1
|
Butiaeva LI, Slutzki T, Swick HE, Bourguignon C, Robins SC, Liu X, Storch KF, Kokoeva MV. Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin. Cell Metab 2021; 33:1433-1448.e5. [PMID: 34129812 DOI: 10.1016/j.cmet.2021.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Knowledge of how leptin receptor (LepR) neurons of the mediobasal hypothalamus (MBH) access circulating leptin is still rudimentary. Employing intravital microscopy, we found that almost half of the blood-vessel-enwrapping pericytes in the MBH express LepR. Selective disruption of pericytic LepR led to increased food intake, increased fat mass, and loss of leptin-dependent signaling in nearby LepR neurons. When delivered intravenously, fluorescently tagged leptin accumulated at hypothalamic LepR pericytes, which was attenuated upon pericyte-specific LepR loss. Because a paracellular tracer was also preferentially retained at LepR pericytes, we pharmacologically targeted regulators of inter-endothelial junction tightness and found that they affect LepR neuronal signaling and food intake. Optical imaging in MBH slices revealed a long-lasting, tonic calcium increase in LepR pericytes in response to leptin, suggesting pericytic contraction and vessel constriction. Together, our data indicate that LepR pericytes facilitate localized, paracellular blood-brain barrier leaks, enabling MBH LepR neurons to access circulating leptin.
Collapse
Affiliation(s)
- Liliia I Butiaeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Tal Slutzki
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Hannah E Swick
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Clément Bourguignon
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Sarah C Robins
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Xiaohong Liu
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada
| | - Maia V Kokoeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada.
| |
Collapse
|
2
|
Abstract
Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.
Collapse
Affiliation(s)
- Xinchun Pi
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Liang Xie
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock (C.P.)
| |
Collapse
|
3
|
Abot A, Lucas A, Bautzova T, Bessac A, Fournel A, Le-Gonidec S, Valet P, Moro C, Cani PD, Knauf C. Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons. Mol Metab 2018; 10:100-108. [PMID: 29428595 PMCID: PMC5985240 DOI: 10.1016/j.molmet.2018.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Objective Decreasing duodenal contraction is now considered as a major focus for the treatment of type 2 diabetes. Therefore, identifying bioactive molecules able to target the enteric nervous system, which controls the motility of intestinal smooth muscle cells, represents a new therapeutic avenue. For this reason, we chose to study the impact of oral galanin on this system in diabetic mice. Methods Enteric neurotransmission, duodenal contraction, glucose absorption, modification of gut–brain axis, and glucose metabolism (glucose tolerance, insulinemia, glucose entry in tissue, hepatic glucose metabolism) were assessed. Results We show that galanin, a neuropeptide expressed in the small intestine, decreases duodenal contraction by stimulating nitric oxide release from enteric neurons. This is associated with modification of hypothalamic nitric oxide release that favors glucose uptake in metabolic tissues such as skeletal muscle, liver, and adipose tissue. Oral chronic gavage with galanin in diabetic mice increases insulin sensitivity, which is associated with an improvement of several metabolic parameters such as glucose tolerance, fasting blood glucose, and insulin. Conclusion Here, we demonstrate that oral galanin administration improves glucose homeostasis via the enteric nervous system and could be considered a therapeutic potential for the treatment of T2D. Targeting the enteric nervous system (ENS) is an innovative solution to treat diabetes. The ENS controls duodenal contractions to modulate glycemia via the gut–brain axis. ENS/contractions are targeted by the neuropeptide galanin in the intestine. Oral galanin treatment decreases duodenal hyper-contractility in diabetic mice. Oral galanin restores the gut–brain axis to improve glycemia in diabetic mice.
Collapse
Affiliation(s)
- Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France; NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Tereza Bautzova
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France; NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, France
| | - Arnaud Bessac
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France; NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, France
| | - Audren Fournel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France; NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, France
| | - Sophie Le-Gonidec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Cédric Moro
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Université Paul Sabatier, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, 1 Avenue Jean Poulhès, BP84225, 31432 Toulouse Cedex 4, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, France; Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Avenue E. Mounier, 73 B1.73.11, B-1200, Brussels, Belgium.
