1
|
Shi Y, Deng H, Zhang Z, Zhu X, Zeng Z. Remimazolam protects the liver from ischemia-reperfusion injury by inhibiting the MAPK/ERK pathway. BMC Anesthesiol 2024; 24:251. [PMID: 39054453 PMCID: PMC11270846 DOI: 10.1186/s12871-024-02641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major factor in liver damage following hepatic resection and liver transplantation, with anesthetics demonstrating the ability to shield organs from this type of injury. METHODS Hypoxia-reoxygenation (H/R) was used to create in vitro I/R hepatocyte cell injury models. The CCK-8 assay, flow cytometer, LDH assay, and ELSIA were utilized to assess hepatocyte injury. The in vivo I/R injury rat model was then built. HE and TUNEL staining were used to assess liver tissue damage. Western-blot was applied to assess the activation of the MAPK/ERK pathway. RESULTS Remimazolam (RMZL) remarkably improved cell viability and decreased apoptosis in H/R-induced hepatocyte injury. RMZL reduced the release of H/R-induced inflammatory mediators (TNF-α and IL-6) as well as LDH levels. We also discovered that RMZL inhibited p38 and ERK1/2 phosphorylation in vivo and in vitro. The stimulation of MAPK/ERK, on the other hand, abolished RMZL's anti-inflammation effects in H/R-induced hepatocyte injury. Furthermore, RMZL reduced liver tissue injury in I/R rats. CONCLUSION RMZL prevented hepatic I/R damage by inhibiting MAPK/ERK signaling.
Collapse
Affiliation(s)
- Yanhua Shi
- Department of Anesthesiology, Chenzhou First People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou City, 423000, Hunan Province, People's Republic of China
| | - Housheng Deng
- Department of Anesthesiology, Chenzhou First People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou City, 423000, Hunan Province, People's Republic of China
| | - Zhiming Zhang
- Department of Anesthesiology, Chenzhou First People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou City, 423000, Hunan Province, People's Republic of China
| | - Xiaoling Zhu
- Department of Anesthesiology, Chenzhou First People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou City, 423000, Hunan Province, People's Republic of China
| | - Zhiqin Zeng
- Department of Anesthesiology, Chenzhou First People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou City, 423000, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Tang Y, Yuan Z, Lu X, Song Y, Zhu S, Qiu C, zhang Q, Fu B, Jia C, Li H. RAMP1 Protects Hepatocytes against Ischemia-reperfusion Injury by Inhibiting the ERK/YAP Pathway. J Clin Transl Hepatol 2024; 12:357-370. [PMID: 38638379 PMCID: PMC11022058 DOI: 10.14218/jcth.2023.00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 04/20/2024] Open
Abstract
Background and Aims Hepatic ischemia-reperfusion injury (HIRI) is a prevalent complication of liver transplantation, partial hepatectomy, and severe infection, necessitating the development of more effective clinical strategies. Receptor activity-modifying protein 1 (RAMP1), a member of the G protein-coupled receptor adapter family, has been implicated in numerous physiological and pathological processes. The study aimed to investigate the pathogenesis of RAMP1 in HIRI. Methods We established a 70% liver ischemia-reperfusion model in RAMP1 knockout (KO) and wild-type mice. Liver and blood samples were collected after 0, 6, and 24 h of hypoxia/reperfusion. Liver histological and serological analyses were performed to evaluate liver damage. We also conducted in-vitro and in-vivo experiments to explore the molecular mechanism underlying RAMP1 function. Results Liver injury was exacerbated in RAMP1-KO mice compared with the sham group, as evidenced by increased cell death and elevated serum transaminase and inflammation levels. HIRI was promoted in RAMP1-KO mice via the induction of hepatocyte apoptosis and inhibition of proliferation. The absence of RAMP1 led to increased activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and yes-associated protein (YAP) phosphorylation, ultimately promoting apoptosis. SCH772984, an ERK/MAPK phosphorylation inhibitor, and PY-60, a YAP phosphorylation inhibitor, reduced apoptosis in in-vitro and in-vivo experiments. Conclusions Our findings suggest that RAMP1 protects against HIRI by inhibiting ERK and YAP phosphorylation signal transduction, highlighting its potential as a therapeutic target for HIRI and providing a new avenue for intervention.
Collapse
Affiliation(s)
- Yongsheng Tang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zenan Yuan
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Lu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingqiu Song
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuguang Zhu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhui Qiu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi zhang
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Binsheng Fu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changchang Jia
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Li
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023; 24:197-235. [PMID: 36606250 PMCID: PMC9803907 DOI: 10.1016/j.bioactmat.2022.11.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.
Collapse
Affiliation(s)
- Mohammad Hadi Norahan
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Sara Cristina Pedroza-González
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Grissel Trujillo de Santiago
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| |
Collapse
|
4
|
Yu B, Zhang Y, Wang T, Guo J, Kong C, Chen Z, Ma X, Qiu T. MAPK Signaling Pathways in Hepatic Ischemia/Reperfusion Injury. J Inflamm Res 2023; 16:1405-1418. [PMID: 37012971 PMCID: PMC10065871 DOI: 10.2147/jir.s396604] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The mitogen-activated protein kinase signaling pathway can be activated by a variety of growth factors, cytokines, and hormones, and mediates numerous intracellular signals related to cellular activities, including cell proliferation, motility, and differentiation. It has been widely studied in the occurrence and development of inflammation and tumor. Hepatic ischemia-reperfusion injury (HIRI) is a common pathophysiological phenomenon that occurs in surgical procedures such as lobectomy and liver transplantation, which is characterized by severe inflammatory reaction after ischemia and reperfusion. In this review, we mainly discuss the role of p38, ERK1/2, JNK in MAPK family and TAK1 and ASK1 in MAPKKK family in HIRI, and try to find an effective treatment for HIRI.
Collapse
Affiliation(s)
- Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Yalong Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Chenyang Kong
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Correspondence: Tao Qiu, Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China, Tel +86-13995632367, Email
| |
Collapse
|
5
|
Yang X, Yuan Z, Lu W, Yang C, Wang M, Tripathi R, Fultz Z, Tan C, Wang B. De Novo Construction of Fluorophores via CO Insertion-Initiated Lactamization: A Chemical Strategy toward Highly Sensitive and Highly Selective Turn-On Fluorescent Probes for Carbon Monoxide. J Am Chem Soc 2023; 145:78-88. [PMID: 36548940 PMCID: PMC10287542 DOI: 10.1021/jacs.2c07504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in the last few decades have led to the establishment of CO as an endogenous signaling molecule and subsequently to the exploration of CO's therapeutic roles. In the current state, there is a critical conundrum in CO-related research: the extensive knowledge of CO's biological effects and yet an insufficient understanding of the quantitative correlations between the CO concentration and biological responses of various natures. This conundrum is partially due to the difficulty in examining precise concentration-response relationships of a gaseous molecule. Another reason is the need for appropriate tools for the sensitive detection and concentration determination of CO in the biological system. We herein report a new chemical approach to the design of fluorescent CO probes through de novo construction of fluorophores by a CO insertion-initiated lactamization reaction, which allows for ultra-low background and exclusivity in CO detection. Two series of CO detection probes have been designed and synthesized using this strategy. Using these probes, we have extensively demonstrated their utility in quantifying CO in blood, tissue, and cell culture and in cellular imaging of CO from exogenous and endogenous sources. The probes described will enable many biology and chemistry labs to study CO's functions in a concentration-dependent fashion with very high sensitivity and selectivity. The chemical and design principles described will also be applicable in designing fluorescent probes for other small molecules.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zach Fultz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
6
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
7
|
Xiao Q, Liu Y, Zhang X, Liu Z, Xiao J, Ye Q, Fu B. Mild hypothermia ameliorates hepatic ischemia reperfusion injury by inducing RBM3 expression. Apoptosis 2022; 27:899-912. [PMID: 35930183 DOI: 10.1007/s10495-022-01757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Liver ischemia reperfusion injury (IRI) is a serious complication of certain liver surgeries, and it is difficult to prevent. As a potential drug-free treatment, mild hypothermia has been shown to promote positive outcomes in patients with IRI. However, the protective mechanism remains unclear. We established in vivo and in vitro models of hepatic ischemia reperfusion (IR) and mild hypothermia pretreatment. Hepatocytes were transfected with RNA-binding motif protein 3 (RBM3) overexpression plasmids, and IR was performed. Cell, culture medium, blood and tissue samples were collected to assess hepatic injury, oxidative stress, apoptosis and changes in RBM3 expression in the liver. Upregulation of RBM3 expression by mild hypothermia reduced the aminotransferase release, liver tissue injury and mitochondrial injury induced by liver IR. Hepatic IR-induced p38 and c-Jun N-terminal kinase (JNK) signaling pathway activation, oxidative stress injury and apoptosis could be greatly reversed by mild hypothermia. Overexpression of RBM3 mimicked the hepatoprotective effect of mild hypothermia. Mild hypothermia protects the liver from ischemia reperfusion-induced p38 and JNK signaling pathway activation, oxidative stress injury and apoptosis through the upregulation of RBM3 expression.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Transplantation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuan Liu
- Department of Transplantation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - XingJian Zhang
- Department of Transplantation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - ZhongZhong Liu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - JianSheng Xiao
- Department of Transplantation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - QiFa Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - BiQi Fu
- Department of Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Ye M, Zhang J, Jiang D, Tan Q, Li J, Yao C, Zhu C, Zhou Y. A Hemicyanine-Assembled Upconversion Nanosystem for NIR-Excited Visualization of Carbon Monoxide Bio-Signaling In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202263. [PMID: 35713262 DOI: 10.1002/smll.202202263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Carbon monoxide (CO) is considered as the second gasotransmitter involved in a series of physiological and pathological processes. Although a number of organic fluorescent probes have been developed for imaging CO, these probes display excitation within the ultraviolet or visible range, which restrict their applications in the complex biosystems. In the present work, a strategy is developed to construct an upconversion nanoparticles-based nanosystem for upconversion luminescent (UCL) sensing CO. This nanosystem exhibits a fast response to CO with high sensitivity and selectivity in aqueous solution by a near-infrared-excited ratiometric UCL detection method. Meanwhile, laser scanning upconversion luminescence microscope experiments demonstrate that this nanosystem can visualize the endogenous CO bio-signaling in living cells, deep tissues, zebrafish, and living mice by ratiometric UCL imaging. In particular, this nanosystem has been successfully employed in visualization of the endogenous CO bio-signaling through up-regulation of heme oxygenase-1 (HO-1) in the progression of hypoxia, acute inflammation, or ischemic injury. This work demonstrates that the outstanding performance of the nanosystem not only can provide an effective tool for further understanding the role of CO in the physiological and pathological environment, but also may have great potential ability for tracking the expression of HO-1 in living systems.
