1
|
Bhattacharya I, Dey S, Banerjee A. Revisiting the gonadotropic regulation of mammalian spermatogenesis: evolving lessons during the past decade. Front Endocrinol (Lausanne) 2023; 14:1110572. [PMID: 37124741 PMCID: PMC10140312 DOI: 10.3389/fendo.2023.1110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Spermatogenesis is a multi-step process of male germ cell (Gc) division and differentiation which occurs in the seminiferous tubules of the testes under the regulation of gonadotropins - Follicle Stimulating Hormone (FSH) and Luteinising hormone (LH). It is a highly coordinated event regulated by the surrounding somatic testicular cells such as the Sertoli cells (Sc), Leydig cells (Lc), and Peritubular myoid cells (PTc). FSH targets Sc and supports the expansion and differentiation of pre-meiotic Gc, whereas, LH operates via Lc to produce Testosterone (T), the testicular androgen. T acts on all somatic cells e.g.- Lc, PTc and Sc, and promotes the blood-testis barrier (BTB) formation, completion of Gc meiosis, and spermiation. Studies with hypophysectomised or chemically ablated animal models and hypogonadal (hpg) mice supplemented with gonadotropins to genetically manipulated mouse models have revealed the selective and synergistic role(s) of hormones in regulating male fertility. We here have briefly summarized the present concept of hormonal control of spermatogenesis in rodents and primates. We also have highlighted some of the key critical questions yet to be answered in the field of male reproductive health which might have potential implications for infertility and contraceptive research in the future.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, School of Biological Science, Central University of Kerala, Kasaragod, Kerala, India
- *Correspondence: Arnab Banerjee, ; Indrashis Bhattacharya,
| | - Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Goa, India
- *Correspondence: Arnab Banerjee, ; Indrashis Bhattacharya,
| |
Collapse
|
2
|
Byambaragchaa M, Ahn TY, Choi SH, Kang MH, Min KS. Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor (eFSHR). Anim Biosci 2021; 35:399-409. [PMID: 34474536 PMCID: PMC8902225 DOI: 10.5713/ab.21.0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Follicle-stimulating hormone (FSH) is the central hormone involved in mammalian reproduction, maturation at puberty, and gamete production that mediates its function by control of follicle growth and function. The present study investigated the mutations involved in the regulation of FSH receptor (FSHR) activation. Methods We analyzed seven naturally-occurring mutations that were previously reported in human FSHR (hFSHR), in the context of equine FSHR (eFSHR); these include one constitutively activation variant, one allelic variant, and five inactivating variants. These mutations were introduced into wild-type eFSHR (eFSHR-wt) sequence to generate mutants that were designated as eFSHR-D566G, -A306T, -A189V, -N191I, -R572C, -A574V, and -R633H. Mutants were transfected into PathHunter EA-parental CHO-K1 cells expressing β-arrestin. The biological function of mutants was analyzed by quantitating cAMP accumulation in cells incubated with increasing concentrations of FSH. Results Cells expressing eFSHR-D566G exhibited an 8.6-fold increase in basal cAMP response, as compared to that in eFSHR-wt. The allelic variation mutant eFSHR-A306T was not found to affect the basal cAMP response or EC50 levels. On the other hand, eFSHR-D566G and eFSHR-A306T displayed a 1.5- and 1.4-fold increase in the maximal response, respectively. Signal transduction was found to be completely impaired in case of the inactivating mutants eFSHR-A189V, -R572C, and -A574V. When compared with eFSHR-wt, eFSHR-N191I displayed a 5.4-fold decrease in the EC50 levels (3910 ng/mL) and a 2.3-fold decrease in the maximal response. In contrast, cells expressing eFSHR-R633H displayed in a similar manner to that of the cells expressing the eFSHR-wt on signal transduction and maximal response. Conclusion The activating mutant eFSHR-D566G greatly enhanced the signal transduction in response to FSH, in the absence of agonist treatment. We suggest that the state of activation of the eFSHR can modulate its basal cAMP accumulation.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Tae-Young Ahn
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Seung-Hee Choi
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Korea
| | - Kwan-Sik Min
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea.,School of Animal Life Convergence Science, Institute of Genetic Engineering, Hankyong National University, Ansung 17579, Korea
| |
Collapse
|
3
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
4
|
McDonald R, Sadler C, Kumar TR. Gain-of-Function Genetic Models to Study FSH Action. Front Endocrinol (Lausanne) 2019; 10:28. [PMID: 30792692 PMCID: PMC6374295 DOI: 10.3389/fendo.2019.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a pituitary-derived gonadotropin that plays key roles in male and female reproduction. The physiology and biochemistry of FSH have been extensively studied for many years. Beginning in the early 1990s, coincident with advances in the then emerging transgenic animal technology, and continuing till today, several gain-of-function (GOF) models have been developed to understand FSH homeostasis in a physiological context. Our group and others have generated a number of FSH ligand and receptor GOF mouse models. An FSH GOF model when combined with Fshb null mice provides a powerful genetic rescue platform. In this chapter, we discuss different GOF models for FSH synthesis, secretion and action and describe additional novel genetic models that could be developed in the future to further refine the existing models.
