phase modulation, if any, of choline and choline-containing moieties in choline-deficient subjects. Corresponding results could provide information that might be useful in the management of adverse effects of γ-radiation. MATERIALS AND METHODS Male Swiss mice maintained on a choline-sufficient diet (CSD) and choline-free diet (CFD) based on AIN-93M formula, were subjected to whole body γ-irradiation (2-6 Gy). Liver, serum and brain samples from each group were then tested for: (i) Alterations in choline and choline-containing moieties such as phosphatidylcholine (PC) and sphingomyeline (SM); and (ii) modulation of choline profile modulating enzymes such as phospholipase D (PLD) and total sphingomyelinase (t-SMase). Liver and brain samples were also subjected to histo-pathological examinations. RESULTS No significant changes were observed in folate, choline, choline-containing moieties and choline-modulating enzymes in choline-sufficient mice. In contrast, interaction between cytotoxic effects of γ-radiation and choline deficiency modulated choline and choline-containing moieties. Feeding CFD reduced hepatic concentrations of choline, PC and SM whereas PLD and t-SMase activities were significantly raised. The decrease in liver choline and choline-containing moieties was accompanied by an increase in blood choline concentration. Despite choline deficiency, the level of choline and acetylcholine synthesizing enzyme choline acetyltransfease (ChAT) significantly increased in the brain. CONCLUSIONS We propose that choline deprivation and γ-radiation interact to modulate choline reserves of hepatic tissue, which might release choline to blood. Our studies also clearly showed that interaction between choline deficiency and γ-radiation might substantially enhance liver adipogenesis.
Collapse
Affiliation(s)
- Vipen Batra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.
| | | | | |
Collapse
|
23
|
Ibrahim W, Tousson E, El-Masry T, Arafa N, Akela M. The effect of folic acid as an antioxidant on the hypothalamic monoamines in experimentally induced hypothyroid rat. Toxicol Ind Health 2011; 28:253-61. [PMID: 21967841 DOI: 10.1177/0748233711410913] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid hormones are recognized as key metabolic hormones that play a critical role in the central nervous system development throughout life. In the present study, we studied the biochemical changes of hypothalamus of hypothyroid rats at post-pubertal stage, and the possible ameliorating effect of folic acid. A total of 50 male albino rats were equally divided into five groups; the first and second groups were the control and folic acid groups, respectively, while the third group was the hypothyroid group in which rats received daily 6-n-propyl-2-thiouracil (PTU) in drinking water for 6 weeks to induce hypothyroidism. The fourth and fifth groups were hypothyroid rats treated with folic acid for 4 weeks during and after receiving PTU, respectively, and were dissected after 6 and 10 weeks, respectively. There was a significant increase in plasma total homocysteine, malondialdehyde (MDA), oxidized glutathione\reduced glutathione and total nitric oxide and hypothalamic MDA, serotonin and norepinephrine in the hypothyroid rats group as compared to the control group. This reflects hyperhomocysteinaemia and oxidative stress associated with hypothyroid state. On the other hand, hypothalamic total nitric oxide and dopamine in the hypothyroid rats group were significantly decreased when compared to the control group. Treatment of hypothyroid rats with folic acid improves the oxidative stress and hypothalamic monoamines. Our results revealed that, folic acid treatment was better if it is administered as an adjuvant after returning to the euthyroid state.
Collapse
Affiliation(s)
- Wafaa Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | | | | |
Collapse
|
24
|
Maloney CA, Hay SM, Young LE, Sinclair KD, Rees WD. A methyl-deficient diet fed to rat dams during the peri-conception period programs glucose homeostasis in adult male but not female offspring. J Nutr 2011; 141:95-100. [PMID: 21106931 PMCID: PMC3001237 DOI: 10.3945/jn.109.119453] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methyl deficiencies have been implicated in metabolic programming during the periods of oocyte and embryo development. Semisynthetic methyl-deficient diets (MD) with no folic acid, 0.05% choline, and approximately one-half the recommended content of methionine were fed to female rats for 3 wk prior to mating and for the first 5 d of gestation. During the period of MD feeding, plasma homocysteine concentrations were approximately twice those of rats fed the complete (CON) diet. From d 5, both groups received a complete semipurified AIN diet until birth. On d 8, plasma homocysteine concentrations did not differ between the 2 groups. Thereafter, dams and offspring were fed a nonpurified diet for the remainder of the experiment. At 6 mo of age, the homeostatic model assessment (HOMA) index of the male MD offspring tended to be 32% higher (P = 0.053) and peak insulin during an oral glucose tolerance test (oGTT) was 39% higher (P < 0.05) compared with the male CON offspring. There was no difference in the response to an oGTT in the female offspring at 6 mo of age. The increased HOMA index of male MD offspring persisted to 12 mo of age. The peak glucose concentration during oGTT was 23% higher (P < 0.05) in MD compared with the CON males despite 39% greater (P < 0.05) peak insulin concentrations. This study shows that in rats, a physiologically relevant methyl-deficient diet fed during the period of oocyte maturation and preimplantation development programs gender-specific changes in glucose handling by the offspring.