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France; NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, France.
| |
Collapse
|
4
|
Abot A, Cani PD, Knauf C. Impact of Intestinal Peptides on the Enteric Nervous System: Novel Approaches to Control Glucose Metabolism and Food Intake. Front Endocrinol (Lausanne) 2018; 9:328. [PMID: 29988396 PMCID: PMC6023997 DOI: 10.3389/fendo.2018.00328] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
The gut is one of the most important sources of bioactive peptides in the body. In addition to their direct actions in the brain and/or peripheral tissues, the intestinal peptides can also have an impact on enteric nervous neurons. By modifying the endogenousproduction of these peptides, one may expect modify the "local" physiology such as glucose absorption, but also could have a "global" action via the gut-brain axis. Due to the various origins of gut peptides (i.e., nutrients, intestinal wall, gut microbiota) and the heterogeneity of enteric neurons population, the potential physiological parameters control by the interaction between the two partners are multiple. In this review, we will exclusively focus on the role of enteric nervous system as a potential target of gut peptides to control glucose metabolism and food intake. Potential therapeutic strategies based on per os administration of gut peptides to treat type 2 diabetes will be described.
Collapse
Affiliation(s)
- Anne Abot
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- INSERM U1220 Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Université Toulouse III Paul Sabatier, Paris, France
| | - Patrice D. Cani
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- INSERM U1220 Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Université Toulouse III Paul Sabatier, Paris, France
- *Correspondence: Claude Knauf,
| |
Collapse
|
5
|
Fournel A, Drougard A, Duparc T, Marlin A, Brierley SM, Castro J, Le-Gonidec S, Masri B, Colom A, Lucas A, Rousset P, Cenac N, Vergnolle N, Valet P, Cani PD, Knauf C. Apelin targets gut contraction to control glucose metabolism via the brain. Gut 2017; 66:258-269. [PMID: 26565000 PMCID: PMC5284480 DOI: 10.1136/gutjnl-2015-310230] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. DESIGN We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. RESULTS In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. CONCLUSIONS Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders.
Collapse
Affiliation(s)
- Audren Fournel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Anne Drougard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Thibaut Duparc
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Alysson Marlin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia,Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia,Discipline of Physiology, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sophie Le-Gonidec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Bernard Masri
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), CHU Rangueil, Toulouse, Cedex 4, France
| | - André Colom
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Perrine Rousset
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Nicolas Cenac
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Nathalie Vergnolle
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Briffa JF, Grinfeld E, Poronnik P, McAinch AJ, Hryciw DH. Uptake of leptin and albumin via separate pathways in proximal tubule cells. Int J Biochem Cell Biol 2016; 79:194-198. [PMID: 27594412 DOI: 10.1016/j.biocel.2016.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 01/06/2023]
Abstract
The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5min exposure, however there was no co-localisation at 10, 20 and 30min exposure. In OK cells, acute exposure to leptin for 2h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis.
Collapse
Affiliation(s)
- Jessica F Briffa
- Centre For Chronic Disease, College of Health and Biomedicine, Victoria University, St. Albans, VIC 3021, Australia; Department of Physiology, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Esther Grinfeld
- Centre For Chronic Disease, College of Health and Biomedicine, Victoria University, St. Albans, VIC 3021, Australia
| | - Philip Poronnik
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Andrew J McAinch
- Centre For Chronic Disease, College of Health and Biomedicine, Victoria University, St. Albans, VIC 3021, Australia
| | - Deanne H Hryciw
- Centre For Chronic Disease, College of Health and Biomedicine, Victoria University, St. Albans, VIC 3021, Australia; Department of Physiology, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
7
|
Date K, Satoh A, Iida K, Ogawa H. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation. J Biol Chem 2015; 290:17439-50. [PMID: 26023238 DOI: 10.1074/jbc.m114.594937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/17/2022] Open
Abstract
α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na(+)/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104-23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption stage in the intestine.