Collapse
Affiliation(s)
- Rosemary McDonald
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, IL, United States
- Integrated Physiology Graduate Program, University of Colorado Anschutz Medical CampusAurora, IL, United States
| | - Carolyn Sadler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, IL, United States
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, IL, United States
- Integrated Physiology Graduate Program, University of Colorado Anschutz Medical CampusAurora, IL, United States
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, IL, United States
- *Correspondence: T. Rajendra Kumar
| |
Collapse
|
5
|
Szymańska K, Kałafut J, Rivero-Müller A. The gonadotropin system, lessons from animal models and clinical cases. ACTA ACUST UNITED AC 2018; 70:561-587. [PMID: 30264954 DOI: 10.23736/s0026-4784.18.04307-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article centers upon family of gonadotropin hormones which consists of two pituitary hormones - follicle-stimulating hormone (FSH) and luteinizing hormone (LH) as well as one non-pituitary hormone - human chorionic gonadotropin (hCG) secreted by placenta, and their receptors. Gonadotropins play an essential role in proper sexual development, puberty, gametogenesis, maintenance of pregnancy and male sexual differentiation during the fetal development. They belong to the family of glycoprotein hormones thus they constitute heterodimeric proteins built of common α subunit and hormone-specific β-subunit. Hitherto, several mutations in genes encoding both gonadotropins and their receptors have been identified in humans. Their occurrence resulted in a number of different phenotypes including delayed puberty, primary amenorrhea, hermaphroditism, infertility and hypogonadism. In order to understand the effects of mutations on the phenotype observed in affected patients, detailed molecular studies are required to map the relationship between the structure and function of gonadotropins and their receptors. Nonetheless, in vitro assays are often insufficient to understand physiology. Therefore, several animal models have been developed to unravel the physiological roles of gonadotropins and their receptors.
Collapse
|
6
|
Gilbert SB, Roof AK, Rajendra Kumar T. Mouse models for the analysis of gonadotropin secretion and action. Best Pract Res Clin Endocrinol Metab 2018; 32:219-239. [PMID: 29779578 PMCID: PMC5973545 DOI: 10.1016/j.beem.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gonadotropins are pituitary gonadotrope-derived glycoprotein hormones. They act by binding to G-protein coupled receptors on gonads. Gonadotropins play critical roles in reproduction by regulating both gametogenesis and steroidogenesis. Although biochemical and physiological studies provided a wealth of knowledge, gene manipulation techniques using novel mouse models gave new insights into gonadotropin synthesis, secretion and action. Both gain of function and loss of function mouse models for understanding gonadotropin action in a whole animal context have already been generated. Moreover, recent studies on gonadotropin actions in non-gonadal tissues challenged the central dogma of classical gonadotropin actions in gonads and revealed new signaling pathways in these non-gonadal tissues. In this Chapter, we have discussed our current understanding of gonadotropin synthesis, secretion and action using a variety of genetically engineered mouse models.
