1
|
Cagnasso F, Suchodolski JS, Borrelli A, Borella F, Bottero E, Benvenuti E, Ferriani R, Tolbert MK, Chen CC, Giaretta PR, Gianella P. Dysbiosis index and fecal concentrations of sterols, long-chain fatty acids and unconjugated bile acids in dogs with inflammatory protein-losing enteropathy. Front Microbiol 2024; 15:1433175. [PMID: 39464397 PMCID: PMC11505111 DOI: 10.3389/fmicb.2024.1433175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Canine protein-losing enteropathy (PLE) is a syndrome characterized by gastrointestinal loss of proteins. While fecal microbiome and metabolome perturbations have been reported in dogs with chronic enteropathy, they have not been widely studied in dogs with PLE. Therefore, the study aims were to investigate gut microbiome and targeted fecal metabolites in dogs with inflammatory PLE (iPLE) and evaluate whether treatment affects these changes at short-term follow-up. Methods Thirty-eight dogs with PLE and histopathological evidence of gastrointestinal inflammation and 47 healthy dogs were enrolled. Fecal samples were collected before endoscopy (T0) and after one month of therapy (T1). Microbiome and metabolome alterations were investigated using qPCR assays (dysbiosis index, DI) and gas chromatography/mass spectrometry (long-chain fatty acids, sterols, unconjugated bile acids), respectively. Results Median (min-max) DI of iPLE dogs was 0.4 (-5.9 to 7.7) and was significantly higher (p < 0.0001) than median DI in healthy dogs [-2.0 (-6.0 to 5.3)]. No significant associations were found between DI and selected clinicopathological variables. DI did not significantly differ between T0 and T1. In iPLE dogs, at T0, myristic, palmitic, linoleic, oleic, cis-vaccenic, stearic, arachidonic, gondoic, docosanoic, erucic, and nervonic acids were significantly higher (p < 0.0001) than healthy dogs. In iPLE dogs, oleic acid (p = 0.044), stearic acid (p = 0.013), erucic acid (p = 0.018) and nervonic acid (p = 0.002) were significantly decreased at T1. At T0, cholesterol and lathosterol (p < 0.0001) were significantly higher in iPLE dogs compared to healthy dogs, while total measured phytosterols were significantly lower (p = 0.001). No significant differences in total sterols, total phytosterols and total zoosterols content were found at T1, compared to T0. At T0, total primary bile acids and total secondary bile acids did not significantly differ between healthy control dogs and iPLE dogs. No significant differences in fecal bile acid content were found at T1. Discussion Dysbiosis and lipid metabolism perturbations were observed in dogs with iPLE. Different therapeutic protocols lead to an improvement of some but not all metabolome perturbations at short-term follow-up.
Collapse
Affiliation(s)
- Federica Cagnasso
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Antonio Borrelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Franca Borella
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | | | | | - M. Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Chih-Chun Chen
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paula R. Giaretta
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paola Gianella
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
2
|
Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol 2024; 153:1169-1180. [PMID: 38369030 PMCID: PMC11070312 DOI: 10.1016/j.jaci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Collapse
Affiliation(s)
- Elizabeth Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Allen Discovery Center for Neuroimmune Interactions, New York, NY; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
3
|
Chen Z, Li J, Ma Q, Pikov V, Li M, Wang L, Liu Y, Ni M. Anti-Inflammatory Effects of Two-Week Sacral Nerve Stimulation Therapy in Patients With Ulcerative Colitis. Neuromodulation 2024; 27:360-371. [PMID: 37055336 DOI: 10.1016/j.neurom.2023.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND AND AIMS Sacral nerve stimulation (SNS) showed anti-inflammatory properties in animal models of inflammatory bowel disease. We aimed to evaluate the effectiveness and safety of SNS in patients with ulcerative colitis (UC). MATERIALS AND METHODS Twenty-six patients with mild and moderate disease were randomized into two groups: SNS (delivered at S3 and S4 sacral foramina) and sham-SNS (delivered 8-10 mm away from sacral foramina), with the therapy applied once daily for one hour, for two weeks. We evaluated the Mayo score and several exploratory biomarkers, including C-reactive protein in the plasma, pro-inflammatory cytokines and norepinephrine in the serum, assessment of autonomic activity, and diversity and abundance of fecal microbiota species. RESULTS After two weeks, 73% of the subjects in the SNS group achieved clinical response, compared with 27% in the sham-SNS group. Levels of C-reactive protein, pro-inflammatory cytokines in the serum, and autonomic activity were significantly improved toward a healthy profile in the SNS group but not in the sham-SNS group. Absolute abundance of fecal microbiota species and one of the metabolic pathways were changed in the SNS group but not in the sham-SNS group. Significant correlations were observed between pro-inflammatory cytokines and norepinephrine in the serum on the one side and fecal microbiota phyla on the other side. CONCLUSIONS Patients with mild and moderate UC were responsive to a two-week SNS therapy. After performing further studies to evaluate its efficacy and safety, temporary SNS delivered through acupuncture needles may become a useful screening tool for identifying SNS therapy responders before considering long-term implantation of the implantable pulse generator and SNS leads for performing long-term SNS therapy.