Collapse
Affiliation(s)
- Minan Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jie Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Detao Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qi Tan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jingyun Li
- Department of Plastic & Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, P. R. China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, The Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yi Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
9
|
Cui Q, Liang XL, Wang JQ, Zhang JY, Chen ZS. Therapeutic implication of carbon monoxide in drug resistant cancers. Biochem Pharmacol 2022; 201:115061. [PMID: 35489394 DOI: 10.1016/j.bcp.2022.115061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Drug resistance is the major obstacle that undermines effective cancer treatment. Recently, the application of gas signaling molecules, e.g., carbon monoxide (CO), in overcoming drug resistance has gained significant attention. Growing evidence showed that CO could inhibit mitochondria respiratory effect and glycolysis, two major ATP production pathways in cancer cells, and suppress angiogenesis and inhibit the activity of cystathionine β-synthase that is important in regulating cancer cells homeostasis, leading to synergistic effects when combined with cisplatin, doxorubicin, or phototherapy, etc. in certain resistant cancer cells. In the current review, we attempted to have a summary of these research conducted in the past decade using CO in treating drug resistant cancers, and have a detailed interpretation of the underlying mechanisms. The critical challenges will be discussed and potential solutions will also be provided. The information collected in this work will hopefully evoke more effects in using CO for the treatment of drug resistant cancers.
Collapse
Affiliation(s)
- Qingbin Cui
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiao-Lan Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute for Biotechnology, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
10
|
Topical application of sustained released-carbon monoxide promotes cutaneous wound healing in diabetic mice. Biochem Pharmacol 2022; 199:115016. [PMID: 35331735 DOI: 10.1016/j.bcp.2022.115016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023]
Abstract
Clinical incidences of pressure ulcers in the elderly and intractable skin ulcers in diabetic patients are increasing because of the aging population and an increase in the number of diabetic patients worldwide. Although various agents are used to treat pressure and skin ulcers, these ulcers are often refractory and deteriorate the patients' quality of life. Therefore, a novel therapeutic agent with a novel mechanism of action is required. Carbon monoxide (CO) contributes to many physiological and pathophysiological processes, including anti-inflammatory activity; therefore, it can be a therapeutic gaseous molecule. Recent studies have revealed that CO accelerates wound healing in gastrointestinal tract injuries. However, it remains unclear whether CO promotes cutaneous wound healing. Therefore, we aimed to evaluate the therapeutic effects of topical application of a CO-containing solution and elucidate the underlying mechanism. A full-thickness skin wound generated on the back of diabetic mice was treated topically with CO or vehicle. Sustained release of CO was achieved using polyacrylic acid (PAA) as a thickener. The administration of CO-containing PAA aqueous solution resulted in a significant acceleration in wound recovery without elevating serum CO levels in association with increased angiogenesis and supported by elevated expression of vascular endothelial growth factor mRNA in the wound granulomatous tissues. These data suggest that CO might represent a novel therapeutic agent for the treatment of cutaneous wounds.
Collapse
|
11
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
12
|
Mahan VL. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med Gas Res 2021; 11:158-173. [PMID: 34213499 PMCID: PMC8374456 DOI: 10.4103/2045-9912.318862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 11/04/2022] Open
Abstract
Lactate, historically considered a waste product of anerobic metabolism, is a metabolite in whole-body metabolism needed for normal central nervous system (CNS) functions and a potent signaling molecule and hormone in the CNS. Neuronal activity signals normally induce its formation primarily in astrocytes and production is dependent on anerobic and aerobic metabolisms. Functions are dependent on normal dynamic, expansive, and evolving CNS functions. Levels can change under normal physiologic conditions and with CNS pathology. A readily combusted fuel that is sshuttled throughout the body, lactate is used as an energy source and is needed for CNS hemostasis, plasticity, memory, and excitability. Diffusion beyond the neuron active zone impacts activity of neurons and astrocytes in other areas of the brain. Barriergenesis, function of the blood-brain barrier, and buffering between oxidative metabolism and glycolysis and brain metabolism are affected by lactate. Important to neuroprotection, presence or absence is associated with L-lactate and heme oxygenase/carbon monoxide (a gasotransmitter) neuroprotective systems. Effects of carbon monoxide on L-lactate affect neuroprotection - interactions of the gasotransmitter with L-lactate are important to CNS stability, which will be reviewed in this article.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Dugbartey GJ. Carbon monoxide as an emerging pharmacological tool to improve lung and liver transplantation protocols. Biochem Pharmacol 2021; 193:114752. [PMID: 34487717 DOI: 10.1016/j.bcp.2021.114752] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
Carbon monoxide (CO) has long been considered purely as a toxic gas. It binds to hemoglobin at high concentrations and displaces oxygen from its binding site, resulting in carboxyhemoglobin formation, which reduces oxygen-carrying capacity of blood and culminates in tissue hypoxia and its associated complications. Recently, however, CO is quickly moving past its historic notorious tag as a poisonous gas to a physiological signaling molecule with therapeutic potentials in several clinical situations including transplant-induced injury. This review discusses current knowledge of CO gas and CO-releasing molecules (CO-RMs) in preclinical models of lung and liver transplantation, and underlying molecular mechanisms of cyto- and organ protection during organ procurement, preservation, implantation and post-transplant periods. In addition, a discussion of the future of CO in clinical organ transplantation is provided.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
14
|
Shin Y, Whang K, Hwang JH, Jo Y, Choi JW, Park J, Choi I, Kang T. Sensitive and Direct Optical Monitoring of Release and Cellular Uptake of Aqueous CO from CO-Releasing Molecules. Anal Chem 2021; 93:9927-9932. [PMID: 34236175 DOI: 10.1021/acs.analchem.1c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dynamics of release and cellular uptake of aqueous CO from CO-releasing molecules (CORMs) significantly affect signaling and cell viability. So far, it has been mainly observed by IR, UV-visible, and fluorescence techniques, which suffer from poor sensitivity and slow response time. Here, we show how to directly probe the mass transfer of aqueous CO from CORMs to cells using a fluidic chamber integrated with live cells and Raman reporters of large-area Au@Pd core-shell nanoparticle assembly to emulate a physiologically relevant microenvironment. We sensitively and directly detect CO release from trace CORMs of as low as 100 nM by measuring the Raman transitions of CO via rapid chemisorption onto the surface of the Au@Pd nanoparticles. By using our method, we successfully observe the dynamics of CO release from CORM-2 despite its very short half-life. We also reveal that the initial rate of CO release from CORM-3 is dramatically decreased by tens to hundreds of times when exposed to physiologically relevant pH variations from 7.4 to 2.5, which can be attributed to the acid hydrolysis of the CO ligand. CORM-2 tends to quickly release CO regardless of pH, probably because of its rapid cleavage into two monomeric Ru complexes by the co-solvent. The decrease in the initial rate at lower temperatures is more significant for CORM-3 than for CORM-2. Finally, we observe that the cellular uptake of aqueous CO from CORM-3 by lung cancer cells is approximately 2 times higher than that of normal lung cells.
