1
|
Matsumoto T, Nagano T, Taguchi K, Kobayashi T, Tanaka-Totoribe N. Toll-like receptor 3 involvement in vascular function. Eur J Pharmacol 2024; 979:176842. [PMID: 39033837 DOI: 10.1016/j.ejphar.2024.176842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Maintaining endothelial cell (EC) and vascular smooth muscle cell (VSMC) integrity is an important component of human health and disease because both EC and VSMC regulate various functions, including vascular tone control, cellular adhesion, homeostasis and thrombosis regulation, proliferation, and vascular inflammation. Diverse stressors affect functions in both ECs and VSMCs and abnormalities of functions in these cells play a crucial role in cardiovascular disease initiation and progression. Toll-like receptors (TLRs) are important detectors of pathogen-associated molecular patterns derived from various microbes and viruses as well as damage-associated molecular patterns derived from damaged cells and perform innate immune responses. Among TLRs, several studies reveal that TLR3 plays a key role in initiation, development and/or protection of diseases, and an emerging body of evidence indicates that TLR3 presents components of the vasculature, including ECs and VSMCs, and plays a functional role. An agonist of TLR3, polyinosinic-polycytidylic acid [poly (I:C)], affects ECs, including cell death, inflammation, chemoattractant, adhesion, permeability, and hemostasis. Poly (I:C) also affects VSMCs including inflammation, proliferation, and modulation of vascular tone. Moreover, alterations of vascular function induced by certain molecules and/or interventions are exerted through TLR3 signaling. Hence, we present the association between TLR3 and vascular function according to the latest studies.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan.
| | - Takayuki Nagano
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Tanaka-Totoribe
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| |
Collapse
|
2
|
Britzen-Laurent N, Weidinger C, Stürzl M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24065517. [PMID: 36982601 PMCID: PMC10051397 DOI: 10.3390/ijms24065517] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels. The role of the gut vasculature in the induction and perpetuation of mucosal inflammation is receiving increasing recognition. While the vascular barrier is considered to offer protection against bacterial translocation and sepsis after the breakdown of the epithelial barrier, endothelium activation and angiogenesis are thought to promote inflammation. The present review examines the respective pathological contributions of the different phenotypical changes observed in the microvascular endothelium during IBD, and provides an overview of potential vessel-specific targeted therapy options for the treatment of IBD.
Collapse
Affiliation(s)
- Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Stürzl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
3
|
Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor. PLoS One 2022; 17:e0279584. [PMID: 36548354 PMCID: PMC9778607 DOI: 10.1371/journal.pone.0279584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1β inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1β and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1β, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.
Collapse
|
4
|
Watanabe A, Mizoguchi I, Hasegawa H, Katahira Y, Inoue S, Sakamoto E, Furusaka Y, Sekine A, Miyakawa S, Murakami F, Xu M, Yoneto T, Yoshimoto T. A Chaperone-Like Role for EBI3 in Collaboration With Calnexin Under Inflammatory Conditions. Front Immunol 2021; 12:757669. [PMID: 34603342 PMCID: PMC8484754 DOI: 10.3389/fimmu.2021.757669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and β-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another β-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.
Collapse
Affiliation(s)
- Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Dickson K, Malitan H, Lehmann C. Imaging of the Intestinal Microcirculation during Acute and Chronic Inflammation. BIOLOGY 2020; 9:E418. [PMID: 33255906 PMCID: PMC7760140 DOI: 10.3390/biology9120418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Because of its unique microvascular anatomy, the intestine is particularly vulnerable to microcirculatory disturbances. During inflammation, pathological changes in blood flow, vessel integrity and capillary density result in impaired tissue oxygenation. In severe cases, these changes can progress to multiorgan failure and possibly death. Microcirculation may be evaluated in superficial tissues in patients using video microscopy devices, but these techniques do not allow the assessment of intestinal microcirculation. The gold standard for the experimental evaluation of intestinal microcirculation is intravital microscopy, a technique that allows for the in vivo examination of many pathophysiological processes including leukocyte-endothelial interactions and capillary blood flow. This review provides an overview of changes in the intestinal microcirculation in various acute and chronic inflammatory conditions. Acute conditions discussed include local infections, severe acute pancreatitis, necrotizing enterocolitis and sepsis. Inflammatory bowel disease and irritable bowel syndrome are included as examples of chronic conditions of the intestine.