Collapse
Affiliation(s)
- Kimie Date
- From the Graduate School of Humanities and Sciences and
| | - Ayano Satoh
- the Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kaoruko Iida
- From the Graduate School of Humanities and Sciences and
| | - Haruko Ogawa
- From the Graduate School of Humanities and Sciences and Glycoscience Institute, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan and
| |
Collapse
|
8
|
Effect of Technological Treatments on Human-Like Leptin Level in Bovine Milk for Human Consumption. Foods 2014; 3:433-442. [PMID: 28234329 PMCID: PMC5302258 DOI: 10.3390/foods3030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/20/2014] [Accepted: 07/02/2014] [Indexed: 11/17/2022] Open
Abstract
In this experiment, raw milk and commercially available full-cream UHT milk, semi-skimmed UHT milk, skimmed UHT milk, full-cream pasteurized milk, semi-skimmed pasteurized milk and infant formulas for babies between 6 and 12 months of age were analyzed by RIA, with a method using an antibody directed against human leptin and human leptin as reference standard. Raw milk and full-cream UHT milk did not differ for human-like leptin. Leptin content of full-cream pasteurized milk was not different to that of full-cream UHT milk, but it was 14% lower (p < 0.05) than that observed in raw milk. Human-like leptin level of semi-skimmed UHT milk was not different to that of semi-skimmed pasteurized milk, but it was 30% lower (p < 0.0001) than those of full-cream UHT and full-cream pasteurized milks. In skimmed UHT milk, leptin was 40% lower (p < 0.0001) than in full-cream UHT milk. Leptin was correlated (p < 0.001) with lipid content. Leptin level of infant formulas was not different to that of skimmed milks. Results suggest that the heat treatment (pasteurization or UHT) is not a modifier of human-like leptin content of edible commercial bovine milks, whereas the skimming process significantly reduces milk leptin level.
Collapse
|
9
|
Abstract
Individual meals are products of a complex interaction of signals related to both short-term and long-term availability of energy stores. In addition to maintaining the metabolic demands of the individual in the short term, levels of energy intake must also maintain and defend body weight over longer periods. To accomplish this, satiety pathways are regulated by a sophisticated network of endocrine and neuroendocrine pathways. Higher brain centers modulate meal size through descending inputs to caudal brainstem regions responsible for the motor pattern generators associated with ingestion. Gastric and intestinal signals interact with central nervous system pathways to terminate food intake. These inputs can be modified as a function of internal metabolic signals, external environmental influences, and learning to regulate meal size.
Collapse
|
10
|
Dray C, Sakar Y, Vinel C, Daviaud D, Masri B, Garrigues L, Wanecq E, Galvani S, Negre-Salvayre A, Barak LS, Monsarrat B, Burlet-Schiltz O, Valet P, Castan-Laurell I, Ducroc R. The intestinal glucose-apelin cycle controls carbohydrate absorption in mice. Gastroenterology 2013; 144:771-80. [PMID: 23313268 DOI: 10.1053/j.gastro.2013.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Glucose is absorbed into intestine cells via the sodium glucose transporter 1 (SGLT-1) and glucose transporter 2 (GLUT2); various peptides and hormones control this process. Apelin is a peptide that regulates glucose homeostasis and is produced by proximal digestive cells; we studied whether glucose modulates apelin secretion by enterocytes and the effects of apelin on intestinal glucose absorption. METHODS We characterized glucose-related luminal apelin secretion in vivo and ex vivo by mass spectroscopy and immunologic techniques. The effects of apelin on (14)C-labeled glucose transport were determined in jejunal loops and in mice following apelin gavage. We determined levels of GLUT2 and SGLT-1 proteins and phosphorylation of AMPKα2 by immunoblotting. The net effect of apelin on intestinal glucose transepithelial transport was determined in mice. RESULTS Glucose stimulated luminal secretion of the pyroglutaminated apelin-13 isoform ([Pyr-1]-apelin-13) in the small intestine of mice. Apelin increased specific glucose flux through the gastric epithelial barrier in jejunal loops and in vivo following oral glucose administration. Conversely, pharmacologic apelin blockade in the intestine reduced the increased glycemia that occurs following oral glucose administration. Apelin activity was associated with phosphorylation of AMPKα2 and a rapid increase of the GLUT2/SGLT-1 protein ratio in the brush border membrane. CONCLUSIONS Glucose amplifies its own transport from the intestinal lumen to the bloodstream by increasing luminal apelin secretion. In the lumen, active apelin regulates carbohydrate flux through enterocytes by promoting AMPKα2 phosphorylation and modifying the ratio of SGLT-1:GLUT2. The glucose-apelin cycle might be pharmacologically handled to regulate glucose absorption and assess better control of glucose homeostasis.