Collapse
Affiliation(s)
- Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea.,Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jeong Ha Hwang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Yuseung Jo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea.,Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
15
|
Takagi T, Naito Y, Higashimura Y, Uchiyama K, Okayama T, Mizushima K, Katada K, Kamada K, Ishikawa T, Itoh Y. Rectal administration of carbon monoxide inhibits the development of intestinal inflammation and promotes intestinal wound healing via the activation of the Rho-kinase pathway in rats. Nitric Oxide 2021; 107:19-30. [PMID: 33340673 DOI: 10.1016/j.niox.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The inhalation of carbon monoxide (CO) gas and the administration of CO-releasing molecules were shown to inhibit the development of intestinal inflammation in a murine colitis model. However, it remains unclear whether CO promotes intestinal wound healing. Herein, we aimed to evaluate the therapeutic effects of the topical application of CO-saturated saline enemas on intestinal inflammation and elucidate the underlying mechanism. Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. A CO-saturated solution was prepared via bubbling 50% CO gas into saline and was rectally administrated twice a day after colitis induction; rats were sacrificed 3 or 7 days after induction for the study of the acute or healing phases, respectively. The distal colon was isolated, and ulcerated lesions were measured. In vitro wound healing assays were also employed to determine the mechanism underlying rat intestinal epithelial cell restitution after CO treatment. CO solution rectal administration ameliorated acute TNBS-induced colonic ulceration and accelerated ulcer healing without elevating serum CO levels. The increase in thiobarbituric acid-reactive substances and myeloperoxidase activity after induction of acute TNBS colitis was also significantly inhibited after CO treatment. Moreover, the wound healing assays revealed that the CO-saturated medium enhanced rat intestinal epithelial cell migration via the activation of Rho-kinase. In addition, the activation of Rho-kinase in response to CO treatment was confirmed in the inflamed colonic tissue. Therefore, the rectal administration of a CO-saturated solution protects the intestinal mucosa from inflammation and accelerates colonic ulcer healing through enhanced epithelial cell restitution. CO may thus represent a novel therapeutic agent for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Tomohisa Takagi
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
16
|
Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, Fan J, Li Y, Li W, Dong Y, Shen E, Gong W, Wang X, Yu Y, Maeng YJ, Li X, Lee KY, Jin L, Cong W. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol 2021; 40:101859. [PMID: 33445067 PMCID: PMC7806526 DOI: 10.1016/j.redox.2021.101859] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major complication of liver surgery and transplantation. IRI leads to hepatic parenchymal cell death, resulting in liver failure, and lacks effective therapeutic approaches. Fibroblast growth factor 10 (FGF10) is a paracrine factor which is well-characterized with respect to its pro-proliferative effects during embryonic liver development and liver regeneration, but its role in hepatic IRI remains unknown. In this study, we investigated the role of FGF10 in liver IRI and identified signaling pathways regulated by FGF10. In a mouse model of warm liver IRI, FGF10 was highly expressed during the reperfusion phase. In vitro experiments demonstrated that FGF10 was primarily secreted by hepatic stellate cells and acted on hepatocytes. The role of FGF10 in liver IRI was further examined using adeno-associated virus-mediated gene silencing and overexpression. Overexpression of FGF10 alleviated liver dysfunction, reduced necrosis and inflammation, and protected hepatocytes from apoptosis in the early acute injury phase of IRI. Furthermore, in the late phase of IRI, FGF10 overexpression also promoted hepatocyte proliferation. Meanwhile, gene silencing of FGF10 had the opposite effect. Further studies revealed that overexpression of FGF10 activated nuclear factor-erythroid 2-related factor 2 (NRF2) and decreased oxidative stress, mainly through activation of the phosphatidylinositol-3-kinase/AKT pathway, and the protective effects of FGF10 overexpression were largely abrogated in NRF2 knockout mice. These results demonstrate the protective effects of FGF10 in liver IRI, and reveal the important role of NRF2 in FGF10-mediated hepatic protection during IRI. FGF10 is markedly upregulated in the early phase of liver IRI. FGF10 overexpression exerts great potential in ameliorating hepatic IRI. FGF10 knockdown significantly aggravates hepatic IRI. FGF10 overexpression activates PI3K/AKT-NRF2 signaling and thus ameliorates hepatic IRI. NRF2 knockout abrogates the protective effects of FGF10 overexpression during liver IRI.
Collapse
Affiliation(s)
- Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Mei Xue
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xuebo Pan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xinchu Yi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yuankuan Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Wanqian Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yetong Dong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xuejiao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yoo Jae Maeng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea.
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
17
|
The Protective Effects of Carbon Monoxide Against Hepatic Warm Ischemia-Reperfusion Injury in MHC-Inbred Miniature Swine. J Gastrointest Surg 2020; 24:974-982. [PMID: 31243716 DOI: 10.1007/s11605-019-04283-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/21/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND The development of treatment strategies to protect against ischemia-reperfusion injury (IRI) to livers is important not only for liver surgeries but also in regard to increasing the utilization of livers from marginal donors. In this study, we examined whether inhalational carbon monoxide (CO) therapy reduced IRI after a 45-min (min) warm ischemia (WI) in a miniature swine model. MATERIALS AND METHODS Six CLAWN miniature swine underwent a 45-min hepatic WI induced by clamping the portal vein and proper hepatic artery. Three animals were subjected to control conditions while the remaining three were treated with CO inhalation for a total of 345-min, including 120-min after reperfusion to maintain a concentration of CO-Hb under 15% (CO-treated group). IRI of the livers was evaluated by liver function tests, serum pro-inflammatory cytokines, and liver biopsies. RESULTS All controls had statistically significant increased levels of liver enzymes compared to the CO-treated group (p < 0.05). In controls, liver biopsies at 2 h after reperfusion showed marked histological changes including diffuse hemorrhage, congestion, necrosis, vacuolization, and neutrophil infiltration with apoptosis. In contrast, the CO-treated group showed less obvious or only minimal histological changes. Furthermore, increases in high-mobility group box 1, TNF-α, and IL-6 in sera that were induced by IRI in controls were markedly inhibited by the CO treatment. CONCLUSION We demonstrated that low-dose CO inhalation reduces hepatic warm IRI, potentially through downregulation of pro-inflammatory mediators and activation of anti-apoptotic pathways. To our knowledge, this is the first report demonstrating CO inhalation attenuated hepatic IRI following WI in a large animal model.
Collapse
|
18
|
Shukla SD, Restrepo R, Aroor AR, Liu X, Lim RW, Franke JD, Ford DA, Korthuis RJ. Binge Alcohol Is More Injurious to Liver in Female than in Male Rats: Histopathological, Pharmacologic, and Epigenetic Profiles. J Pharmacol Exp Ther 2019; 370:390-398. [PMID: 31262967 PMCID: PMC6695503 DOI: 10.1124/jpet.119.258871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Binge alcohol consumption is a health problem, but differences between the sexes remain poorly defined. We have examined the in vivo effects of three acute, repeat binge alcohol administration on the liver in male and female rats. Sprague-Dawley rats were gavaged with alcohol (5 g/kg body weight) three times at 12-hour intervals. Blood and liver tissues were collected 4 hours after the last binge ethanol. Subsequently, several variables were analyzed. Compared with male rats, females had higher levels of blood alcohol, alanine aminotransferase, and triglycerides. Liver histology showed increased lipid vesicles that were larger in females. Protein levels of liver cytochrome P4502E1 were higher in the liver of females than in the liver of males after binge. Hepatic phospho-extracellular signal-regulated kinase 1/2 and phosph-p38 mitogen-activated protein kinase levels were lower in females compared with males after binge alcohol, but no differences were found in the phospho-C-jun N-terminal kinase levels. Peroxisome proliferator-activated receptor γ-coactivator 1α and cyclic AMP response element binding (CREB) protein levels increased more in female than in male livers; however, increases in phospho-CREB levels were lower in females. Remarkably, c-fos was reduced substantially in the livers of females, but no differences in c-myc protein were found. Binge ethanol caused elevation in acetylated (H3AcK9) and phosphoacetylated (H3AcK9PS10) histone H3 in both sexes but without any difference. Binge alcohol caused differential alterations in the levels of various species of phosphatidylethanol and a larger increase in the diacylglycerol kinase-α protein levels in the liver of female rats compared with male rats. These data demonstrate, for the first time, similarities and differences in the sex-specific responses to repeat binge alcohol leading to an increased susceptibility of female rats to have liver injury in vivo. SIGNIFICANCE STATEMENT: This study examines the molecular responses of male and female rat livers to acute binge alcohol in vivo and demonstrates significant differences in the susceptibility between sexes.
Collapse
Affiliation(s)
- Shivendra D Shukla
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Ricardo Restrepo
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Annayya R Aroor
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Xuanyou Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Robert W Lim
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Jacob D Franke
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - David A Ford
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| |
Collapse
|
19
|
Exenatide Reduces Graft Injury in a Rat Transplantation Model Using Kidneys Donated after Cardiac Death. Transplant Proc 2019; 51:2116-2123. [PMID: 31303407 DOI: 10.1016/j.transproceed.2019.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/04/2019] [Accepted: 04/22/2019] [Indexed: 11/21/2022]
Abstract
Besides being used in the therapy of type 2 diabetes, exenatide reduces cerebral ischemia-reperfusion (I/R) injury. We evaluated the potential effects of exenatide on inhibition of apoptosis in kidney grafts donated after cardiac death and on reduction of I/R injury after kidney transplantation (KTx) in a rat model. We used a rat syngeneic KTx model with kidney grafts obtained after cardiac death, and apoptosis was detected in the graft before KTx. Graft function, rat survival, morphologic examination, and activation of inflammatory molecules were analyzed after KTx. By the end of the cold storage, exenatide pretreatment donors had significantly reduced caspase pathway activation, terminal deoxynucleotidyl transferase dUTP nick-end labeling--positive cells, release of mitochondrial porin proteins into the cytosol, and expression of cleaved caspase-3 and poly (ADP-ribose) polymerase in kidney grafts. Exenatide pretreatment improved renal function survival rate with lower scores of acute tubular necrosis, infiltrating macrophages, and interstitial fibrosis as well as reduced messenger RNA expression of inflammatory mediators (tumor necrosis factor α, interleukin-6, interleukin-1β, and intercellular adhesion molecule-1) after KTx. Our study showed that exenatide reduced I/R injury in kidneys donated after cardiac death in a rat transplantation model and improved recipient survival and graft function.
Collapse
|
20
|
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1643. [PMID: 31137526 PMCID: PMC6566563 DOI: 10.3390/ma12101643] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The CO-releasing materials (CORMats) are used as substances for producing CO molecules for therapeutic purposes. Carbon monoxide (CO) imparts toxic effects to biological organisms at higher concentration. If this characteristic is utilized in a controlled manner, it can act as a cell-signaling agent for important pathological and pharmacokinetic functions; hence offering many new applications and treatments. Recently, research on therapeutic applications using the CO treatment has gained much attention due to its nontoxic nature, and its injection into the human body using several conjugate systems. Mainly, there are two types of CO insertion techniques into the human body, i.e., direct and indirect CO insertion. Indirect CO insertion offers an advantage of avoiding toxicity as compared to direct CO insertion. For the indirect CO inhalation method, developers are facing certain problems, such as its inability to achieve the specific cellular targets and how to control the dosage of CO. To address these issues, researchers have adopted alternative strategies regarded as CO-releasing molecules (CORMs). CO is covalently attached with metal carbonyl complexes (MCCs), which generate various CORMs such as CORM-1, CORM-2, CORM-3, ALF492, CORM-A1 and ALF186. When these molecules are inserted into the human body, CO is released from these compounds at a controlled rate under certain conditions or/and triggers. Such reactions are helpful in achieving cellular level targets with a controlled release of the CO amount. However on the other hand, CORMs also produce a metal residue (termed as i-CORMs) upon degradation that can initiate harmful toxic activity inside the body. To improve the performance of the CO precursor with the restricted development of i-CORMs, several new CORMats have been developed such as micellization, peptide, vitamins, MOFs, polymerization, nanoparticles, protein, metallodendrimer, nanosheet and nanodiamond, etc. In this review article, we shall describe modern ways of CO administration; focusing primarily on exclusive features of CORM's tissue accumulations and their toxicities. This report also elaborates on the kinetic profile of the CO gas. The comprehension of developmental phases of CORMats shall be useful for exploring the ideal CO therapeutic drugs in the future of medical sciences.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ruixia Liu
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China.
| | - Wensheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
21
|
Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Mitogen Activated Protein Kinases in Steatotic and Non-Steatotic Livers Submitted to Ischemia-Reperfusion. Int J Mol Sci 2019; 20:1785. [PMID: 30974915 PMCID: PMC6479363 DOI: 10.3390/ijms20071785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
: We analyzed the participation of mitogen-activated protein kinases (MAPKs), namely p38, JNK and ERK 1/2 in steatotic and non-steatotic livers undergoing ischemia-reperfusion (I-R), an unresolved problem in clinical practice. Hepatic steatosis is a major risk factor in liver surgery because these types of liver tolerate poorly to I-R injury. Also, a further increase in the prevalence of steatosis in liver surgery is to be expected. The possible therapies based on MAPK regulation aimed at reducing hepatic I-R injury will be discussed. Moreover, we reviewed the relevance of MAPK in ischemic preconditioning (PC) and evaluated whether MAPK regulators could mimic its benefits. Clinical studies indicated that this surgical strategy could be appropriate for liver surgery in both steatotic and non-steatotic livers undergoing I-R. The data presented herein suggest that further investigations are required to elucidate more extensively the mechanisms by which these kinases work in hepatic I-R. Also, further researchers based in the development of drugs that regulate MAPKs selectively are required before such approaches can be translated into clinical liver surgery.
Collapse
Affiliation(s)
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Vitoria, Ciudad Victoria 87087, Mexico.
- Facultad de Medicina e ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, México.
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| |
Collapse
|
22
|
Bharat A. A Need for Targeted Immunosuppression after Lung Transplantation. Am J Respir Cell Mol Biol 2019; 61:279-280. [PMID: 30958700 PMCID: PMC6839934 DOI: 10.1165/rcmb.2019-0100ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ankit Bharat
- Department of Surgeryand.,Department of MedicineNorthwestern University Feinberg School of MedicineChicago, Illinois
| |
Collapse
|
23
|
Okada M, Yamane M, Yamamoto S, Otani S, Miyoshi K, Sugimoto S, Matsukawa A, Toyooka S, Oto T, Miyoshi S. SPRED2 deficiency may lead to lung ischemia-reperfusion injury via ERK1/2 signaling pathway activation. Surg Today 2018; 48:1089-1095. [PMID: 30022248 DOI: 10.1007/s00595-018-1696-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Inflammatory changes during lung ischemia-reperfusion injury (IRI) are related to the activation of the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Sprouty-related EVH1 (enabled/vasodilator-stimulated phosphoprotein homology 1)-domain-containing proteins (SPREDs) are known inhibitors of ERK1/2 signaling. The role of SPRED2 in lung IRI was examined in a left hilar clamp mouse model. METHODS C57BL/6 wild-type (WT) and Spred2-/- mice were used in the left hilar clamp model. Experimental groups underwent 30 min of left hilar clamping followed by 1 h of reperfusion. U0126, an ERK1/2 inhibitor, was administered to Spred2-/- mice with reperfused lungs. RESULTS The partial pressures of oxygen of the Spred2-/- mice after reperfusion were significantly worse than those of WT mice (p < 0.01). Spred2-/- mice displayed more severe injuries than WT mice with increased neutrophil infiltration observed by a histological evaluation and flow cytometry (p < 0.001). This severe inflammation was inhibited by U0126. In addition, the rate of ERK1 activation was significantly higher in the lungs of Spred2-/- mice after reperfusion than in WT mice according to a Western blot analysis (p < 0.05). CONCLUSION The activation of the ERK1/2 signaling pathway influences the severity of lung IRI, causing inflammation with neutrophil infiltration. SPRED2 may be a promising target for the suppression of lung IRI.
Collapse
Affiliation(s)
- Masanori Okada
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Masaomi Yamane
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan.
| | - Sumiharu Yamamoto
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Shinji Otani
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Kentaroh Miyoshi
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| | - Takahiro Oto
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Shinichiro Miyoshi
- General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
24
|
Cui X, Jing X, Yi Q, Long C, Tan B, Li X, Chen X, Huang Y, Xiang Z, Tian J, Zhu J. Systematic analysis of gene expression alterations and clinical outcomes of STAT3 in cancer. Oncotarget 2017; 9:3198-3213. [PMID: 29423040 PMCID: PMC5790457 DOI: 10.18632/oncotarget.23226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulated studies have provided controversial evidences of prognostic value for signal transducer and activator of transcription proteins 3 (STAT3) in cancers. To address this inconsistency, we performed a systematic analysis to determine whether STAT3 can serve as a prognostic marker in human cancers. STAT3 expression was assessed using Oncomine analysis. cBioPortal, Kaplan-Meier Plotter, and Prognoscan were performed to identify the prognostic roles of STAT3 in human cancers. The copy number alteration, mutation, interactive analysis, and visualize the altered networks were performed by cBioPortal. We found that STAT3 was more frequently overexpressed in lung, ovarian, gastric, blood and brain cancers than their normal tissues and its expression might be negatively related with the prognosis. In addition, STAT3 mutation mainly occurred in uterine cancer and existed in a hotspot in SH2 domain. Those findings suggest that STAT3 might serve as a diagnostic and therapeutic target for certain types of cancer, such as lung, ovarian, gastric, blood and brain cancers. However, future research is required to validate our findings and thus promote the clinical utility of STAT3 in those cancers prognosis evaluation.
Collapse
Affiliation(s)
- Xiangrong Cui
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xuan Jing
- Clinical laboratory, Shanxi Province people's hospital, Shanxi 030000, Taiyuan, China
| | - Qin Yi
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Bin Tan
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xin Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xueni Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yue Huang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Zhongping Xiang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
25
|
Lin XL, Lv JJ, Lv J, Di CX, Zhang YJ, Zhou T, Liu JL, Xia ZW. Heme oxygenase-1 directly binds STAT3 to control the generation of pathogenic Th17 cells during neutrophilic airway inflammation. Allergy 2017; 72:1972-1987. [PMID: 28580587 DOI: 10.1111/all.13216] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Specific JAK/STAT pathways play a critical role in the functional differentiation of distinct Th subsets. Previously, we showed that HO-1, a stress-inducible protein, inhibits Th17 cell differentiation and alleviates neutrophilic airway inflammation, but the responsible molecular basis remains unclear. METHODS We employed Th17-skewing differentiation and NEA mouse models to study the role of HO-1 in regulating IL-6-STAT3-RORγt/SOCS3 signaling pathway to control Th17 cell-mediated neutrophilic airway inflammation. The levels of cytokines and expressions of relative signaling molecules were measured by ELISA, western blot, and qPCR, respectively. Frequency of CD4+ IL-17A+ , CD4+ IL-6R+ , and CD4+ IL-23R+ cells was analyzed by FCM. The interaction between HO-1 and signaling pathway-related proteins was determined by co-immunoprecipitation and western blot. RESULTS Here, we show that hemin-induced HO-1 overexpression is required to mediate this process. Specifically, HO-1 decreased STAT3 phosphorylation but not IL-6R/IL-23R expression or JAK1/JAK2 activation in CD4+ T cells. The effect was accompanied by co-inhibition of SOCS3, a negative feedback factor of STAT3 activation. HO-1 bound to three domains on STAT3 (DNA-binding, linker, and transactivation domains) to directly regulate STAT3 activation. Conversely, either forced expression of a constitutively active STAT3 mutant or application of small-interfering RNA (siRNA) for HO-1 reversed these effects. CONCLUSIONS Our data suggest that HO-1 exerts its inhibitory effect on Th17 cell differentiation by directly associating and blocking STAT3 phosphorylation. We speculate that hemin may be a potential therapeutic candidate for the treatment of other types of immune and pulmonary inflammatory-related diseases.
Collapse
Affiliation(s)
- X. L. Lin
- Department of Pediatrics; Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - J. J. Lv
- Department of Pediatrics; Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - J. Lv
- Department of Pediatrics; Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - C. X. Di
- Department of Pediatrics; Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Y. J. Zhang
- Department of Pediatrics; Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - T. Zhou
- Department of Pediatrics; Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - J. L. Liu
- Department of Biochemistry and Molecular Cell Biology; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Z. W. Xia
- Department of Pediatrics; Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
26
|
Liu HQ, Li RJ, Sun X, Li J. High-fat diet enhances hepatic ischemia-reperfusion injury-induced apoptosis: Role of glucocorticoid receptors. Life Sci 2017; 191:227-235. [PMID: 28986096 DOI: 10.1016/j.lfs.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023]
Abstract
AIMS The present study was designed to evaluate whether and how glucocorticoids can affect obesity-regulated hepatic ischemia-reperfusion (I/R) injury. MAIN METHODS To this end, we first examined whether hydrocortisone (HCT) has protective effects on liver damage induced by hepatic I/R injury in mice receiving high fat diet treatment. We then explored the role of GR expression and phosphorylation in the anti-apoptotic effects of hydrocortisone upon hepatic I/R injury. KEY FINDINGS We found that HCT reduced hepatic necrosis and inflammatory infiltration after hepatic I/R injury in mice that received high fat diet treatment. However, HCT lost the anti-apoptotic effects in high-fat diet treated mice. This phenomenon was associated with increased GRβ expression, decreased basal levels of GR phosphorylation at Ser220 and lack of HCT-induced GR phosphorylation at Ser220 in high-fat diet treated mice. Additionally, basal levels of ERK phosphorylation was increased in high-fat diet treated mice, and I/R injury was associated with robustly increased ERK phosphorylation in high-fat diet treated mice, compared to normal diet treated mice. Furthermore, we demonstrated that high fat diet treated ERK1-/- mice exhibited robustly reduced apoptosis rate at 24h after reperfusion, compared to high fat diet treated wild-type mice. Importantly, there was a decreased level of GRβ after high fat diet treatment in ERK1-/- mice. SIGNIFICANCE These results together suggested that ERK1 phosphorylation plays a critical role in regulating GRβ expression and HCT-induce GR phosphorylation at Ser220, which is critical for the anti-apoptotic effects HCT on hepatic I/R injury.