Collapse
Affiliation(s)
- Christopher A. Maloney
- The University of Aberdeen, Rowett Institute of Nutrition and Health, Bucksburn, Aberdeen, AB21 9SB Scotland
| | - Susan M. Hay
- The University of Aberdeen, Rowett Institute of Nutrition and Health, Bucksburn, Aberdeen, AB21 9SB Scotland
| | - Loraine E. Young
- School of Human Development, Division of Obstetrics and Gynaecology, Queen’s Medical Centre, Nottingham, NG7 2UH
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD
| | - William D. Rees
- The University of Aberdeen, Rowett Institute of Nutrition and Health, Bucksburn, Aberdeen, AB21 9SB Scotland,To whom correspondence should be addressed. E-mail
| |
Collapse
|
25
|
James WPT. 23rd Marabou Symposium: Nutrition and the Aging Brain. Nutr Rev 2010; 68 Suppl 2:S135-61. [PMID: 21091947 DOI: 10.1111/j.1753-4887.2010.00349.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- W Philip T James
- London School of Hygiene and Tropical Medicine and the International Association for the Study of Obesity, London, UK.
| |
Collapse
|
26
|
|
27
|
Abstract
The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolises about 20 % of the dietary methionine intake which is mainly transmethylated to homocysteine and trans-sulfurated to cysteine. The GIT accounts for about 25 % of the whole-body transmethylation and trans-sulfuration. In addition, in vivo studies in young pigs indicate that the GIT is a site of net homocysteine release and thus may contribute to the homocysteinaemia. The gut also utilises 25 % of the dietary cysteine intake and the cysteine uptake by the gut represents about 65 % of the splanchnic first-pass uptake. Moreover, we recently showed that SAA deficiency significantly suppresses intestinal mucosal growth and reduces intestinal epithelial cell proliferation, and increases intestinal oxidant stress in piglets. These recent findings indicate that intestinal metabolism of dietary methionine and cysteine is nutritionally important for intestinal mucosal growth. Besides their role in protein synthesis, methionine and cysteine are precursors of important molecules. S-adenosylmethionine, a metabolite of methionine, is the principal biological methyl donor in mammalian cells and a precursor for polyamine synthesis. Cysteine is the rate-limiting amino acid for glutathione synthesis, the major cellular antioxidant in mammals. Further studies are warranted to establish how SAA metabolism regulates gut growth and intestinal function, and contributes to the development of gastrointestinal diseases. The present review discusses the evidence of SAA metabolism in the GIT and its functional and nutritional importance in gut function and diseases.
Collapse
|
28
|
Batra V, Sridhar S, Devasagayam TPA. Enhanced one-carbon flux towards DNA methylation: Effect of dietary methyl supplements against gamma-radiation-induced epigenetic modifications. Chem Biol Interact 2009; 183:425-33. [PMID: 19931232 DOI: 10.1016/j.cbi.2009.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 11/30/2022]
Abstract
Radiation exposure poses a major risk for workers in the nuclear power plants and other radiation related industry. In this context, we demonstrate that gamma-radiation is an efficient DNA demethylating agent and its injurious effect can be minimized by dietary methyl supplements (folate, choline and vitamin B12). To elucidate the possible underlying mechanism(s), male Swiss mice were maintained on normal control diet (NCD) and methyl-supplemented diet (MSD). After 2 weeks of NCD and MSD dietary regimen, we exposed the animals to gamma-radiation (2, 4 and 6Gy) and investigated the profile of downstream metabolites and activity levels of one-carbon (C(1)) flux generating enzymes. In MSD fed and irradiated animals, hepatic folate levels increased (P<0.01), while hepatic homocysteine levels decreased (P<0.01) compared to NCD fed and irradiated animals. Although hepatic folate level increased significantly in MSD fed animals (P<0.01), it showed a decrease in response to high doses of gamma-irradiation. Under these conditions, a marked suppression of S-adenosylmethionine (SAM) levels occurred in NCD fed and irradiated animals, suggesting reduced conversion of homocysteine to SAM. Concomitant with decline in liver SAM Pool, activities of DNA methyltransferase (Dnmt, that methylates DNA) and methionine synthase (MSase, that regenerates methionine from homocysteine) were both decreased in NCD fed and irradiated mice. However, in MSD fed and irradiated mice, they were increased. These results strongly indicated that increased levels of dnmt and MSase may enhance C(1) flux towards DNA methylation reactions in MSD fed animals. These results were confirmed and further substantiated by measuring genomic DNA methylation levels, which were maintained at normal levels in MSD fed and irradiated mice compared to NCD fed and irradiated animals (P<0.01). In conclusion, our results suggest that maintenance of genomic DNA methylation under gamma-radiation stress might be a very dynamic, progressive diet dependent process that could involve increased one-carbon flux through various C(1) metabolites.
Collapse
Affiliation(s)
- Vipen Batra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.
| | | | | |
Collapse
|