Collapse
Affiliation(s)
- Kayle Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Hajer Malitan
- Department of Anesthesia, Pain and Perioperative Management, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Anesthesia, Pain and Perioperative Management, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
6
|
Epigenetic histone modulation contributes to improvements in inflammatory bowel disease via EBI3. Cell Mol Life Sci 2020; 77:5017-5030. [PMID: 31955243 PMCID: PMC7658076 DOI: 10.1007/s00018-020-03451-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023]
Abstract
Ulcerative colitis (UC) is characterized by relapsing–remitting inflammatory episodes paralleled by varying cytokine levels, suggesting that switching epigenetic processes might be involved. However, the epigenetic impact on cytokine levels in colitis is mostly unexplored. The heterodimeric interleukin (IL)-12 cytokine family have various functions in both pro- and anti-inflammatory processes. The family member IL-35 (EBI3/IL-12p35) was recently reported to play an anti-inflammatory role in UC. Therefore, we aimed to investigate a possible epigenetic regulation of the IL-35 subunits in vitro and in vivo, and to examine the epigenetic targeting of EBI3 expression as a therapeutic option for UC. Exposure to either the pro-inflammatory TNFα or to histone deacetylase inhibitors (HDACi) significantly increased EBI3 expression in Human Colon Epithelial Cells (HCEC) generated from healthy tissue. When applied in combination, a drastic upregulation of EBI3 expression occurred, suggesting a synergistic mechanism. Consequently, IL-35 was increased as well. In vivo, the intestines of HDACi-treated wild-type mice exhibited reduced pathological signs of colitis compared to non-treated colitic mice. However, the improvement by HDACi treatment was completely lost in Ebi3-deficient mice (Ebi3−/−). In fact, HDACi appeared to exacerbate the disease phenotype in Ebi3−/−. In conclusion, our results reveal that under inflammatory conditions, EBI3 is upregulated by the epigenetic mechanism of histone acetylation. The in vivo data show that the deficiency of EBI3 plays a key role in colitis manifestation. Concordantly, our data suggest that conditions promoting histone acetylation, such as upon HDACi application, improve colitis by a mechanism involving the local formation of the anti-inflammatory cytokine IL-35.
Collapse
|
7
|
Julio-Pieper M, Bravo JA. Intestinal Barrier and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:127-141. [PMID: 27793215 DOI: 10.1016/bs.irn.2016.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses.
Collapse
Affiliation(s)
- M Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de, Valparaíso, Chile.
| | - J A Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de, Valparaíso, Chile.
