1
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Dutta AK, Boggs K, Khimji AK, Getachew Y, Wang Y, Kresge C, Rockey DC, Feranchak AP. Signaling through the interleukin-4 and interleukin-13 receptor complexes regulates cholangiocyte TMEM16A expression and biliary secretion. Am J Physiol Gastrointest Liver Physiol 2020; 318:G763-G771. [PMID: 32090602 PMCID: PMC7191463 DOI: 10.1152/ajpgi.00219.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TMEM16A is a Ca2+-activated Cl- channel in the apical membrane of biliary epithelial cells, known as cholangiocytes, which contributes importantly to ductular bile formation. Whereas cholangiocyte TMEM16A activity is regulated by extracellular ATP-binding membrane purinergic receptors, channel expression is regulated by interleukin-4 (IL-4) through an unknown mechanism. Therefore, the aim of the present study was to identify the signaling pathways involved in TMEM16A expression and cholangiocyte secretion. Studies were performed in polarized normal rat cholangiocyte monolayers, human Mz-Cha-1 biliary cells, and cholangiocytes isolated from murine liver tissue. The results demonstrate that all the biliary models expressed the IL-4Rα/IL-13Rα1 receptor complex. Incubation of cholangiocytes with either IL-13 or IL-4 increased the expression of TMEM16A protein, which was associated with an increase in the magnitude of Ca2+-activated Cl- currents in response to ATP in single cells and the short-circuit current response in polarized monolayers. The IL-4- and IL-13-mediated increase in TMEM16A expression was also associated with an increase in STAT6 phosphorylation. Specific inhibition of JAK-3 inhibited the increase in TMEM16A expression and the IL-4-mediated increase in ATP-stimulated currents, whereas inhibition of STAT6 inhibited both IL-4- and IL-13-mediated increases in TMEM16A expression and ATP-stimulated secretion. These studies demonstrate that the cytokines IL-13 and IL-4 regulate the expression and function of biliary TMEM16A channels through a signaling pathway involving STAT6. Identification of this regulatory pathway provides new insight into biliary secretion and suggests new targets to enhance bile formation in the treatment of cholestatic liver disorders.NEW & NOTEWORTHY The Ca2+-activated Cl- channel transmembrane member 16A (TMEM16A) has emerged as an important regulator of biliary secretion and hence, ductular bile formation. The present studies represent the initial description of the regulation of TMEM16A expression in biliary epithelium. Identification of this regulatory pathway involving the IL-4 and IL-13 receptor complex and JAK-3 and STAT-6 signaling provides new insight into biliary secretion and suggests new therapeutic targets to enhance bile formation in the treatment of cholestatic liver disorders.
Collapse
Affiliation(s)
- Amal K. Dutta
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kristy Boggs
- 4Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Al-karim Khimji
- 2Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yonas Getachew
- 2Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Youxue Wang
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Charles Kresge
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don C. Rockey
- 3Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew P. Feranchak
- 4Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER, Lauschke VM. Calcium Signaling in Liver Injury and Regeneration. Front Med (Lausanne) 2018; 5:192. [PMID: 30023358 PMCID: PMC6039545 DOI: 10.3389/fmed.2018.00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
The liver fulfills central roles in metabolic control and detoxification and, as such, is continuously exposed to a plethora of insults. Importantly, the liver has a unique ability to regenerate and can completely recoup from most acute, non-iterative insults. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease (NAFLD), long-term alcohol abuse and chronic use of certain medications, can cause persistent injury in which the regenerative capacity eventually becomes dysfunctional, resulting in hepatic scaring and cirrhosis. Calcium is a versatile secondary messenger that regulates multiple hepatic functions, including lipid and carbohydrate metabolism, as well as bile secretion and choleresis. Accordingly, dysregulation of calcium signaling is a hallmark of both acute and chronic liver diseases. In addition, recent research implicates calcium transients as essential components of liver regeneration. In this review, we provide a comprehensive overview of the role of calcium signaling in liver health and disease and discuss the importance of calcium in the orchestration of the ensuing regenerative response. Furthermore, we highlight similarities and differences in spatiotemporal calcium regulation between liver insults of different etiologies. Finally, we discuss intracellular calcium control as an emerging therapeutic target for liver injury and summarize recent clinical findings of calcium modulation for the treatment of ischemic-reperfusion injury, cholestasis and NAFLD.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simona Hankeova