Collapse
Affiliation(s)
- Huan-Qiu Liu
- Department of Anaesthesiology, The First Hospital of Jilin University, China
| | - Rui-Jun Li
- Department of Hand Surgery, The First Hospital of Jilin University, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, China
| | - Ji Li
- Department of Anaesthesiology, The First Hospital of Jilin University, China.
| |
Collapse
|
27
|
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem 2017; 61:2611-2635. [PMID: 28876065 DOI: 10.1021/acs.jmedchem.6b01153] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.
Collapse
Affiliation(s)
- Ken Ling
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,Department of Anesthesiology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Fang Men
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Ci Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hao-Wen Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
28
|
Ulbrich F, Hagmann C, Buerkle H, Romao CC, Schallner N, Goebel U, Biermann J. The Carbon monoxide releasing molecule ALF-186 mediates anti-inflammatory and neuroprotective effects via the soluble guanylate cyclase ß1 in rats' retinal ganglion cells after ischemia and reperfusion injury. J Neuroinflammation 2017; 14:130. [PMID: 28655348 PMCID: PMC5488359 DOI: 10.1186/s12974-017-0905-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 06/18/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The endogenously produced gaseous molecule carbon monoxide is able to promote organ protection after ischemia-reperfusion injuries (IRI). The impact of carbon monoxide releasing molecules (CORM) regarding inflammation in neuronal tissues has not been studied in detail. In this investigation, we aimed to analyze the effects of the CORM ALF-186 on neuro-inflammation and hypothesized that the soluble guanylate cyclase (sGC) is playing a decisive role. METHODS Retinal ischemia-reperfusion injury was performed for 60 min in Sprague-Dawley rats. Thereafter, the CORM ALF-186 (10 mg/kg) in the presence or absence of the sGC inhibitor ODQ was injected via a tail vein. Retinal tissue was harvested 24 h later to analyze mRNA or protein expression of sGC-β1 subunit, transcription factors NF-κB and CREB, the inflammatory cytokines TNF-α and IL-6, as well as the heat shock proteins (HSP) HSP-70 and HSP-90. Immunohistochemistry was performed on frozen sections of the retina. The overall neuroprotective effect of ALF-186 was assessed by counting fluorogold-pre-labeled retinal ganglion cells (RGC) 7 days after IRI. RESULTS Ischemia-reperfusion mediated loss of vital RGC was attenuated by the administration of ALF-186 after injury. ALF-186 treatment after IRI induced sGC-ß1 leading to a decreased NF-κB and CREB phosphorylation. Consecutively, ALF-186 mitigated IRI induced TNF-α and IL-6 expression in the retina and in the rats' serum. Moreover, ALF-186 attenuated heat shock protein 70 (Hsp-70) while increasing Hsp-90. The sGC-inhibitor ODQ attenuated the anti-inflammatory effects of ALF-186 and increased retinal loss of ganglion cells. These results were confirmed by immunohistochemistry. CONCLUSION The CORM ALF-186 protected RGC from IRI induced loss. Furthermore, ALF-186 reduced IRI mediated neuroinflammation in the retina and in the serum by activating sGC. Inhibition of sGC stopped the beneficial and protective effects of ALF-186. ALF-186 may present a promising therapeutic alternative in treating inflammation after neuronal IRI.
Collapse
Affiliation(s)
- Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Claus Hagmann
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Carlos C Romao
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Oeiras, Portugal
| | - Nils Schallner
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany.
| | - Julia Biermann
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Steiger C, Hermann C, Meinel L. Localized delivery of carbon monoxide. Eur J Pharm Biopharm 2016; 118:3-12. [PMID: 27836646 DOI: 10.1016/j.ejpb.2016.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 01/18/2023]
Abstract
The heme oxygenase (HO)/carbon monoxide (CO) system is a physiological feedback loop orchestrating various cell-protective effects in response to cellular stress. The therapeutic use of CO is impeded by safety challenges as a result of high CO-Hemoglobin formation following non-targeted, systemic administration jeopardizing successful CO therapies as of this biological barrier. Another caveat is the use of CO-Releasing Molecules containing toxicologically critical transition metals. An emerging number of local delivery approaches addressing these issues have recently been introduced and provide exciting new starting points for translating the fascinating preclinical potential of CO into a clinical setting. This review will discuss these approaches and link to future delivery strategies aiming at establishing CO as a safe and effective medication of tomorrow.
Collapse
Affiliation(s)
- Christoph Steiger
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Cornelius Hermann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany.
| |
Collapse
|
30
|
Ulbrich F, Kaufmann KB, Meske A, Lagrèze WA, Augustynik M, Buerkle H, Ramao CC, Biermann J, Goebel U. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS One 2016; 11:e0165182. [PMID: 27764224 PMCID: PMC5072679 DOI: 10.1371/journal.pone.0165182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/08/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Ischemia and reperfusion injury may induce apoptosis and lead to sustained tissue damage and loss of function, especially in neuronal organs. While carbon monoxide is known to exert protective effects after various harmful events, the mechanism of carbon monoxide releasing molecules in neuronal tissue has not been investigated yet. We hypothesize that the carbon monoxide releasing molecule (CORM) ALF-186, administered after neuronal ischemia-reperfusion injury (IRI), counteracts retinal apoptosis and its involved signaling pathways and consecutively reduces neuronal tissue damage. METHODS IRI was performed in rat´s retinae for 1 hour. The water-soluble CORM ALF-186 (10 mg/kg) was administered intravenously via a tail vein after reperfusion. After 24 and 48 hours, retinal tissue was harvested to analyze mRNA and protein expression of Bcl-2, Bax, Caspase-3, ERK1/2, p38 and JNK. Densities of fluorogold pre-labeled retinal ganglion cells (RGC) were analyzed 7 days after IRI. Immunohistochemistry was performed on retinal cross sections. RESULTS ALF-186 significantly reduced IRI mediated loss of RGC. ALF-186 treatment differentially affected mitogen-activated protein kinases (MAPK) phosphorylation: ALF-186 activated p38 and suppressed ERK1/2 phosphorylation, while JNK remained unchanged. Furthermore, ALF-186 treatment affected mitochondrial apoptosis, decreasing pro-apoptotic Bax and Caspase-3-cleavage, but increasing anti-apoptotic Bcl-2. Inhibition of p38-MAPK using SB203580 reduced ALF-186 mediated anti-apoptotic effects. CONCLUSION In this study, ALF-186 mediated substantial neuroprotection, affecting intracellular apoptotic signaling, mainly via MAPK p38. CORMs may thus represent a promising therapeutic alternative treating neuronal IRI.
Collapse
Affiliation(s)
- Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai B. Kaufmann
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Meske
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf A. Lagrèze
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Augustynik
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carlos C. Ramao
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Oeiras, Portugal
| | - Julia Biermann
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
31
|
Carrapita J, Abrantes AM, Campelos S, Gonçalves AC, Cardoso D, Sarmento-Ribeiro AB, Rocha C, Santos JN, Botelho MF, Tralhão JG, Farges O, Barbosa JM. Impact of splenic artery ligation after major hepatectomy on liver function, regeneration and viability. Sci Rep 2016; 6:34731. [PMID: 27725728 PMCID: PMC5057079 DOI: 10.1038/srep34731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
It was reported that prevention of acute portal overpressure in small-for-size livers by inflow modulation results in a better postoperative outcome. The aim is to investigate the impact of portal blood flow reduction by splenic artery ligation after major hepatectomy in a murine model. Forty-eight rats were subjected to an 85% hepatectomy or 85% hepatectomy and splenic artery ligation. Both groups were evaluated at 24, 48, 72 and 120 post-operative hours: liver function, regeneration and viability. All methods and experiments were carried out in accordance with Coimbra University guidelines. Splenic artery ligation produces viability increase after 24 h, induces a relative decrease in oxidative stress during the first 48 hours, allows antioxidant capacity increment after 24 h, which is reflected in a decrease of half-time normalized liver curve at 48 h and at 72 h and in an increase of mitotic index between 48 h and 72 h. Splenic artery ligation combined with 85% hepatectomy in a murine model, allows portal inflow modulation, promoting an increase in hepatocellular viability and regeneration, without impairing the function, probably by inducing a less marked elevation of oxidative stress at first 48 hours.