Collapse
Affiliation(s)
- Cédric Dray
- INSERM Unité 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kolka CM, Bergman RN. The barrier within: endothelial transport of hormones. Physiology (Bethesda) 2012; 27:237-47. [PMID: 22875454 DOI: 10.1152/physiol.00012.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.
Collapse
Affiliation(s)
- Cathryn M Kolka
- Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | | |
Collapse
|
12
|
Cammisotto P, Bendayan M. A review on gastric leptin: the exocrine secretion of a gastric hormone. Anat Cell Biol 2012; 45:1-16. [PMID: 22536547 PMCID: PMC3328736 DOI: 10.5115/acb.2012.45.1.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/02/2012] [Indexed: 02/08/2023] Open
Abstract
A major advance in the understanding of the regulation of food intake has been the discovery of the adipokine leptin a hormone secreted by the adipose tissue. After crossing the blood-brain barrier, leptin reaches its main site of action at the level of the hypothalamic cells where it plays fundamental roles in the control of appetite and in the regulation of energy expenditure. At first considered as a hormone specific to the white adipose tissue, it was rapidly found to be expressed by other tissues. Among these, the gastric mucosa has been demonstrated to secrete large amounts of leptin. Secretion of leptin by the gastric chief cells was found to be an exocrine secretion. Leptin is secreted towards the gastric lumen into the gastric juice. We found that while secretion of leptin by the white adipose tissue is constitutive, secretion by the gastric cells is a regulated one responding very rapidly to secretory stimuli such as food intake. Exocrine-secreted leptin survives the hydrolytic conditions of the gastric juice by forming a complex with its soluble receptor. This soluble receptor is synthesized by the gastric cells and the leptin-leptin receptor complex gets formed at the level of the gastric chief cell secretory granules before being released into the gastric lumen. The leptin-leptin receptor upon resisting the hydrolytic conditions of the gastric juice is channelled, to the duodenum. Transmembrane leptin receptors expressed at the luminal membrane of the duodenal enterocytes interact with the luminal leptin. Leptin is actively transcytosed by the duodenal enterocytes. From the apical membrane it is transferred to the Golgi apparatus where it binds again its soluble receptor. The newly formed leptin-leptin receptor complex is then secreted baso-laterally into the intestinal mucosa to reach the blood capillaries and circulation thus reaching the hypothalamus where its action regulates food intake. Exocrine-secreted gastric leptin participates in the short term regulation of food intake independently from that secreted by the adipose tissue. Adipose tissue leptin on the other hand, regulates in the long term energy storage. Both tissues work in tandem to ensure management of food intake and energy expenditure.