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1220-1231. [PMID: 28716705 PMCID: PMC5777905 DOI: 10.1016/j.bbadis.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Angela C Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
5
|
Honrath B, Krabbendam IE, Culmsee C, Dolga AM. Small conductance Ca 2+-activated K + channels in the plasma membrane, mitochondria and the ER: Pharmacology and implications in neuronal diseases. Neurochem Int 2017; 109:13-23. [PMID: 28511953 DOI: 10.1016/j.neuint.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Ca2+-activated K+ (KCa) channels regulate after-hyperpolarization in many types of neurons in the central and peripheral nervous system. Small conductance Ca2+-activated K+ (KCa2/SK) channels, a subfamily of KCa channels, are widely expressed in the nervous system, and in the cardiovascular system. Voltage-independent SK channels are activated by alterations in intracellular Ca2+ ([Ca2+]i) which facilitates the opening of these channels through binding of Ca2+ to calmodulin that is constitutively bound to the SK2 C-terminus. In neurons, SK channels regulate synaptic plasticity and [Ca2+]i homeostasis, and a number of recent studies elaborated on the emerging neuroprotective potential of SK channel activation in conditions of excitotoxicity and cerebral ischemia, as well as endoplasmic reticulum (ER) stress and oxidative cell death. Recently, SK channels were discovered in the inner mitochondrial membrane and in the membrane of the endoplasmic reticulum which sheds new light on the underlying molecular mechanisms and pathways involved in SK channel-mediated protective effects. In this review, we will discuss the protective properties of pharmacological SK channel modulation with particular emphasis on intracellularly located SK channels as potential therapeutic targets in paradigms of neuronal dysfunction.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
6
|
Kim JY, An HJ, Kim WH, Park YY, Park KD, Park KK. Apamin suppresses biliary fibrosis and activation of hepatic stellate cells. Int J Mol Med 2017; 39:1188-1194. [PMID: 28405682 PMCID: PMC5403474 DOI: 10.3892/ijmm.2017.2922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Cholestatic liver disease is characterized by the progressive destruction of biliary epithelial cells (BECs) followed by fibrosis, cirrhosis and liver failure. Activated hepatic stellate cells (HSCs) and portal fibroblasts are the major cellular effectors of enhanced collagen deposition in biliary fibrosis. Apamin, an 18 amino acid peptide neurotoxin found in apitoxin (bee venom), is known to block Ca2+-activated K+ channels and prevent carbon tetrachloride-induced liver fibrosis. In the present study, we aimed to ascertain whether apamin inhibits biliary fibrosis and the proliferation of HSCs. Cholestatic liver fibrosis was established in mouse models with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Cellular assays were performed on HSC-T6 cells (rat immortalized HSCs). DDC feeding led to increased hepatic damage and proinflammtory cytokine levels. Notably, apamin treatment resulted in decreased liver injury and proinflammatory cytokine levels. Moreover, apamin suppressed the deposition of collagen, proliferation of BECs and expression of fibrogenic genes in the DDC-fed mice. In HSCs, apamin suppressed activation of HSCs by inhibiting the Smad signaling pathway. These data suggest that apamin may be a potential therapeutic target in cholestatic liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Kyung Duck Park
- Department of Dermatology, College of Medicine, Catholic University of Daegu, Daegu 705-718, Republic of Korea
| | | |
Collapse
|
7
|
Dutta AK, Khimji AK, Liu S, Karamysheva Z, Fujita A, Kresge C, Rockey DC, Feranchak AP. PKCα regulates TMEM16A-mediated Cl⁻ secretion in human biliary cells. Am J Physiol Gastrointest Liver Physiol 2016; 310:G34-42. [PMID: 26542395 PMCID: PMC4698437 DOI: 10.1152/ajpgi.00146.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/31/2015] [Indexed: 02/07/2023]
Abstract