| |
Collapse
|
8
|
Nowacki TM, Remaley AT, Bettenworth D, Eisenblätter M, Vowinkel T, Becker F, Vogl T, Roth J, Tietge UJ, Lügering A, Heidemann J, Nofer JR. The 5A apolipoprotein A-I (apoA-I) mimetic peptide ameliorates experimental colitis by regulating monocyte infiltration. Br J Pharmacol 2016; 173:2780-92. [PMID: 27425846 DOI: 10.1111/bph.13556] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE New therapies for inflammatory bowel disease (IBD) are highly desirable. As apolipoprotein (apo)A-I mimetic peptides are beneficial in several animal models of inflammation, we hypothesized that they might be effective at inhibiting murine colitis. EXPERIMENTAL APPROACH Daily injections of 5A peptide, a synthetic bihelical apoA-I mimetic dissolved in PBS, or PBS alone were administered to C57BL/6 mice fed 3% (w v(-1) ) dextran sodium sulfate (DSS) in drinking water or healthy controls. KEY RESULTS Daily treatment with 5A peptide potently restricted DSS-induced inflammation, as indicated by improved disease activity indices and colon histology, as well as decreased intestinal tissue myeloperoxidase levels and plasma TNFα and IL-6 concentrations. Additionally, plasma levels of monocyte chemoattractant protein-1 and the monocyte expression of adhesion-mediating molecule CD11b were down-regulated, pro-inflammatory CD11b(+) /Ly6c(high) monocytes were decreased, and the number of intestinal monocytes was reduced in 5A peptide-treated animals as determined by intravital macrophage-related peptide-8/14-directed fluorescence-mediated tomography and post-mortem immunhistochemical F4/80 staining. Intravital fluorescence microscopy of colonic microvasculature demonstrated inhibitory effects of 5A peptide on leukocyte adhesion accompanied by reduced plasma levels of the soluble adhesion molecule sICAM-1. In vitro 5A peptide reduced monocyte adhesion and transmigration in TNFα-stimulated monolayers of human intestinal microvascular endothelial cells. Increased susceptibility to DSS-induced inflammation was noted in apoA-I(-/-) mice. CONCLUSIONS AND IMPLICATIONS The 5A peptide is effective at ameliorating murine colitis by preventing intestinal monocyte infiltration and activation. These findings point to apoA-I mimetics as a potential treatment approach for IBD.
Collapse
Affiliation(s)
- Tobias M Nowacki
- Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Michel Eisenblätter
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Thorsten Vowinkel
- Department of General and Visceral Surgery, University Hospital Münster, Münster, Germany
| | - Felix Becker
- Department of General and Visceral Surgery, University Hospital Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Uwe J Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, GZ Groningen, The Netherlands
| | | | - Jan Heidemann
- Department of Medicine B, University Hospital Münster, Münster, Germany.,Department of Gastroenterology, Klinikum Bielefeld, Bielefeld, Germany
| | - Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
9
|
Yin L, Ge Y, Yang H, Peng Q, Lu X, Zhang Y, Wang G. The clinical utility of serum IL-35 in patients with polymyositis and dermatomyositis. Clin Rheumatol 2016; 35:2715-2721. [DOI: 10.1007/s10067-016-3347-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/21/2016] [Accepted: 07/02/2016] [Indexed: 12/19/2022]
|
10
|
Cortés-Vieyra R, Silva-García O, Oviedo-Boyso J, Huante-Mendoza A, Bravo-Patiño A, Valdez-Alarcón JJ, Finlay BB, Baizabal-Aguirre VM. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus. PLoS One 2015. [PMID: 26200352 PMCID: PMC4511647 DOI: 10.1371/journal.pone.0132867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN), one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC) regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65) at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor). Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus.
Collapse
Affiliation(s)
- Ricarda Cortés-Vieyra
- Molecular Immunology and Signal Transduction Laboratory, Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro, La Palma, Tarímbaro, Morelia, Michoacán, México
| | - Octavio Silva-García
- Molecular Immunology and Signal Transduction Laboratory, Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro, La Palma, Tarímbaro, Morelia, Michoacán, México
| | - Javier Oviedo-Boyso
- Molecular Immunology and Signal Transduction Laboratory, Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro, La Palma, Tarímbaro, Morelia, Michoacán, México
| | - Alejandro Huante-Mendoza
- Molecular Immunology and Signal Transduction Laboratory, Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro, La Palma, Tarímbaro, Morelia, Michoacán, México
| | - Alejandro Bravo-Patiño