Collapse
Affiliation(s)
- Sara Babcock Gilbert
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Allyson K Roof
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T Rajendra Kumar
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Ulloa-Aguirre A, Zariñán T. The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol 2016; 90:596-608. [PMID: 27382014 DOI: 10.1124/mol.116.104398] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/28/2016] [Indexed: 02/14/2025] Open
Abstract
Follitropin, or follicle-stimulating hormone (FSH) receptor (FSHR), is a G protein-coupled receptor belonging to the glycoprotein hormone receptor family that plays an essential role in reproduction. Although its primary location is the gonad, the FSHR has also been reported in extragonadal tissues including bone, placenta, endometrium, liver, and blood vessels from a number of malignant tumors. The recently resolved crystal structure of FSH bound to the entire FSHR ectodomain has been instrumental in more clearly defining the role of this domain in ligand binding and receptor activation. Biochemical, biophysical, and structural data also indicate that the FSHR exists as a higher order structure and that it may heterodimerize with its closely related receptor, the luteinizing hormone receptor; this association may have physiologic implications during ovarian follicle maturation given that both receptors may simultaneously coexist in the same cell. FSHR heterodimerization is unique to the ovary because in the testes, gonadotropin receptors are expressed in separate compartments. FSHR self-association appears to be required for receptor coupling to multiple effectors and adaptors, for the activation of multiple signaling pathways and the transduction of asymmetric signaling, and for negative and positive receptor cooperativity. It also provides a mechanism through which the glycosylation variants of FSH may exert distinct and differential effects at the target cell level. Given its importance in regulating activation of distinct signaling pathways, functional selectivity at the FSHR is briefly discussed, as well as the potential implications of this particular functional feature on the design of new pharmacological therapies in reproduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Support Network, National University of Mexico and National Institutes of Health, Mexico City, Mexico
| | - Teresa Zariñán
- Research Support Network, National University of Mexico and National Institutes of Health, Mexico City, Mexico
| |
Collapse
|
8
|
Mouse Models for the Study of Synthesis, Secretion, and Action of Pituitary Gonadotropins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:49-84. [PMID: 27697204 DOI: 10.1016/bs.pmbts.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gonadotropins play fundamental roles in reproduction. More than 30years ago, Cga transgenic mice were generated, and more than 20years ago, the phenotypes of Cga null mice were reported. Since then, numerous mouse strains have been generated and characterized to address several questions in reproductive biology involving gonadotropin synthesis, secretion, and action. More recently, extragonadal expression, and in some cases, functions of gonadotropins in nongonadal tissues have been identified. Several genomic and proteomic approaches including novel mouse genome editing tools are available now. It is anticipated that these and other emerging technologies will be useful to build an integrated network of gonadotropin signaling pathways in various tissues. Undoubtedly, research on gonadotropins will continue to provide new knowledge and allow us transcend from benchside to the bedside.
Collapse
|
9
|
Ulloa-Aguirre A, Reiter E, Bousfield G, Dias JA, Huhtaniemi I. Constitutive activity in gonadotropin receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:37-80. [PMID: 24931192 DOI: 10.1016/b978-0-12-417197-8.00002-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Constitutively active mutants (CAMs) of gonadotropin receptors are, in general, rare conditions. Luteinizing hormone-choriogonadotropin receptor (LHCGR) CAMs provoke the dramatic phenotype of familial gonadotropin-independent isosexual male-limited precocious puberty, whereas in females, there is not yet any identified phenotype. Only one isolated follicle-stimulating hormone receptor (FSHR) CAM (Asp567Gly) has so far been detected in a single male patient, besides other FSHR weak CAMs linked to pregnancy-associated ovarian hyperstimulation syndrome or to impaired desensitization and internalization. Several animal models have been developed for studying enhanced gonadotropin action; in addition to unraveling valuable new information about the possible phenotypes of isolated FSHR and LHCGR CAMs in women, the information obtained from these mouse models has served multiple translational goals, including the development of new diagnostic and therapeutic targets as well as the prediction of phenotypes for mutations not yet identified in humans. Mutagenesis and computational studies have shed important information on the physiopathogenic mechanisms leading to constitutive activity of gonadotropin receptors; a common feature in these receptor CAMs is the release of stabilizing interhelical interactions between transmembrane domains (TMDs) 3 and 6 leading to an increase, with respect to the wild-type receptor, in the solvent accessibility at the cytosolic extension of TMDs 3, 5, and 6, which involves the highly conserved Glu/Asp-Arg-Tyr/Trp sequence. In this chapter, we summarize the structural features, functional consequences, and mechanisms that lead to constitutive activation of gonadotropin receptor CAMs and provide information on pharmacological approaches that might potentially modulate gonadotropin receptor CAM function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Research Support Network, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" and Universidad Nacional Autónoma de México, México D.F., Mexico.
| | - Eric Reiter
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais, Tours, France
| | - George Bousfield
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - James A Dias
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Ilpo Huhtaniemi
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Xiao Y, Karnati S, Qian G, Nenicu A, Fan W, Tchatalbachev S, Höland A, Hossain H, Guillou F, Lüers GH, Baumgart-Vogt E. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways. PLoS One 2012; 7:e41097. [PMID: 22829911 PMCID: PMC3400606 DOI: 10.1371/journal.pone.0041097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/21/2012] [Indexed: 11/28/2022] Open
Abstract
Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out-mediated effects.