TMEM16A is a newly identified Ca(2+)-activated Cl(-) channel in biliary epithelial cells (BECs) that is important in biliary secretion. While extracellular ATP stimulates TMEM16A via binding P2 receptors and increasing intracellular Ca(2+) concentration ([Ca(2+)]i), the regulatory pathways have not been elucidated. Protein kinase C (PKC) contributes to ATP-mediated secretion in BECs, although its potential role in TMEM16A regulation is unknown. To determine whether PKCα regulates the TMEM16A-dependent membrane Cl(-) transport in BECs, studies were performed in human biliary Mz-cha-1 cells. Addition of extracellular ATP induced a rapid translocation of PKCα from the cytosol to the plasma membrane and activation of whole cell Ca(2+)-activated Cl(-) currents. Currents demonstrated outward rectification and reversal at 0 mV (properties consistent with TMEM16A) and were inhibited by either molecular (siRNA) or pharmacologic (PMA or Gö6976) inhibition of PKCα. Intracellular dialysis with recombinant PKCα activated Cl(-) currents with biophysical properties identical to TMEM16A in control cells but not in cells after transfection with TMEM16A siRNA. In conclusion, our studies demonstrate that PKCα is coupled to ATP-stimulated TMEM16A activation in BECs. Targeting this ATP-Ca(2+)-PKCα signaling pathway may represent a therapeutic strategy to increase biliary secretion and promote bile formation.
Collapse
Affiliation(s)
- Amal K. Dutta
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| | | | - Songling Liu
- 4Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Zemfira Karamysheva
- 3Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Akiko Fujita
- 2Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Charles Kresge
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Don C. Rockey
- 4Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew P. Feranchak
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
8
|
Venglovecz V, Rakonczay Z, Gray MA, Hegyi P. Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 2015; 467:625-640. [PMID: 25074489 DOI: 10.1007/s00424-014-1585-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal epithelial cells play a fundamental role in HCO3 (-) secretion, a process which is essential for maintaining the integrity of the pancreas. Although several studies have implicated impaired HCO3 (-) and fluid secretion as a triggering factor in the development of pancreatitis, the mechanism and regulation of HCO3 (-) secretion is still not completely understood. To date, most studies on the ion transporters that orchestrate ductal HCO3 (-) secretion have focussed on the role of Cl(-)/HCO3 (-) exchangers and Cl(-) channels, whereas much less is known about the role of K(+) channels. However, there is growing evidence that many types of K(+) channels are present in ductal cells where they have an essential role in establishing and maintaining the electrochemical driving force for anion secretion. For this reason, strategies that increase K(+) channel function may help to restore impaired HCO3 (-) and fluid secretion, such as in pancreatitis, and therefore provide novel directions for future pancreatic therapy. In this review, our aims are to summarize the types of K(+) channels found in pancreatic ductal cells and to discuss their individual roles in ductal HCO3 (-) secretion. We will also describe how K(+) channels are involved in pathophysiological conditions and discuss how they could act as new molecular targets for the development of therapeutic approaches to treat pancreatic diseases.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary,
| | | | | | | |
Collapse
|
9
|
Wang J, Xiang M. Targeting potassium channels Kv1.3 and KC a 3.1: routes to selective immunomodulators in autoimmune disorder treatment? Pharmacotherapy 2013; 33:515-28. [PMID: 23649812 DOI: 10.1002/phar.1236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Kv1.3 and KC a 3.1 potassium channels are promising targets for the treatment of autoimmune disorders. Many Kv1.3 and KC a 3.1 blockers have a more favorable adverse event profiles than existing immunosuppressants, suggesting the selectivity of Kv1.3 and KC a 3.1 blockade. The Kv1.3 and KC a 3.1 blockers exert differential effects in different autoimmune diseases. The Kv1.3 inhibitors or gene deletion have been shown to have benefits in multiple sclerosis, type 1 diabetes, rheumatoid arthritis, psoriasis, and rapidly progressive glomerulonephritis. The KC a 3.1 blockers have demonstrated efficacy in human primary biliary cirrhosis and showed protective effects in animal models of severe colitis, allergic encephalomyelitis, inflammatory bowel disease, and multiple sclerosis. The KC a 3.1 blockers are not considered candidates for treatment of multiple sclerosis. The selective immunosuppressive effects of the Kv1.3 and KC a 3.1 blockers are due to the differences in their distribution on autoimmune-related immune cells and tissues and β1 integrin (very late activating antigen)-Kv1.3 channel cross-talk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