- Molecular Immunology and Signal Transduction Laboratory, Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro, La Palma, Tarímbaro, Morelia, Michoacán, México
| | - Juan J. Valdez-Alarcón
- Molecular Immunology and Signal Transduction Laboratory, Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro, La Palma, Tarímbaro, Morelia, Michoacán, México
| | - B. Brett Finlay
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Víctor M. Baizabal-Aguirre
- Molecular Immunology and Signal Transduction Laboratory, Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro, La Palma, Tarímbaro, Morelia, Michoacán, México
- * E-mail:
| |
Collapse
|
11
|
Köseoğlu S, Sağlam M, Pekbağrıyanık T, Savran L, Sütçü R. Level of Interleukin-35 in Gingival Crevicular Fluid, Saliva, and Plasma in Periodontal Disease and Health. J Periodontol 2015; 86:964-71. [PMID: 25786564 DOI: 10.1902/jop.2015.140666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A novel member of the interleukin (IL)-12 family, IL-35 is an important inhibitory cytokine released by regulatory T cells. The aim of this study is to evaluate gingival crevicular fluid (GCF), saliva, and plasma levels of IL-35 in periodontal disease and health. METHODS Samples of GCF, whole saliva, and plasma were obtained from systemically healthy, non-smoking individuals with gingivitis (n = 20) or chronic periodontitis (CP) (n = 20) and periodontally healthy individuals (n = 20). Full-mouth clinical periodontal measurements, including probing depth (PD), bleeding on probing, gingival index, and plaque index (PI), were also recorded. Enzyme-linked immunosorbent assay was used to determine IL-35 levels in the samples. Data were tested statistically by analysis of variance and Pearson rank correlation test. RESULTS All clinical parameters were significantly higher in the CP group than the healthy and gingivitis groups (P <0.001). The GCF total amount of IL-35 was significantly higher in the CP group than the other groups (P = 0.04), whereas the GCF concentration of IL-35 was significantly higher in the healthy group than the other groups (P = 0.002). There were significant differences among the study groups in terms of salivary IL-35 level (P <0.001), with the highest level observed in the healthy group and the lowest in the CP group. There was no statistical difference between groups in plasma levels of IL-35 (P >0.05). There was a positive correlation between GCF total amount of IL-35 and PD (r = 0.338, P = 0.03) and PI (r = 0.374, P = 0.005) parameters. CONCLUSIONS IL-35 could have an important role in suppressing periodontal inflammation and maintaining periodontal health. Additional studies are required to evaluate its role in periodontal diseases.
Collapse
Affiliation(s)
- Serhat Köseoğlu
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Tuğba Pekbağrıyanık
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Levent Savran
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Recep Sütçü
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Çelebi University
| |
Collapse
|
12
|
Shen H, Wang C, Fan E, Li Y, Zhang W, Zhang L. Upregulation of interleukin-35 subunits in regulatory T cells in a murine model of allergic rhinitis. ORL J Otorhinolaryngol Relat Spec 2014; 76:237-47. [PMID: 25412964 DOI: 10.1159/000369141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Regulatory T (Treg) cells play a critical role in the pathophysiology of allergic rhinitis (AR). We investigated the regulatory roles of interleukin (IL)-35, an immunosuppressive cytokine expressed by CD4(+)CD25(+)Foxp3(+) Treg cells, in a murine model of AR. METHODS The expression of IL-35 subunits (Ebi3, encoded by Ebi3, and IL-12p35, encoded by IL12a) and IL-35 receptor chains (IL12rb and IL6st) in nasal mucosa and in spleen-derived Treg cells from ovalbumin (OVA)-sensitized AR was analyzed by immunohistochemistry and quantitative real-time RT-PCR techniques. RESULTS IL-35 subunit secretion was associated with local OVA sensitization in this murine model of AR. Ebi3 and IL-12p35, as well as CD3, were expressed differentially in the same regions of nasal mucosa of both AR and control animals. Ebi3 mRNA levels were significantly downregulated in the nasal mucosa of AR mice compared with control mice. Similarly, Ebi3 and IL12a mRNA levels were significantly upregulated in CD4(+)CD25(+) Treg cells and, correspondingly, downregulated in CD4(+)CD25(-) T effector (Teff) cells. IL6st mRNA levels were also significantly downregulated in CD4(+)CD25(-) Teff cells. CONCLUSIONS Decreased Ebi3 may have a crucial regulatory effect on the nasal mucosa in AR. The increased IL-35 subunit expression in CD4(+)CD25(+) Treg cells may contribute to regulating the pathogenesis of AR.