Collapse
Affiliation(s)
- Yu Xiao
- Institute for Anatomy and Cell Biology II, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW To review the current knowledge of genetic variants in the two genes affecting the individual responsiveness to follicle-stimulating hormone (FSH) action-the FSH beta-subunit (FSHB) and the FSH receptor (FSHR), as well as the pharmacogenetic ramifications of the findings. RECENT FINDINGS Four common variants in the FSHB and the FSHR genes were shown to exhibit significant effect on FSH action: linked FSHR variants Thr307Ala and Asn680Ser determining common receptor isoforms, and gene expression affecting polymorphisms FSHR -29G/A and FSHB -211G/T. In women, the FSHR Thr307Ala/Asn680Ser polymorphisms show consistent predictive value for estimating the most optimal recombinant FSH dosage in controlled ovarian hyperstimulation (COH). The same variants exhibit a potential for the pharmacogenetic assessment of the treatment of polycystic ovarian syndrome. The FSHR -29G/A variant was also shown to contribute to ovarian response to COH. Pilot studies have suggested the FSHB -211 TT homozygous oligozoospermic men with genetically determined low concentration of FSH, as potentially the best responders to FSH treatment; furthermore, modulation of this response by FSHR polymorphisms is possible. SUMMARY Genetic variants in FSHB and FSHR exhibit a potential for pharmacogenetic applications in selecting appropriate treatment options (timing and dosage) in male and female conditions requiring or benefiting from FSH therapy.
Collapse
Affiliation(s)
- Maris Laan
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| | | | | |
Collapse
|
12
|
Abstract
During the last two decades a large number of genetically modified mouse lines with altered gonadotropin action have been generated. These mouse lines fall into three categories: the lack-of-function mice, gain-of-function mice, and the mice generated by breeding the abovementioned lines with other disease model lines. The mouse strains lacking gonadotropin action have elucidated the necessity of the pituitary hormones in pubertal development and function of gonads, and revealed the processes from the original genetic defect to the pathological phenotype such as hypo- or hypergonadotropic hypogonadism. Conversely, the strains of the second group depict consequences of chronic gonadotropin action. The lines vary from those expressing constitutively active receptors and those secreting follicle-stimulating hormone (FSH) with slowly increasing amounts to those producing human choriogonadotropin (hCG), amount of which corresponds to 2000-fold luteinizing hormone (LH)/hCG biological activity. Accordingly, the phenotypes diverge from mild anomalies and enhanced fertility to disrupted gametogenesis, but eventually chronic, enhanced and non-pulsatile action of both FSH and LH leads to female and male infertility and/or hyper- and neoplasias in most of the gonadotropin gain-of-function mice. Elevated gonadotropin levels also alter the function of several extra-gonadal tissues either directly or indirectly via increased sex steroid production. These effects include promotion of tumorigenesis in tissues such as the pituitary, mammary and adrenal glands. Finally, the crossbreedings of the current mouse strains with other disease models are likely to uncover the contribution of gonadotropins in novel biological systems, as exemplified by the recent crossbreed of LHCG receptor deficient mice with Alzheimer disease mice.
Collapse
Affiliation(s)
- Hellevi Peltoketo
- Institute of Reproductive and Developmental Biology, Imperial College London, DuCane Road, London, W12 0NN, UK.
| | | | | |
Collapse
|
13
|
|
14
|
Current World Literature. Curr Opin Obstet Gynecol 2011. [DOI: 10.1097/gco.0b013e32834731fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Kluetzman KS, Thomas RM, Nechamen CA, Dias JA. Decreased degradation of internalized follicle-stimulating hormone caused by mutation of aspartic acid 6.30(550) in a protein kinase-CK2 consensus sequence in the third intracellular loop of human follicle-stimulating hormone receptor. Biol Reprod 2011; 84:1154-63. [PMID: 21270425 DOI: 10.1095/biolreprod.110.087965] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A naturally occurring mutation in follicle-stimulating hormone receptor (FSHR) gene has been reported: an amino acid change to glycine occurs at a conserved aspartic acid 550 (D550, D567, D6.30(567)). This residue is contained in a protein kinase-CK2 consensus site present in human FSHR (hFSHR) intracellular loop 3 (iL3). Because CK2 has been reported to play a role in trafficking of some receptors, the potential roles for CK2 and D550 in FSHR function were evaluated by generating a D550A mutation in the hFSHR. The hFSHR-D550A binds hormone similarly to WT-hFSHR when expressed in HEK293T cells. Western blot analyses showed lower levels of mature hFSHR-D550A. Maximal cAMP production of both hFSHR-D550A as well as the naturally occurring mutation hFSHR-D550G was diminished, but constitutive activity was not observed. Unexpectedly, when (125)I-hFSH bound to hFSHR-D550A or hFSHR-D550G, intracellular accumulation of radiolabeled FSH was observed. Both sucrose and dominant-negative dynamin blocked internalization of radiolabeled FSH and its commensurate intracellular accumulation. Accumulation of radiolabeled FSH in cells transfected with hFSHR-D550A is due to a defect in degradation of hFSH as measured in pulse chase studies, and confocal microscopy imaging revealed that FSH accumulated in large intracellular structures. CK2 kinase activity is not required for proper degradation of internalized FSH because inhibition of CK2 kinase activity in cells expressing hFSHR did not uncouple degradation of internalized radiolabeled FSH. Additionally, the CK2 consensus site in FSHR iL3 is not required for binding because CK2alpha coimmunoprecipitated with hFSHR-D550A. Thus, mutation of D550 uncouples the link between internalization and degradation of hFSH.