10
|
Dutta AK, Woo K, Khimji AK, Kresge C, Feranchak AP. Mechanosensitive Cl- secretion in biliary epithelium mediated through TMEM16A. Am J Physiol Gastrointest Liver Physiol 2013; 304:G87-98. [PMID: 23104560 PMCID: PMC3543635 DOI: 10.1152/ajpgi.00154.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile formation by the liver is initiated by canalicular transport at the hepatocyte membrane, leading to an increase in ductular bile flow. Thus, bile duct epithelial cells (cholangiocytes), which contribute to the volume and dilution of bile through regulated Cl(-) transport, are exposed to changes in flow and shear force at the apical membrane. The aim of the present study was to determine if fluid flow, or shear stress, is a signal regulating cholangiocyte transport. The results demonstrate that, in human and mouse biliary cells, fluid flow, or shear, increases Cl(-) currents and identify TMEM16A, a Ca(2+)-activated Cl(-) channel, as the operative channel. Furthermore, activation of TMEM16A by flow is dependent on PKCα through a process involving extracellular ATP, binding purinergic P2 receptors, and increases in intracellular Ca(2+) concentration. These studies represent the initial characterization of mechanosensitive Cl(-) currents mediated by TMEM16A. Identification of this novel mechanosensitive secretory pathway provides new insight into bile formation and suggests new therapeutic targets to enhance bile formation in the treatment of cholestatic liver disorders.
Collapse
Affiliation(s)
- Amal K. Dutta
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Kangmee Woo
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Al-karim Khimji
- 2Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Charles Kresge
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Andrew P. Feranchak
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
11
|
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic ducts of the biliary tree. The main physiologic function of cholangiocytes is modification of hepatocyte-derived bile, an intricate process regulated by hormones, peptides, nucleotides, neurotransmitters, and other molecules through intracellular signaling pathways and cascades. The mechanisms and regulation of bile modification are reviewed herein.
Collapse
|
12
|
Hollenhorst MI, Lips KS, Wolff M, Wess J, Gerbig S, Takats Z, Kummer W, Fronius M. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca²⁺-dependent Cl⁻ and K⁺ channels. Br J Pharmacol 2012; 166:1388-402. [PMID: 22300281 DOI: 10.1111/j.1476-5381.2012.01883.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1-3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC₅₀: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na⁺-channel inhibitor amiloride. The Cl⁻-channel inhibitor niflumic acid or the K⁺-channel blocker Ba²⁺ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M₁ and M₃. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways.
Collapse
Affiliation(s)
- Monika I Hollenhorst
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mulholland PJ. K(Ca)2 channels: novel therapeutic targets for treating alcohol withdrawal and escalation of alcohol consumption. Alcohol 2012; 46:309-15. [PMID: 22464787 DOI: 10.1016/j.alcohol.2011.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 01/07/2023]
Abstract
Small-conductance, calcium-activated potassium (K(Ca)2) channels influence neuronal firing properties, intrinsic excitability, and NMDA receptor-dependent synaptic responses and plasticity. In this mini-review, we discuss new evidence that chronic alcohol-associated plasticity critically involves K(Ca)2 channels in hippocampus, ventral tegmental area, and nucleus accumbens. K(Ca)2 channel activity can modulate the magnitude of excitation of midbrain dopamine neurons induced by acute alcohol exposure. Emerging evidence indicates that K(Ca)2 channels regulate neuroadaptations to chronic alcohol that contribute to withdrawal hyperexcitability and escalation of voluntary alcohol consumption. Restoring K(Ca)2 channel activity can attenuate the severity of the alcohol withdrawal syndrome in vivo and withdrawal-associated neurotoxicity in vitro. Pharmacological modulation of K(Ca)2 channels can bi-directionally influence drinking behavior in rat and mouse models of voluntary alcohol consumption. Collectively, these studies using various rodent models have clearly indicated a central role for K(Ca)2 channels in the neuroplasticity of chronic alcohol exposure. In addition, accumulating evidence suggests that K(Ca)2 channels are a novel therapeutic target to alleviate the symptoms of alcohol withdrawal and reduce high amounts of alcohol drinking.