Collapse
Affiliation(s)
- Hui Shen
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
13
|
Heidemann J, Kebschull M, Tepasse PR, Bettenworth D. Regulated expression of leukocyte-specific transcript (LST) 1 in human intestinal inflammation. Inflamm Res 2014; 63:513-7. [PMID: 24682411 DOI: 10.1007/s00011-014-0732-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 03/09/2014] [Accepted: 03/21/2014] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Leukocyte-specific transcript 1 (LST1) encoded peptides are involved in immunomodulation and nanotube-mediated cell-cell communication. The aim of this study was to assess the expression of LST1 in colonic epithelium and endothelium during intestinal inflammation. METHODS LST1 expression was evaluated by RT-PCR, FACS, western blot analysis, and immunohistochemistry in intestinal epithelial Caco-2 cells, human intestinal microvascular endothelial cells and in human histological specimens from inflammatory bowel disease (IBD) patients and non-IBD colitis patients. RESULTS LST1 expression was significantly increased upon proinflammatory stimulation in intestinal epithelial and endothelial cells. Furthermore, LST1 tissue expression was significantly enhanced in macroscopically inflamed colonic mucosal biopsies as compared to non-affected mucosal areas. CONCLUSIONS This is the first report demonstrating regulated LST1 expression in human intestinal epithelial and microvascular endothelial cells and in inflamed colonic tissue from IBD patients. Proinflammatory expression of LST1 occurs in the setting of human IBD and is not restricted to immune cell populations. Future studies are needed to further elucidate the role of soluble and membrane-expressed LST1 in the regulation of mucosal intestinal immunity and inflammation as well as to reveal possible therapeutic implications.
Collapse
Affiliation(s)
- Jan Heidemann
- Department of Internal Medicine B, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | | | | | | |
Collapse
|
14
|
Marçola M, da Silveira Cruz-Machado S, Fernandes PACM, Monteiro AWA, Markus RP, Tamura EK. Endothelial cell adhesiveness is a function of environmental lighting and melatonin level. J Pineal Res 2013; 54:162-9. [PMID: 22812624 DOI: 10.1111/j.1600-079x.2012.01025.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endothelial layer regulates the traffic of cells and substances between the blood and tissues and plays a central role in the mounting of an inflammatory response. We have recently shown that inhibition of the nocturnal melatonin surge during the mounting of an inflammatory response primes endothelial cells to a highly reactive state, increasing the expression of adhesion molecules and inducible nitric oxide synthase (iNOS) as well as the in vitro adherence of leukocytes. Here, we investigated whether physiological variations in the plasma melatonin levels owing to the light/dark environmental cycle could also prime the reactive state of endothelial cells. Cultured endothelial cells (16-20 days) obtained from rats killed during the daytime adhere more neutrophils, expressed more adhesion molecules and iNOS, and had a higher content of the transcription factor nuclear factor kappa B (NF-kB) translocated to the nuclei. We also evaluated the expression of 84 genes (using real-time PCR array) related to the innate inflammatory response and observed a higher expression of 19 genes in cultures obtained during the daytime. In addition, the only gene that was highly expressed in cells obtained from rats killed during nighttime was one that encodes a protein that negatively modulates inflammatory response. In conclusion, the daily rhythm of melatonin also primes the ability of endothelial cells to adhere to neutrophils. This new approach for evaluating the influence of the donor on cells maintained in culture should have applications for the standardization of cell banks.