Collapse
|
16
|
Handelsman DJ. RFD Award Lecture 2010.Hormonal regulation of spermatogenesis: insights from constructing genetic models. Reprod Fertil Dev 2011; 23:507-19. [DOI: 10.1071/rd10308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/23/2010] [Indexed: 11/23/2022] Open
|
17
|
Allan CM, Couse JF, Simanainen U, Spaliviero J, Jimenez M, Rodriguez K, Korach KS, Handelsman DJ. Estradiol induction of spermatogenesis is mediated via an estrogen receptor-{alpha} mechanism involving neuroendocrine activation of follicle-stimulating hormone secretion. Endocrinology 2010; 151:2800-10. [PMID: 20410197 PMCID: PMC2875821 DOI: 10.1210/en.2009-1477] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both testosterone and its nonaromatizable metabolite dihydrotestosterone (DHT) induce spermatogenesis in gonadotropin-deficient hpg mice. Surprisingly, because aromatization is not required, estradiol (E2) also induces spermatogenesis and increases circulating FSH in hpg mice, but the mechanism remains unclear. We studied E2-induced spermatogenesis in hpg mice on an estrogen receptor (ER)-alpha (hpg/alphaERKO) or ERbeta (hpg/betaERKO) knockout or wild-type ER (hpg/WT) background treated with subdermal E2 or DHT implants for 6 wk. In hpg/WT and hpg/betaERKO, but not hpg/alphaERKO mice, E2 increased testis and epididymal weight, whereas DHT-induced increases were unaffected by ERalpha or ERbeta inactivation. E2 but not DHT treatment increased serum FSH (but not LH) in hpg/WT and hpg/betaERKO but not hpg/alphaERKO hpg mice. DHT or E2 alone increased (premeiotic) spermatogonia and (meiotic) spermatocytes without significant change in Sertoli cell numbers. DHT alone increased postmeiotic spermatids, regardless of ER presence, compared with variable ERalpha-dependent E2 postmeiotic responses. An ERalpha-mediated effect was confirmed by treating hpg mice for 6 wk by subdermal selective ER-alpha (16alpha-LE(2)) or ERbeta (8beta-VE(2)) agonist implants. ERalpha (but not ERbeta) agonist increased testis and epididymal weight, Sertoli cell, spermatogonia, meiotic, and postmeiotic germ cell numbers. Only ERalpha agonist markedly increased serum FSH, whereas either agonist induced small rises in serum LH. Administration of ERalpha agonist or E2 in the presence of functional ERalpha induced prominent gene expression of specific Sertoli (Eppin, Rhox5) and Leydig cell (Cyp11a1, Hsd3b1) markers. We conclude that E2-induced spermatogenesis in hpg mice involves an ERalpha-dependent neuroendocrine mechanism increasing blood FSH and Sertoli cell function.