Collapse
|
14
|
Novak I. Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol (Oxf) 2011; 202:501-22. [PMID: 21073662 DOI: 10.1111/j.1748-1716.2010.02225.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular ATP, the energy source for many reactions, is crucial for the activity of plasma membrane pumps and, thus, for the maintenance of transmembrane ion gradients. Nevertheless, ATP and other nucleotides/nucleosides are also extracellular molecules that regulate diverse cellular functions, including ion transport. In this review, I will first introduce the main components of the extracellular ATP signalling, which have become known as the purinergic signalling system. With more than 50 components or processes, just at cell membranes, it ranks as one of the most versatile signalling systems. This multitude of system components may enable differentiated regulation of diverse epithelial functions. As epithelia probably face the widest variety of potential ATP-releasing stimuli, a special attention will be given to stimuli and mechanisms of ATP release with a focus on exocytosis. Subsequently, I will consider membrane transport of major ions (Cl(-) , HCO(3)(-) , K(+) and Na(+) ) and integrate possible regulatory functions of P2Y2, P2Y4, P2Y6, P2Y11, P2X4, P2X7 and adenosine receptors in some selected epithelia at the cellular level. Some purinergic receptors have noteworthy roles. For example, many studies to date indicate that the P2Y2 receptor is one common denominator in regulating ion channels on both the luminal and basolateral membranes of both secretory and absorptive epithelia. In exocrine glands though, P2X4 and P2X7 receptors act as cation channels and, possibly, as co-regulators of secretion. On an organ level, both receptor types can exert physiological functions and together with other partners in the purinergic signalling, integrated models for epithelial secretion and absorption are emerging.
Collapse
Affiliation(s)
- I Novak
- Department of Biology, August Krogh Building, University of Copenhagen, Denmark.
| |
Collapse
|
15
|
Sathe MN, Woo K, Kresge C, Bugde A, Luby-Phelps K, Lewis MA, Feranchak AP. Regulation of purinergic signaling in biliary epithelial cells by exocytosis of SLC17A9-dependent ATP-enriched vesicles. J Biol Chem 2011; 286:25363-76. [PMID: 21613220 DOI: 10.1074/jbc.m111.232868] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ATP in bile is a potent secretogogue, stimulating biliary epithelial cell (BEC) secretion through binding apical purinergic receptors. In response to mechanosensitive stimuli, BECs release ATP into bile, although the cellular basis of ATP release is unknown. The aims of this study in human and mouse BECs were to determine whether ATP release occurs via exocytosis of ATP-enriched vesicles and to elucidate the potential role of the vesicular nucleotide transporter SLC17A9 in purinergic signaling. Dynamic, multiscale, live cell imaging (confocal and total internal reflection fluorescence microscopy and a luminescence detection system with a high sensitivity charge-coupled device camera) was utilized to detect vesicular ATP release from cell populations, single cells, and the submembrane space of a single cell. In response to increases in cell volume, BECs release ATP, which was dependent on intact microtubules and vesicular trafficking pathways. ATP release occurred as stochastic point source bursts of luminescence consistent with exocytic events. Parallel studies identified ATP-enriched vesicles ranging in size from 0.4 to 1 μm that underwent fusion and release in response to increases in cell volume in a protein kinase C-dependent manner. Present in all models, SLC17A9 contributed to ATP vesicle formation and regulated ATP release. The findings are consistent with the existence of an SLC17A9-dependent ATP-enriched vesicular pool in biliary epithelium that undergoes regulated exocytosis to initiate purinergic signaling.