Collapse
Affiliation(s)
- Jorge Carrapita
- General Surgery Department of Vila Nova de Gaia/Espinho Hospital, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Oporto, Portugal
| | - Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Portugal.,CNC.IBILI, Faculty of Medicine, University of Coimbra, Portugal.,Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Portugal
| | - Sofia Campelos
- Pathologic Anatomy Department of Vila Nova de Gaia/Espinho Hospital, Portugal
| | - Ana Cristina Gonçalves
- CNC.IBILI, Faculty of Medicine, University of Coimbra, Portugal.,Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Portugal.,Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology and Appied Molecular Biology Unit, Faculty of Medicine, University of Coimbra, Portugal
| | - Dulce Cardoso
- Nuclear Medicine Department, University Hospital of Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- CNC.IBILI, Faculty of Medicine, University of Coimbra, Portugal.,Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Portugal.,Laboratory of Oncobiology and Hematology (LOH), University Clinic of Hematology and Appied Molecular Biology Unit, Faculty of Medicine, University of Coimbra, Portugal.,Clinical Hematology Department, Coimbra University Hospital Centre (CHUC), Portugal
| | - Clara Rocha
- ESTESC-Coimbra Health School Department Complementary Sciences, Polytechnic Institute of Coimbra, Portugal.,Institute for Systems Engineering and Computers at Coimbra (INESCC), Portugal
| | - Jorge Nunes Santos
- Institute of Biomedical Sciences Abel Salazar, University of Oporto, Portugal
| | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Portugal.,CNC.IBILI, Faculty of Medicine, University of Coimbra, Portugal.,Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Portugal
| | - José Guilherme Tralhão
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Portugal.,CNC.IBILI, Faculty of Medicine, University of Coimbra, Portugal.,Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Portugal.,Surgery A, Surgery Department of Coimbra University Hospital, Faculty of Medicine, University of Coimbra, Portugal
| | - Olivier Farges
- Hepatobiliary and pancreatic unit, Beaujon Hospital, AP-HP, Université Paris Clichy, France
| | - Jorge Maciel Barbosa
- General Surgery Department of Vila Nova de Gaia/Espinho Hospital, Portugal.,Fernando Pessoa University, Oporto, Portugal
| |
Collapse
|
32
|
Tapuria N, Junnarkar S, Abu-amara M, Fuller B, Seifalian AM, Davidson BR. Haemoxygenase modulates cytokine induced neutrophil chemoattractant in hepatic ischemia reperfusion injury. World J Gastroenterol 2016; 22:7518-7535. [PMID: 27672274 PMCID: PMC5011667 DOI: 10.3748/wjg.v22.i33.7518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hepatic microcirculatory changes due to Haemoxygenase (HO), effect of HO inhibition on remote ischemic preconditioning (RIPC) and modulation of CINC.
METHODS Eight groups of animals were studied - Sham, ischemia reperfusion injury (IRI) the animals were subjected to 45 min of hepatic ischemia followed by three hours of reperfusion, RIPC (remote ischemic preconditioning) + IRI group, remote ischemic preconditioning in sham (RIPC + Sham), PDTC + IR (Pyridodithiocarbamate, HO donor), ZnPP + RIPC + IRI (Zinc protoporphyrin prior to preconditioning), IR-24 (45 min of ischemia followed by 24 h of reperfusion), RIPC + IR-24 (preconditioning prior to IR). After 3 and 24 h of reperfusion the animals were killed by exsanguination and samples were taken.
RESULTS Velocity of flow (160.83 ± 12.24 μm/s), sinusoidal flow (8.42 ± 1.19) and sinusoidal perfusion index (42.12 ± 7.28) in hepatic IR were lower (P < 0.05) in comparison to RIPC and PDTC (HO inducer). RIPC increased velocity of flow (328.04 ± 19.13 μm/s), sinusoidal flow (17.75 ± 2.59) and the sinusoidal perfusion index (67.28 ± 1.82) (P < 0.05). PDTC (HO induction) reproduced the effects of RIPC in hepatic IR. PDTC restored RBC velocity (300.88 ± 22.109 μm/s), sinusoidal flow (17.66 ± 3.71) and sinusoidal perfusion (82.33 ± 3.5) to near sham levels. ZnPP (HO inhibition) reduced velocity of flow of RBC in the RIPC group (170.74 ± 13.43 μm/s and sinusoidal flow in the RIPC group (9.46 ± 1.34). ZnPP in RIPC (60.29 ± 1.82) showed a fall in perfusion only at 180 min of reperfusion. Neutrophil adhesion in IR injury is seen in both postsinusoidal venules (769.05 ± 87.48) and sinusoids (97.4 ± 7.49). Neutrophil adhesion in RIPC + IR injury is reduced in both postsinusoidal venules (219.66 ± 93.79) and sinusoids (25.69 ± 9.08) (P < 0.05). PDTC reduced neutrophil adhesion in both postsinusoidal venules (89.58 ± 58.32) and sinusoids (17.98 ± 11.01) (P < 0.05) reproducing the effects of RIPC. ZnPP (HO inhibition) increased venular (589.04 ± 144.36) and sinusoidal neutrophil adhesion in preconditioned animals (121.39 ± 30.65) (P < 0.05). IR after 24 h of reperfusion increased venular and sinusoidal neutrophil adhesion in comparison to the early phase and was significantly reduced by RIPC. Hepatocellular cell death in IRI (80.83 ± 13.03), RIPC + IR (17.35 ± 2.47), and PTDC + IR (11.66 ± 1.17) reduced hepatocellular death. ZnPP + RIPC + IR (41.33 ± 3.07) significantly increased hepatocellular death (P < 0.05 PTDC/RIPC vs ZnPP and IR). The CINC cytokine levels in sham (101.32 ± 6.42). RIPC + sham (412.18 ± 65.24) as compared to sham (P < 0.05). CINC levels in hepatic IR were (644.08 ± 181.24). PDTC and RIPC CINC levels were significantly lower than hepatic IR (P < 0.05). HO inhibition in preconditioned animals with Zinc protoporphyrin increased serum CINC levels (521.81 ± 74.9) (P < 0.05). The serum CINC levels were high in the late phase of hepatic IR (15306 ± 1222.04). RIPC reduced CINC levels in the late phase of IR (467.46 ± 26.06), P < 0.05.
CONCLUSION RIPC protects hepatic microcirculation by induction of HO and modulation of CINC in hepatic IR.
Collapse
|
33
|
Takagi T, Naito Y, Uchiyama K, Mizuhima K, Suzuki T, Horie R, Hirata I, Tsuboi H, Yoshikawa T. Carbon monoxide promotes gastric wound healing in mice via the protein kinase C pathway. Free Radic Res 2016; 50:1098-1105. [DOI: 10.1080/10715762.2016.1189546] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizuhima
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Suzuki
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryusuke Horie
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuhiro Hirata
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisato Tsuboi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshikazu Yoshikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Magierowska K, Magierowski M, Surmiak M, Adamski J, Mazur-Bialy AI, Pajdo R, Sliwowski Z, Kwiecien S, Brzozowski T. The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO). Int J Mol Sci 2016; 17:442. [PMID: 27023525 PMCID: PMC4848898 DOI: 10.3390/ijms17040442] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1-10 mg/kg oral gavage (i.g.)), RuCl₃ (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1-10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with N(G)-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl₃ was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO's hyperemic and anti-inflammatory properties, but is independent of NO.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, 31-006 Cracow, Poland.
| | - Juliusz Adamski
- Department of Forensic Toxicology, Institute of Forensic Research, 31-033 Cracow, Poland.
| | - Agnieszka Irena Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Robert Pajdo
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| |
Collapse
|
35
|
Steiger C, Wollborn J, Gutmann M, Zehe M, Wunder C, Meinel L. Controlled therapeutic gas delivery systems for quality-improved transplants. Eur J Pharm Biopharm 2015; 97:96-106. [PMID: 26527426 DOI: 10.1016/j.ejpb.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022]
Abstract
Therapeutic gases enriched into perfusion solutions have been effectively used for the improvement of organ transplant quality. At present, the enrichment of perfusion solutions with gases requires complex machinery/containers and handling precautions. Alternatively, the gas is generated within the perfusion solution by supplemented carbonylated transition metal complexes with associated toxicological concerns when these metals contact the transplant. Therefore, we developed therapeutic gas releasing systems (TGRSs) allowing for the controlled generation and release of therapeutic gases (carbon monoxide and hydrogen sulfide) from otherwise hermetically sealed containers, such that the perfusion solution for the transplant is saturated with the gas but no other components from the TGRS are liberated in the solution. The release from the TGRS into the perfusion solution can be tailored as a function of the number and thickness of gas permeable membranes leading to release patterns having been linked to therapeutic success in previous trials. Furthermore, the surrogate biomarker HMGB1 was significantly downregulated in ischemic rat liver transplants perfused with enriched CO solution as compared to control. In conclusion, the TGRS allows for easy, reliable, and controlled generation and release of therapeutic gases while removing safety concerns of current approaches, thereby positively impacting the risk benefit profile of using therapeutic gases for transplant quality improvement in the future.
Collapse
Affiliation(s)
- Christoph Steiger
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Jakob Wollborn
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacherstraße 6, DE-97080 Wurzburg, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Hugstetter Str. 55, DE-79106 Freiburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Markus Zehe
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Christian Wunder
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacherstraße 6, DE-97080 Wurzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany.