Collapse
Affiliation(s)
- Zhengxin Chen
- National Center for Colorectal Diseases, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Qiyao Ma
- Graduate School, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China; Anorectal Surgery of Zhongda Hospital Southeast University, Nanjing, Jiangsu Province, China
| | | | - Min Li
- National Center for Colorectal Diseases, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ling Wang
- Graduate School, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ying Liu
- National Center for Colorectal Diseases, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Min Ni
- National Center for Colorectal Diseases, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Ten Hove AS, Mallesh S, Zafeiropoulou K, de Kleer JWM, van Hamersveld PHP, Welting O, Hakvoort TBM, Wehner S, Seppen J, de Jonge WJ. Sympathetic activity regulates epithelial proliferation and wound healing via adrenergic receptor α 2A. Sci Rep 2023; 13:17990. [PMID: 37863979 PMCID: PMC10589335 DOI: 10.1038/s41598-023-45160-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
Innervation of the intestinal mucosa by the sympathetic nervous system is well described but the effects of adrenergic receptor stimulation on the intestinal epithelium remain equivocal. We therefore investigated the effect of sympathetic neuronal activation on intestinal cells in mouse models and organoid cultures, to identify the molecular routes involved. Using publicly available single-cell RNA sequencing datasets we show that the α2A isoform is the most abundant adrenergic receptor in small intestinal epithelial cells. Stimulation of this receptor with norepinephrine or a synthetic specific α2A receptor agonist promotes epithelial proliferation and stem cell function, while reducing differentiation in vivo and in intestinal organoids. In an anastomotic healing mouse model, adrenergic receptor α2A stimulation resulted in improved anastomotic healing, while surgical sympathectomy augmented anastomotic leak. Furthermore, stimulation of this receptor led to profound changes in the microbial composition, likely because of altered epithelial antimicrobial peptide secretion. Thus, we established that adrenergic receptor α2A is the molecular delegate of intestinal epithelial sympathetic activity controlling epithelial proliferation, differentiation, and host defense. Therefore, this receptor could serve as a newly identified molecular target to improve mucosal healing in intestinal inflammation and wounding.
Collapse
Affiliation(s)
- Anne S Ten Hove
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
| | - Shilpashree Mallesh
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Konstantina Zafeiropoulou
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Janna W M de Kleer
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Sven Wehner
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Frick LD, Hankir MK, Borner T, Malagola E, File B, Gero D. Novel Insights into the Physiology of Nutrient Sensing and Gut-Brain Communication in Surgical and Experimental Obesity Therapy. Obes Surg 2023; 33:2906-2916. [PMID: 37474864 PMCID: PMC10435392 DOI: 10.1007/s11695-023-06739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Despite standardized surgical technique and peri-operative care, metabolic outcomes of bariatric surgery are not uniform. Adaptive changes in brain function may play a crucial role in achieving optimal postbariatric weight loss. This review follows the anatomic-physiologic structure of the postbariatric nutrient-gut-brain communication chain through its key stations and provides a concise summary of recent findings in bariatric physiology, with a special focus on the composition of the intestinal milieu, intestinal nutrient sensing, vagal nerve-mediated gastrointestinal satiation signals, circulating hormones and nutrients, as well as descending neural signals from the forebrain. The results of interventional studies using brain or vagal nerve stimulation to induce weight loss are also summarized. Ultimately, suggestions are made for future diagnostic and therapeutic research for the treatment of obesity.
Collapse
Affiliation(s)
- Lukas D Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bálint File
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Wigner Research Centre for Physics, Budapest, Hungary
| | - Daniel Gero
- Department of Surgery and Transplantation, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zürich, Switzerland.
| |
Collapse
|
6
|
Che YH, Choi IY, Song CE, Park C, Lim SK, Kim JH, Sung SH, Park JH, Lee S, Kim YJ. Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion. Int J Stem Cells 2023; 16:269-280. [PMID: 37385635 PMCID: PMC10465334 DOI: 10.15283/ijsc23026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 07/01/2023] Open
Abstract
Background and Objectives The colonic epithelial layer is a complex structure consisting of multiple cell types that regulate various aspects of colonic physiology, yet the mechanisms underlying epithelial cell differentiation during development remain unclear. Organoids have emerged as a promising model for investigating organogenesis, but achieving organ-like cell configurations within colonic organoids is challenging. Here, we investigated the biological significance of peripheral neurons in the formation of colonic organoids. Methods and Results Colonic organoids were co-cultured with human embryonic stem cell (hESC)-derived peripheral neurons, resulting in the morphological maturation of columnar epithelial cells, as well as the presence of enterochromaffin cells. Substance P released from immature peripheral neurons played a critical role in the development of colonic epithelial cells. These findings highlight the vital role of inter-organ interactions in organoid development and provide insights into colonic epithelial cell differentiation mechanisms. Conclusions Our results suggest that the peripheral nervous system may have a significant role in the development of colonic epithelial cells, which could have important implications for future studies of organogenesis and disease modeling.