Collapse
Affiliation(s)
- Meghana N Sathe
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Mulholland PJ, Becker HC, Woodward JJ, Chandler LJ. Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses. Biol Psychiatry 2011; 69:625-32. [PMID: 21056409 PMCID: PMC3103782 DOI: 10.1016/j.biopsych.2010.09.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND Small conductance calcium-activated potassium type 2 channels (SK2) control excitability and contribute to plasticity by reducing excitatory postsynaptic potentials. Recent evidence suggests that SK2 channels form a calcium-dependent negative-feedback loop with synaptic N-methyl-D-aspartate (NMDA) receptors. Addiction to alcohol and other drugs of abuse induces plastic changes in glutamatergic synapses that include the targeting of NMDA receptors to synaptic sites; however, the role of SK2 channels in alcohol-associated homeostatic plasticity is unknown. METHODS Electrophysiology, Western blot, and behavioral analyses were used to quantify changes in hippocampal small conductance calcium-activated potassium (SK) channel function and expression using well-characterized in vitro and in vivo models of chronic alcohol exposure. RESULTS Chronic ethanol reduced apamin-sensitive SK currents in cornu ammonis 1 pyramidal neurons that were associated with a downregulation of surface SK2 channels. Blocking SK channels with apamin potentiated excitatory postsynaptic potentials in control but not ethanol-treated cornu ammonis 1 pyramidal neurons, suggesting that chronic ethanol disrupts the SK channel-NMDA receptor feedback loop. Alcohol reduced expression of SK2 channels and increased expression of NMDA receptors at synaptic sites in a mouse model. Positive modulation of SK function by 1-EBIO decreased alcohol withdrawal hyperexcitability and attenuated ethanol withdrawal neurotoxicity in hippocampus. The 1-EBIO also reduced seizure activity in mice undergoing withdrawal. CONCLUSIONS These results provide evidence that SK2 channels contribute to alcohol-associated adaptive plasticity of glutamatergic synapses and that positive modulation of SK channels reduces the severity of withdrawal-related hyperexcitability. Therefore, SK2 channels appear to be critical regulators of alcohol-associated plasticity and may be novel therapeutic targets for the treatment of addiction.
Collapse
Affiliation(s)
- Patrick J. Mulholland
- Department of Neurosciences, Medical University of South Carolina, 67 President Street, Charleston, SC, 29425
| | - Howard C. Becker
- Department of Psychiatry and VAMC, Medical University of South Carolina, 67 President Street, Charleston, SC, 29425
| | - John J. Woodward
- Department of Neurosciences, Medical University of South Carolina, 67 President Street, Charleston, SC, 29425
| | - L. Judson Chandler
- Department of Neurosciences, Medical University of South Carolina, 67 President Street, Charleston, SC, 29425
| |
Collapse
|
17
|
Dutta AK, Khimji AK, Kresge C, Bugde A, Dougherty M, Esser V, Ueno Y, Glaser SS, Alpini G, Rockey DC, Feranchak AP. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl- channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem 2010; 286:766-76. [PMID: 21041307 DOI: 10.1074/jbc.m110.164970] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cl(-) channels in the apical membrane of biliary epithelial cells (BECs) provide the driving force for ductular bile formation. Although a cystic fibrosis transmembrane conductance regulator has been identified in BECs and contributes to secretion via secretin binding basolateral receptors and increasing [cAMP](i), an alternate Cl(-) secretory pathway has been identified that is activated via nucleotides (ATP, UTP) binding apical P2 receptors and increasing [Ca(2+)](i). The molecular identity of this Ca(2+)-activated Cl(-) channel is unknown. The present studies in human, mouse, and rat BECs provide evidence that TMEM16A is the operative channel and contributes to Ca(2+)-activated Cl(-) secretion in response to extracellular nucleotides. Furthermore, Cl(-) currents measured from BECs isolated from distinct areas of intrahepatic bile ducts revealed important functional differences. Large BECs, but not small BECs, exhibit cAMP-stimulated Cl(-) currents. However, both large and small BECs express TMEM16A and exhibit Ca(2+)-activated Cl(-) efflux in response to extracellular nucleotides. Incubation of polarized BEC monolayers with IL-4 increased TMEM16A protein expression, membrane localization, and transepithelial secretion (I(sc)). These studies represent the first molecular identification of an alternate, noncystic fibrosis transmembrane conductance regulator, Cl(-) channel in BECs and suggest that TMEM16A may be a potential target to modulate bile formation in the treatment of cholestatic liver disorders.