| |
Collapse
|
36
|
Chen HH, Lu PJ, Chen BR, Hsiao M, Ho WY, Tseng CJ. Heme oxygenase-1 ameliorates kidney ischemia-reperfusion injury in mice through extracellular signal-regulated kinase 1/2-enhanced tubular epithelium proliferation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2195-201. [PMID: 26232688 DOI: 10.1016/j.bbadis.2015.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/01/2023]
Abstract
Heme oxygenase (HO)-1 confers transient resistance against oxidative damage, including renal ischemia-reperfusion injury (IRI). We investigated the potential protective effect of HO-1 induction in a mouse model of renal IRI induced by bilateral clamping of the kidney arteries. The mice were randomly assigned to five groups to receive an intraperitoneal injection of PBS, hemin (an HO-1 inducer, 100μmol/kg), hemin+ZnPP (an HO-1 inhibitor, 5mg/kg), hemin+PD98059 (a MEK-ERK inhibitor, 10mg/kg) or a sham operation. All of the groups except for the sham-operated group underwent 25min of ischemia and 24 to 72h of reperfusion. Renal function and tubular damage were assessed in the mice that received hemin or the vehicle treatment prior to IRI. The renal injury score and HO-1 protein levels were evaluated via H&E and immunohistochemistry staining. Hemin-preconditioned mice exhibited preserved renal cell function (BUN: 40±2mg/dl, creatinine: 0.53±0.06mg/dl), and the tubular injury score at 72h (1.65±0.12) indicated that tubular damage was prevented. Induction of HO-1 induced the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2. However, these effects were abolished with ZnPP treatment. Kidney function (BUN: 176±49mg/dl, creatinine: 1.54±0.39mg/dl) increased, and the tubular injury score (3.73±0.09) indicated that tubular damage also increased with ZnPP treatment. HO-1-induced tubular epithelial proliferation was attenuated by PD98059. Our findings suggest that HO-1 preconditioning promotes ERK1/2 phosphorylation and enhances tubular recovery, which subsequently prevents further renal injury.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Graduate Institute of Clinical Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Bo-Ron Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Yu Ho
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
37
|
Yamanaka K, Houben P, Bruns H, Schultze D, Hatano E, Schemmer P. A systematic review of pharmacological treatment options used to reduce ischemia reperfusion injury in rat liver transplantation. PLoS One 2015; 10:e0122214. [PMID: 25919110 PMCID: PMC4412498 DOI: 10.1371/journal.pone.0122214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although animal studies models are frequently used for the purpose of attenuating ischemia reperfusion injury (IRI) in liver transplantation (LT), many of pharmacological agents have not become part of clinical routine. METHODS A search was performed using the PubMed database to identify agents, from which 58 articles containing 2700 rat LT procedures were selected. The identified pharmacological agents were categorized as follows: I - adenosine agonists, nitric oxide agonists, endothelin antagonists, and prostaglandins, II - Kupffer cell inactivator, III - complement inhibiter, IV - antioxidant, V - neutrophil inactivator, VI -anti-apoptosis agent, VII - heat shock protein and nuclear factor kappa B inducer, VIII - metabolic agent, IX - traditional Chinese medicine, and X - others. Meta-analysis using 7-day-survival rate was also performed with Mantel-Haenszel's Random effects model. RESULTS The categorization revealed that the rate of donor-treated experiments in each group was highest for agents from Group II (70%) and VII (71%), whereas it was higher for agents from Group V (83%) in the recipient-treated experiments. Furthermore, 90% of the experiments with agents in Group II provided 7-day-survival benefits. The Risk Ratio (RR) of the meta-analysis was 2.43 [95% CI: 1.88-3.14] with moderate heterogeneity. However, the RR of each of the studies was too model-dependent to be used in the search for the most promising pharmacological agent. CONCLUSION With regard to hepatic IRI pathology, the categorization of agents of interest would be a first step in designing suitable multifactorial and pleiotropic approaches to develop pharmacological strategies.
Collapse
Affiliation(s)
- Kenya Yamanaka
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Philipp Houben
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Helge Bruns
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Daniel Schultze
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Peter Schemmer
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Kim HJ, Joe Y, Yu JK, Chen Y, Jeong SO, Mani N, Cho GJ, Pae HO, Ryter SW, Chung HT. Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1550-9. [PMID: 25916635 DOI: 10.1016/j.bbadis.2015.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury can arise as a complication of liver surgery and transplantation. Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, modulates inflammation and apoptosis in response to oxidative stress. SIRT1, which is regulated by p53 and microRNA-34a (miR-34a), can modulate non-alcoholic fatty liver disease, fibrosis and cirrhosis. Since carbon monoxide (CO) inhalation can protect against hepatic I/R, we hypothesized that CO could ameliorate hepatic I/R injury by regulating the miR-34a/SIRT1 pathway. Livers from mice pretreated with CO, or PFT, a p53 inhibitor, displayed reduced production of pro-inflammatory mediators, including TNF-α, iNOS, interleukin (IL)-6, and IL-1β after hepatic I/R injury. SIRT1 expression was increased by CO or PFT in the liver after I/R, whereas acetylated p65, p53 levels, and miR-34a expression were decreased. CO increased SIRT1 expression by inhibiting miR-34a. Both CO and PFT diminished pro-inflammatory cytokines production in vitro. Knockdown of SIRT1 in LPS-stimulated macrophages increased NF-κB acetylation, and increased pro-inflammatory cytokines. CO treatment reduced miR-34a expression and increased SIRT1 expression in oxidant-challenged hepatocytes; and rescued SIRT1 expression in p53-expressing or miR-34a transfected cells. In response to CO, enhanced SIRT1 expression mediated by miR-34a inhibition protects against liver damage through p65/p53 deacetylation, which may mediate inflammatory responses and hepatocellular apoptosis. The miR-34a/SIRT1 pathway may represent a therapeutic target for hepatic injury.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Jae Kyoung Yu
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Yingqing Chen
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Sun Oh Jeong
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Nithya Mani
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun-Ock Pae
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
39
|
Tabka D, Bejaoui M, Javellaud J, Roselló-Catafau J, Achard JM, Abdennebi HB. Effects of Institut Georges Lopez-1 and Celsior preservation solutions on liver graft injury. World J Gastroenterol 2015; 21:4159-4168. [PMID: 25892865 PMCID: PMC4394076 DOI: 10.3748/wjg.v21.i14.4159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/30/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To compare Institut Georges Lopez (IGL-1) and Celsior preservation solutions for hepatic endothelium relaxation and liver cold ischemia reperfusion injury (IRI). METHODS Two experimental models were used. In the first one, acetylcholine-induced endothelium-dependent relaxation (EDR) was measured in isolated ring preparations of rat hepatic arteries preserved or not in IGL-1 or Celsior solutions (24 h at 4 °C). To determine nitric oxide (NO) and cyclooxygenase EDR, hepatic arteries were incubated with L-NG-nitroarginine methyl ester (L-NAME), an inhibitor of endothelium nitric oxide synthase (eNOS), or with L-NAME plus indomethacin, an inhibitor of cyclooxygenase. In the second experiment, rat livers were cold-stored in IGL-1 or Celsior solutions for 24 h at 4 °C and then perfused "ex vivo" for 2 h at 37 °C. Liver injury was assessed by transaminase measurements, liver function by bile production and bromosulfophthalein clearance, oxidative stress by malondialdehyde levels and catalase activity and alterations in cell signaling pathways by pAkt, pAMPK, eNOS and MAPKs proteins level. RESULTS After cold storage for 24 h with either Celsior or IGL-1, EDR was only slightly altered. In freshly isolated arteries, EDR was exclusively mediated by NO. However, cold-stored arteries showed NO- and COX-dependent relaxation. The decrease in NO-dependent relaxation after cold storage was significantly more marked with Celsior. The second study indicated that IGL-1 solution obtained better liver preservation and protection against IRI than Celsior. Liver injury was reduced, function was improved and there was less oxidative stress. IGL-1 solution activated Akt and AMPK, which was concomitant with increased eNOS expression and nitrite/nitrate levels. Furthermore, MAPKs kinases were regulated in livers preserved with IGL-1 solution since reductions in p-p38, p-ERK and p-JNK protein levels were observed. CONCLUSION IGL-1 solution preserved NO-dependent relaxation better than Celsior storage solution and enhanced liver graft preservation.
Collapse
|
40
|
Katada K, Takagi T, Uchiyama K, Naito Y. Therapeutic roles of carbon monoxide in intestinal ischemia-reperfusion injury. J Gastroenterol Hepatol 2015; 30 Suppl 1:46-52. [PMID: 25827804 DOI: 10.1111/jgh.12742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal ischemia-reperfusion (I-R) injury is a complex, multifactorial, pathophysiological process with high morbidity and mortality, leading to serious difficulty in treatment. The mechanisms involved in the pathogenesis of intestinal I-R injury have been examined in detail and various therapeutic approaches for intestinal I-R injury have been developed; however, existing circumstances have not yet led to a dramatic change of treatment. Carbon monoxide (CO), one of the by-products of heme degradation by heme oxygenase (HO), is considered as a candidate for treatment of intestinal I-R injury and indeed HO-1-derived endogenous CO and exogenous CO play a pivotal role in protecting the gastrointestinal tract from intestinal I-R injury. Interestingly, anti-inflammatory effects of CO have been elucidated sufficiently in various cell types including endothelial cells, circulating leukocytes, macrophages, lymphocytes, epithelial cells, fibroblast, organ-specific cells, and immune-presenting cells. In this review, we herein focus on the therapeutic roles of CO in intestinal I-R injury and the cell-specific anti-inflammatory effects of CO, clearly demonstrating future therapeutic strategies of CO for treating intestine I-R injury.
Collapse
Affiliation(s)
- Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medial Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
41
|
Li J, Ke W, Zhou Q, Wu Y, Luo H, Zhou H, Yang B, Guo Y, Zheng Q, Zhang Y. Tumour necrosis factor-α promotes liver ischaemia-reperfusion injury through the PGC-1α/Mfn2 pathway. J Cell Mol Med 2014; 18:1863-73. [PMID: 24898700 PMCID: PMC4196661 DOI: 10.1111/jcmm.12320] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/07/2014] [Indexed: 11/27/2022] Open
Abstract
Tumour necrosis factor (TNF)-α has been considered to induce ischaemia-reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor-γ co-activator (PGC)-1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC-1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF-α had increased TNF-α levels and resulted in down-regulation of PGC-1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF-α by neutralizing antibody reversed PGC-1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC-1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF-α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral-Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF-α. However, there was no up-regulation of PGC-1α. These findings suggest that PGC-1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF-α-induced hepatic IRI. Inhibition of the TNF-α or PGC-1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology Surgery, Cancer Institute, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fukuda W, Takagi T, Katada K, Mizushima K, Okayama T, Yoshida N, Kamada K, Uchiyama K, Ishikawa T, Handa O, Konishi H, Yagi N, Ichikawa H, Yoshikawa T, Cepinskas G, Naito Y, Itoh Y. Anti-inflammatory effects of carbon monoxide-releasing molecule on trinitrobenzene sulfonic acid-induced colitis in mice. Dig Dis Sci 2014; 59:1142-1151. [PMID: 24442266 DOI: 10.1007/s10620-013-3014-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Recent findings indicate that carbon monoxide (CO) in non-toxic doses exerts a beneficial anti-inflammatory action in various experimental models. However, the precise anti-inflammatory mechanism of CO in the intestine remains unclear. Here, we assessed the effects of a novel water-soluble CO-releasing molecule, CORM-3, on trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. METHODS To induce colitis, C57BL/6 male mice received an enema of TNBS. CORM-3 or its inactive compound, iCORM-3, were administered intraperitoneally, once immediately before, and twice daily after receiving an enema of TNBS. Three days after TNBS administration, the distal colon was removed, assessed for colonic damage and histological scores, polymorphonuclear leukocyte recruitment (tissue-associated myeloperoxidase, MPO activity), and TNF-α, IFN-γ and IL-17A expression (mRNA and protein levels in the colon mucosa). CD4(+) T cells isolated from murine spleens were stimulated with anti-CD3/CD28, in the presence or absence of CORM-3/iCORM-3. The cell supernatants were assessed for TNF-α and IFN-γ expression, 24 h following stimulation. RESULTS Colonic damage and histological scores were significantly increased in TNBS-induced mice compared to sham-operated mice. Tissue-associated MPO activity and expression of TNF-α, IFN-γ, and IL-17A in the colonic mucosa were higher in TNBS-induced colitis mice. The above changes were attenuated in CORM-3-treated mice. Further, CORM-3 was effective in reducing TNF-α and IFN-γ production in anti-CD3/CD28-stimulated CD4(+) T cells. CONCLUSIONS These findings indicate that CO released from CORM-3 ameliorates inflammatory responses in the colon of TNBS-challenged mice at least in part through a mechanism that involves the suppression of inflammatory cell recruitment/activation.