Collapse
Affiliation(s)
- Marina Marçola
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Cromer WE, Mathis JM, Granger DN, Chaitanya GV, Alexander JS. Role of the endothelium in inflammatory bowel diseases. World J Gastroenterol 2011; 17:578-93. [PMID: 21350707 PMCID: PMC3040330 DOI: 10.3748/wjg.v17.i5.578] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/29/2010] [Accepted: 07/06/2010] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a complex group of diseases involving alterations in mucosal immunity and gastrointestinal physiology during both initiation and progressive phases of the disease. At the core of these alterations are endothelial cells, whose continual adjustments in structure and function coordinate vascular supply, immune cell emigration, and regulation of the tissue environment. Expansion of the endothelium in IBD (angiogenesis), mediated by inflammatory growth factors, cytokines and chemokines, is a hallmark of active gut disease and is closely related to disease severity. The endothelium in newly formed or inflamed vessels differs from that in normal vessels in the production of and response to inflammatory cytokines, growth factors, and adhesion molecules, altering coagulant capacity, barrier function and blood cell recruitment in injury. This review examines the roles of the endothelium in the initiation and propagation of IBD pathology and distinctive features of the intestinal endothelium contributing to these conditions.
Collapse
|
16
|
Hu G, Xue J, Duan H, Yang Z, Gao L, Luo H, Mu X, Cui S. IFN-γ induces IFN-α and IFN-β expressions in cultured rat intestinal mucosa microvascular endothelial cells. Immunopharmacol Immunotoxicol 2010; 32:656-62. [PMID: 20214528 DOI: 10.3109/08923971003671090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although researchers have recently begun to pay more attention to the immunological characteristics of microvascular endothelial cells (MVECs), there are no reports on whether activation of MVECs by interferon-γ (IFN-γ) exerts any influence on the expressions of IFN-α/β. In the present study, we examined the influence of IFN-γ on the expressions of IFN-α/β in rat intestinal mucous MVECs (RIMMVECs). Different concentrations of IFN-γ were used to stimulate cultured RIMMVECs in vitro, and the cells and cell supernatants were collected at different time intervals. The influence of IFN-γ on the expressions of IFN-α/β in the RIMMVECs was examined at the mRNA and protein levels by real-time quantitative PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The results indicated that IFN-γ was able to activate RIMMVECs, thereby leading to upregulated expressions of IFN-α/β. The real-time quantitative PCR analyses indicated that the IFN-α/β mRNA expression levels in RIMMVECs achieved their peak values after stimulation with IFN-γ at 20 ng/mL for 6 h and were increased by 14.88- and 3.82-fold, respectively, when compared with the levels in negative control cells. The ELISA analyses revealed that the IFN-α/β protein expression levels achieved their peak values after stimulation with IFN-γ at 40 ng/mL. The expression of IFN-α protein achieved its peak value at 12 h, while the expression of IFN-β protein achieved its peak value after 6 h. The present results suggest that the expression and secretion of IFNs may participate in the immunologic barrier function of MVECs.
Collapse
Affiliation(s)
- Ge Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci U S A 2009; 106:7137-42. [PMID: 19359485 DOI: 10.1073/pnas.0812317106] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neovascularization in response to tissue injury consists of the dual invasion of blood (hemangiogenesis) and lymphatic (lymphangiogenesis) vessels. We reported recently that 21-nt or longer small interfering RNAs (siRNAs) can suppress hemangiogenesis in mouse models of choroidal neovascularization and dermal wound healing independently of RNA interference by directly activating Toll-like receptor 3 (TLR3), a double-stranded RNA immune receptor, on the cell surface of blood endothelial cells. Here, we show that a 21-nt nontargeted siRNA suppresses both hemangiogenesis and lymphangiogenesis in mouse models of neovascularization induced by corneal sutures or hindlimb ischemia as efficiently as a 21-nt siRNA targeting vascular endothelial growth factor-A. In contrast, a 7-nt nontargeted siRNA, which is too short to activate TLR3, does not block hemangiogenesis or lymphangiogenesis in these models. Exposure to 21-nt siRNA, which we demonstrate is not internalized unless cell-permeating moieties are used, triggers phosphorylation of cell surface TLR3 on lymphatic endothelial cells and induces apoptosis. These findings introduce TLR3 activation as a method of jointly suppressing blood and lymphatic neovascularization and simultaneously raise new concerns about the undesirable effects of siRNAs on both circulatory systems.
Collapse
|