Collapse
Affiliation(s)
- Amal K Dutta
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9063, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Woo K, Sathe M, Kresge C, Esser V, Ueno Y, Venter J, Glaser SS, Alpini G, Feranchak AP. Adenosine triphosphate release and purinergic (P2) receptor-mediated secretion in small and large mouse cholangiocytes. Hepatology 2010; 52:1819-28. [PMID: 20827720 PMCID: PMC2967625 DOI: 10.1002/hep.23883] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Adenosine triphosphate (ATP) is released from cholangiocytes into bile and is a potent secretogogue by increasing intracellular Ca²(+) and stimulating fluid and electrolyte secretion via binding purinergic (P2) receptors on the apical membrane. Although morphological differences exist between small and large cholangiocytes (lining small and large bile ducts, respectively), the role of P2 signaling has not been previously evaluated along the intrahepatic biliary epithelium. The aim of these studies therefore was to characterize ATP release and P2-signaling pathways in small (MSC) and large (MLC) mouse cholangiocytes. The findings reveal that both MSCs and MLCs express P2 receptors, including P2X4 and P2Y2. Exposure to extracellular nucleotides (ATP, uridine triphosphate, or 2',3'-O-[4-benzoyl-benzoyl]-ATP) caused a rapid increase in intracellular Ca²(+) concentration and in transepithelial secretion (I(sc)) in both cell types, which was inhibited by the Cl(-) channel blockers 5-nitro-2-(-3-phenylpropylamino)-benzoic acid (NPPB) or niflumic acid. In response to mechanical stimulation (flow/shear or cell swelling secondary to hypotonic exposure), both MSCs and MLCs exhibited a significant increase in the rate of exocytosis, which was paralleled by an increase in ATP release. Mechanosensitive ATP release was two-fold greater in MSCs compared to MLCs. ATP release was significantly inhibited by disruption of vesicular trafficking by monensin in both cell types. CONCLUSION These findings suggest the existence of a P2 signaling axis along intrahepatic biliary ducts with the "upstream" MSCs releasing ATP, which can serve as a paracrine signaling molecule to "downstream" MLCs stimulating Ca²(+)-dependent secretion. Additionally, in MSCs, which do not express the cystic fibrosis transmembrane conductance regulator, Ca²(+)-activated Cl(-) efflux in response to extracellular nucleotides represents the first secretory pathway clearly identified in these cholangiocytes derived from the small intrahepatic ducts.
Collapse
Affiliation(s)
- Kangmee Woo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| | - Meghana Sathe
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| | - Charles Kresge
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| | - Victoria Esser
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| | | | - Julie Venter
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Shannon S. Glaser
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center College of Medicine, Temple, TX,Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Andrew P. Feranchak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| |
Collapse
|
19
|
Abstract
The saccule is a vestibular sensory organ that depends upon regulation of its luminal fluid, endolymph, for normal transduction of linear acceleration into afferent neural transmission. Previous studies suggested that endolymph in the saccule was merely derived from cochlear endolymph. We developed and used a preparation of isolated mouse saccule to measure transepithelial currents from the extramacular epithelium with a current density probe. The direction and pharmacology of transepithelial current was consistent with Na(+) absorption by the epithelial Na(+) channel (ENaC) and was blocked by the ENaC-specific inhibitors benzamil and amiloride. Involvement of Na(+),K(+)-ATPase and K(+) channels was demonstrated by reduction of the current by ouabain and the K(+) channel blockers Ba(2+), XE991, and 4-AP. Glucocorticoids upregulated the current via glucocorticoid receptors. Dexamethasone stimulated the current after 24 h and the stimulation was blocked by mifepristone but not spironolactone. No acute response was observed to elevated cAMP in the presence of amiloride nor to bumetanide, a blocker of Na(+),K(+),2Cl(-) cotransporter. The results are consistent with a canonical model of corticosteroid-regulated Na(+) absorption that includes entry of luminal Na(+) through apical membrane Na(+) channels and active basolateral exit of Na(+) via a Na(+) pump, with recycling of K(+) at the basolateral membrane via K(+)-permeable channels. These observations provide our first understanding of the active role played by saccular epithelium in the local regulation of the [Na(+)] of endolymph for maintenance of our sense of balance.
Collapse
|