Collapse
Affiliation(s)
- Wataru Fukuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hashmi SK, Baranov E, Gonzalez A, Olthoff K, Shaked A. Genomics of liver transplant injury and regeneration. Transplant Rev (Orlando) 2014; 29:23-32. [PMID: 24746681 DOI: 10.1016/j.trre.2014.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
While improved surgical techniques, post-operative care, and immunosuppression regimens have reduced morbidity and mortality associated with orthotopic liver transplantation (OLT), further improvement of outcomes requires personalized treatment and a better understanding of genomic mechanisms involved. Gene expression profiles of ischemia/reperfusion (I/R) injury, regeneration, and rejection, may suggest mechanisms for development of better predictive tools and treatments. The liver is unique in its regenerative potential, recovering lost mass and function after injury from ischemia, resection, and rejection. I/R injury, an inevitable consequence of perfusion cessation, cold storage, and reperfusion, is regulated by the interaction of the immune system, inflammatory cytokines, and reduced microcirculatory blood flow in the liver. Rejection, a common post-operative complication, is mediated by the recipient's immune system through T-cell-dependent responses activating proinflammatory and apoptotic pathways. Characterizing distinctive gene expression signatures for these events can identify therapies to reduce injury, promote regeneration, and improve outcomes. While certain markers of liver injury and regeneration have been observed in animals, many of these are unverified in human studies. Further investigation of these genomic signatures and mechanisms through new technology offers promise, but continues to pose a significant challenge. An overview of the current fund of knowledge in this area is reviewed.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Esther Baranov
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Gonzalez
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kim Olthoff
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Abraham Shaked
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3β. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:306421. [PMID: 24454979 PMCID: PMC3880761 DOI: 10.1155/2013/306421] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/08/2013] [Indexed: 11/27/2022]
Abstract
Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.
Collapse
|
45
|
Xue J, Habtezion A. Carbon monoxide-based therapy ameliorates acute pancreatitis via TLR4 inhibition. J Clin Invest 2013; 124:437-47. [PMID: 24334457 DOI: 10.1172/jci71362] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
The protective role of hemeoxygenase-1 (HO-1) in various inflammatory conditions is mediated in part by its products, carbon monoxide (CO) and biliverdin. Here we investigated a therapeutic role for CO and CO-primed cells in acute pancreatitis (AP). In a mouse model of AP, treatment with CO-releasing molecule-2 (CORM-2) decreased mortality, pancreatic damage, and lung injury. CORM-2 decreased systemic inflammatory cytokines, suppressed systemic and pancreatic macrophage TNF-α secretion, and inhibited macrophage TLR4 receptor complex expression. In both human and mouse cells, CORM-2 inhibited endogenous and exogenous ligand-dependent TLR4 activation, which indicates that CORM-2 could be therapeutic for both early and late stages of AP, which involve sterile- and endotoxin-mediated inflammation, respectively. Mice engrafted with TLR4-deficient hematopoietic cells were protected against caerulein-induced AP. In the absence of leukocyte TLR4 expression, CORM-2 did not confer additional protection, which indicates that CORM-2-dependent effects are mediated via suppression of macrophage TLR4 activation. We determined that CO was directly responsible for the protective effects of CORM-2 in AP, as inactive forms of CORM-2 were ineffective. Importantly, adoptive transfer of CORM-2-primed cells reduced AP. Such a therapeutic approach would translate the beneficial effects of CO-based therapies, avoiding CO- or CO-RM-mediated toxicities in AP and a wide range of diseases.
Collapse
|
46
|
Therapeutic applications of carbon monoxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:360815. [PMID: 24648866 PMCID: PMC3932177 DOI: 10.1155/2013/360815] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/21/2013] [Accepted: 11/05/2013] [Indexed: 11/17/2022]
Abstract
Heme oxygenase-1 (HO-1) is a regulated enzyme induced in multiple stress states. Carbon monoxide (CO) is a product of HO catalysis of heme. In many circumstances, CO appears to functionally replace HO-1, and CO is known to have endogenous anti-inflammatory, anti-apoptotic, and antiproliferative effects. CO is well studied in anoxia-reoxygenation and ischemia-reperfusion models and has advanced to phase II trials for treatment of several clinical entities. In alternative injury models, laboratories have used sepsis, acute lung injury, and systemic inflammatory challenges to assess the ability of CO to rescue cells, organs, and organisms. Hopefully, the research supporting the protective effects of CO in animal models will translate into therapeutic benefits for patients. Preclinical studies of CO are now moving towards more complex damage models that reflect polymicrobial sepsis or two-step injuries, such as sepsis complicated by acute respiratory distress syndrome. Furthermore, co-treatment and post-treatment with CO are being explored in which the insult occurs before there is an opportunity to intervene therapeutically. The aim of this review is to discuss the potential therapeutic implications of CO with a focus on lung injury and sepsis-related models.
Collapse
|
47
|
Li Y, Gao C, Shi Y, Tang Y, Liu L, Xiong T, Du M, Xing M, Liu L, Yao P. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway. Toxicol Appl Pharmacol 2013; 273:53-8. [PMID: 23994557 DOI: 10.1016/j.taap.2013.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 12/15/2022]
Abstract
Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8mg/kg for mice or 20μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, PR China; Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, PR China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
49
|
Khalifian S, Broyles JM, Tuffaha SH, Alrakan M, Ibrahim Z, Sarhane KA. Immune mechanisms of ischemia-reperfusion injury in transplantation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/oji.2013.33020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Xiang L, Tan JW, Huang LJ, Jia L, Liu YQ, Zhao YQ, Wang K, Dong JH. Inhalation of hydrogen gas reduces liver injury during major hepatotectomy in swine. World J Gastroenterol 2012; 18:5197-204. [PMID: 23066313 PMCID: PMC3468851 DOI: 10.3748/wjg.v18.i37.5197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/18/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of H2 gas on liver injury in massive hepatectomy using the Intermittent Pringle maneuver in swine.
METHODS: Male Bama pigs (n = 14) treated with ketamine hydrochloride and Sumianxin II as induction drugs followed by inhalation anesthesia with 2% isoflurane, underwent 70% hepatotectomy with loss of bleeding less than 50 mL, and with hepatic pedicle occlusion for 20 min, were divided into two groups: Hydrogen-group (n = 7), the pigs with inhalation of 2% hydrogen by the tracheal intubation during major hepatotectomy; Contrast-group (n = 7), underwent 70% hepatotectomy without inhalation of hydrogen. Hemodynamic changes and plasma concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) in liver tissue were measured at pre-operation, post-hepatotectomy (PH) 1 h and 3 h. The apoptosis and proliferating cell nuclear antigen (PCNA) expression in liver remnant were evaluated at PH 3 h. Then we compared the two groups by these marks to evaluate the effect of the hydrogen in the liver injury during major hepatotectomy with the Pringle Maneuver in the swine.
RESULTS: There were no significant differences in body weight, blood loss and removal liver weight between the two groups. There was no significant difference in changes of portal vein pressure between two groups at pre-operation, PH 30 min, but in hydrogen gas treated-group it slightly decrease and lower than its in Contrast-group at PH 3 h, although there were no significant difference (P = 0.655). ALT and AST in Hydrogen-group was significantly lower comparing to Contrast-group (P = 0.036, P = 0.011, vs P = 0.032, P = 0.013) at PH 1 h and 3 h, although the two groups all increased. The MDA level increased between the two group at PH 1 h and 3 h. In the hydrogen gas treated-group, the MDA level was not significantly significant at pre-operation and significantly low at PH 1 h and 3 h comparing to Contrast-group (P = 0.0005, P = 0.0004). In Hydrogen-group, the HA level was also significantly low to Contrast-group (P = 0.0005, P = 0.0005) although the two groups all increased at PH 1 h and 3 h. The expression of cluster of differentiation molecule 31 molecules Hydrogen-group was low to Contrast-group. However, PCNA index (%) was not statistically significant between the two groups (P = 0.802). Microphotometric evaluation of apoptotic index (AI) in terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-stained tissue after hepatotectomy for 3h, the AI% level in the hydrogen was significantly low to Contrast-group (P = 0.012). There were no significant difference between Hydrogen-group and Contrast-group at pre-operation (P = 0.653, P = 0.423), but after massive hepatotectomy, the TNF-α and IL-6 levels increase, and its in Hydrogen-group was significantly low compared with Contrast-group (P = 0.022, P = 0.013, vs P = 0.016, P = 0.012), respectively. Hydrogen-gas inhalation reduce levels of these markers and relieved morphological liver injury and apoptosis.
CONCLUSION: H2 gas attenuates markedly ischemia and portal hyperperfusion injury in pigs with massive hepatotectomy, possibly by the reduction of inflammation and oxidative stress, maybe a potential agent for treatment in clinic.
Collapse
|