Collapse
Affiliation(s)
- Young Hyun Che
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - In Young Choi
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chan Eui Song
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chulsoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seung Kwon Lim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jeong Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Su Haeng Sung
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae Hoon Park
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sun Lee
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
7
|
Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium. Curr Top Dev Biol 2023; 153:281-326. [PMID: 36967198 DOI: 10.1016/bs.ctdb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal epithelium plays a key role in digestion and protection against external pathogens. This tissue presents a high cellular turnover with the epithelium being completely renewed every 5days, driven by intestinal stem cells (ISCs) residing in the crypt bases. To sustain this dynamic renewal of the intestinal epithelium, the maintenance, proliferation, and differentiation of ISCs must be precisely controlled. One of the central pathways supporting ISC maintenance and dynamics is the Wnt pathway. In this chapter, we examine the role of Wnt signaling in intestinal epithelial homeostasis and tissue regeneration, including mechanisms regulating ISC identity and fine-tuning of Wnt pathway activation. We extensively discuss the contribution of the stem cell niche in maintaining Wnt signaling in the intestinal crypts that support ISC functions. The integration of these findings highlights the complex interplay of multiple niche signals and cellular components sustaining ISC behavior and maintenance, which together supports the immense plasticity of the intestinal epithelium.
Collapse
|
8
|
Sympathetic Innervation Modulates Mucosal Immune Homeostasis and Epithelial Host Defense. Cells 2022; 11:cells11162606. [PMID: 36010681 PMCID: PMC9406312 DOI: 10.3390/cells11162606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/20/2022] Open
Abstract
Intestinal mucosal cells, such as resident macrophages and epithelial cells, express adrenergic receptors and are receptive to norepinephrine, the primary neurotransmitter of the sympathetic nervous system (SNS). It has been suggested that the SNS affects intestinal immune activity in conditions, such as inflammatory bowel disease; however, the underlying mechanisms remain ambiguous. Here, we investigated the effect of SNS on mucosal immune and epithelial cell functions. We employed 6-OHDA-induced sympathetic denervation (cSTX) to characterize muscularis-free mucosal transcriptomes by RNA-seq and qPCR, and quantified mucosal immune cells by flow cytometry. The role of norepinephrine and cytokines on epithelial functions was studied using small intestinal organoids. cSTX increased the presence of activated CD68+CD86+ macrophages and monocytes in the mucosa. In addition, through transcriptional profiling, the proinflammatory cytokines IL-1β, TNF-α, and IFN-γ were induced, while Arg-1 and CD163 expression was reduced. Further, cSTX increased intestinal permeability in vivo and induced genes involved in barrier integrity and antimicrobial defense. In intestinal organoids, similar alterations were observed after treatment with proinflammatory cytokines, but not norepinephrine. We conclude that a loss in sympathetic input induces a proinflammatory mucosal state, leading to reduced epithelial barrier functioning and enhanced antimicrobial defense. This implies that the SNS might be required to maintain intestinal immune functions during homeostasis.
Collapse
|
9
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
10
|
Inclan-Rico JM, Rossi HL, Herbert DR. "Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity". Mucosal Immunol 2022; 15:1199-1211. [PMID: 35538230 PMCID: PMC9646929 DOI: 10.1038/s41385-022-00518-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Helminths are remarkably successful parasites that can invade various mammalian hosts and establish chronic infections that can go unnoticed for years despite causing severe tissue damage. To complete their life cycles, helminths migrate through multiple barrier sites that are densely populated by a complex array of hematopoietic and non-hematopoietic cells. While it is clear that type 2 cytokine responses elicited by immune cells promote worm clearance and tissue healing, the actions of non-hematopoietic cells are increasingly recognized as initiators, effectors and regulators of anti-helminth immunity. This review will highlight the collective actions of specialized epithelial cells, stromal niches, stem, muscle and neuroendocrine cells as well as peripheral neurons in the detection and elimination of helminths at mucosal sites. Studies dissecting the interactions between immune and non-hematopoietic cells will truly provide a better understanding of the mechanisms that ensure homeostasis in the context of helminth infections.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|