Collapse
Affiliation(s)
- Charles M Allan
- ANZAC Research Institute, Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Peltoketo H, Strauss L, Karjalainen R, Zhang M, Stamp GW, Segaloff DL, Poutanen M, Huhtaniemi IT. Female mice expressing constitutively active mutants of FSH receptor present with a phenotype of premature follicle depletion and estrogen excess. Endocrinology 2010; 151:1872-83. [PMID: 20172968 PMCID: PMC2851188 DOI: 10.1210/en.2009-0966] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Strong gain-of-function mutations have not been identified in humans in the FSH receptor (FSHR), whereas such mutations are common among many other G protein-coupled receptors. In order to predict consequences of such mutations on humans, we first identified constitutively activated mutants of the mouse (m) Fshr and then expressed them under the human anti-Müllerian hormone promoter in transgenic mice or created knock-in mutation into the mouse genome. We show here that mutations of Asp580 in the mFSHR significantly increase the basal receptor activity. D580H and D580Y mutations of mFSHR bind FSH, but the activity of the former is neither ligand-dependent nor promiscuous towards LH/human choriogonadotropin stimulation. Transgenic expression of mFshr(D580H) in granulosa cells leads to abnormal ovarian structure and function in the form of hemorrhagic cysts, accelerated loss of small follicles, augmented granulosa cell proliferation, increased estradiol biosynthesis, and occasional luteinized unruptured follicles or teratomas. The most affected mFshr(D580H) females are infertile with disturbed estrous cycle and decreased gonadotropin and increased prolactin levels. Increased estradiol and prolactin apparently underlie the enhanced development of the mammary glands, adenomatous pituitary growth, and lipofuscin accumulation in the adrenal gland. The influence of the mFSHR(D580Y) mutation is milder, mainly causing hemorrhagic cysts in transgenic mFSHR(D580Y) and mFSHR(D580Y) -knock-in mice. The results demonstrate that gain-of-function mutations of the FSHR in mice bring about distinct and clear changes in ovarian function, informative in the search of similar mutations in humans.
Collapse
Affiliation(s)
- Hellevi Peltoketo
- Institute of Reproductive and Developmental Biology, 2nd floor, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lim P, Robson M, Spaliviero J, McTavish KJ, Jimenez M, Zajac JD, Handelsman DJ, Allan CM. Sertoli cell androgen receptor DNA binding domain is essential for the completion of spermatogenesis. Endocrinology 2009; 150:4755-65. [PMID: 19574395 DOI: 10.1210/en.2009-0416] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the biological importance of Sertoli cell androgen receptor (AR) genomic interaction, using a Cre-loxP approach to selectively disrupt the AR DNA-binding domain (AR-DBD). Sertoli cell (SC)-specific transgenic Abpa or AMH promoters targeted Cre-mediated inframe excision of mouse Ar exon-3, encoding the AR-DBD second zinc-finger (ZF2), generating SC-specific mutant AR(DeltaZF2) lines designated Abp.SCAR(DeltaZF2) and AMH.SCAR(DeltaZF2), respectively. Both SCAR(DeltaZF2) lines produced infertile males exhibiting spermatogenic arrest, despite normal SC numbers and immunolocalized SC nuclear AR. Adult homozygous TgCre((+/+)) SCAR(DeltaZF2) or double-TgCre((+/-)) Abp/AMH.SCAR(DeltaZF2) males displayed equivalent small testes 30% of normal size, representing maximal Cre-loxP-disruption of Sertoli AR function. Hemizygous TgCre((+/-)) vs. homozygous TgCre((+/+)) Abp.SCAR(DeltaZF2) testes were larger (47% normal size) with more postmeiotic development, indicating dose-dependent Cre-mediated disruption of SC-specific AR-DBD activity. SCAR(DeltaZF2) males exhibited adult Leydig cell hypertrophy but normal serum testosterone levels. Sertoli cell-specific Rhox5 and Spinlw1 transcription, regulated by divergent or classical androgen-response elements, respectively, were both decreased in postnatal SCAR(DeltaZF2) vs. control testes, demonstrating SC-specific AR-DBD function as early as postnatal d 5. However, Rhox5 expression declined dose-dependently, whereas Spinlw1 expression increased, in adult TgCre((+/-)) and TgCre((+/+)) SCAR(DeltaZF2) testes, revealing differential temporal control for distinct AR-regulated transcripts. Androgen-repressed Ngfr was not up-regulated in SCAR(DeltaZF2) testes, suggesting maintenance of a nonclassical mechanism independent of AR-DBD. Thus, our unique SCAR(DeltaZF2) paradigm provided dose-dependent Cre-mediated disruption of testicular development and gene expression revealing that the AR-DBD is essential for SC function and postmeiotic spermatogenesis. Nongenomic or AR-DBD-independent pathways appear secondary or play no major independent role in SC function.
Collapse
Affiliation(s)
- Patrick Lim
- Andrology Laboratory, ANZAC Research Institute, Concord Hospital, Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | | | |
Collapse
|