Collapse
Affiliation(s)
- Philippe Cammisotto
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Manzar D, Hussain ME. Leptin rhythmicity and its relationship with other rhythm markers. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291011003759558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Gambardella C, Ferrando S, Ferrando T, Ravera S, Gallus L, Fasulo S, Tagliafierro G. Immunolocalisation of leptin in the digestive system of juvenile European sea bass (Dicentrarchus labrax). ACTA ACUST UNITED AC 2010. [DOI: 10.1080/11250000903460511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Cammisotto PG, Levy E, Bukowiecki LJ, Bendayan M. Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism. ACTA ACUST UNITED AC 2010; 45:143-200. [PMID: 20621336 DOI: 10.1016/j.proghi.2010.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2010] [Indexed: 12/25/2022]
Abstract
The understanding of the regulation of food intake has become increasingly complex. More than 20 hormones, both orexigenic and anorexigenic, have been identified. After crossing the blood-brain barrier, they reach their main site of action located in several hypothalamic areas and interact to balance satiety and hunger. One of the most significant advances in this matter has been the discovery of leptin. This hormone plays fundamental roles in the control of appetite and in regulating energy expenditure. In accordance with the lipostatic theory stated by Kennedy in 1953, leptin was originally discovered in white adipose tissue. Its expression by other tissues was later established. Among them, the gastric mucosa has been shown to secrete large amounts of leptin. Both the adipose and the gastric tissues share similar characteristics in the synthesis and storage of leptin in granules, in the formation of a complex with the soluble receptor and a secretion modulated by hormones and energy substrates. However while adipose tissue secretes leptin in a slow constitutive endocrine way, the gastric mucosa releases leptin in a rapid regulated exocrine fashion into the gastric juice. Exocrine-secreted leptin survives the extreme hydrolytic conditions of the gastric juice and reach the duodenal lumen in an intact active form. Scrutiny into transport mechanisms revealed that a significant amount of the exocrine leptin crosses the intestinal wall by active transcytosis. Leptin receptors, expressed on the luminal and basal membrane of intestinal epithelial cells, are involved in the control of nutrient absorption by enterocytes, mucus secretion by goblet cells and motility, among other processes, and this control is indeed different depending upon luminal or basal stimulus. Gastric leptin after transcytosis reaches the central nervous system, to control food intake. Studies using the Caco-2, the human intestinal cell line, in vitro allowed analysis of the mechanisms of leptin actions on the intestinal mucosa, identification of the mechanisms of leptin transcytosis and understanding the modulation of leptin receptors by nutrients and hormones. Exocrine-secreted gastric leptin thus participates in a physiological axis independent in terms of time and regulation from that of adipose tissue to rapidly control food intake and nutrient absorption. Adipocytes and gastric epithelial cells are two cell types the metabolism of which is closely linked to food intake and energy storage. The coordinated secretion of adipose and gastric leptins ensures proper management of food processing and energy storage.
Collapse
Affiliation(s)
- Philippe G Cammisotto
- Department of Pathology and Cell Biology, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
16
|
Receptor-Mediated Transcytosis of Leptin through Human Intestinal Cells In Vitro. Int J Cell Biol 2010; 2010:928169. [PMID: 20454702 PMCID: PMC2862316 DOI: 10.1155/2010/928169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/11/2010] [Indexed: 01/08/2023] Open
Abstract
Gastric Leptin is absorbed by duodenal enterocytes and released on the basolateral side towards the bloodstream. We investigated in vitro some of the mechanisms of this transport. Caco-2/15 cells internalize leptin from the apical medium and release it through transcytosis in the basal medium in a time- temperature-dependent and saturable fashion. Leptin receptors are revealed on the apical brush-border membrane of the Caco-2 cells. RNA-mediated silencing of the receptor led to decreases in the uptake and basolateral release. Leptin in the basal medium was found bound to the soluble form of its receptor. An inhibitor of clathrin-dependent endocytosis (chlorpromazine) decreased leptin uptake. Confocal immunocytochemistry and the use of brefeldin A and okadaic acid revealed the passage of leptin through the Golgi apparatus. We propose that leptin transcytosis by intestinal cells depends on its receptor, on clathrin-coated vesicles and transits through the Golgi apparatus.
Collapse
|
17
|
Begriche K, Massart J, Fromenty B. Effects of β-aminoisobutyric acid on leptin production and lipid homeostasis: mechanisms and possible relevance for the prevention of obesity. Fundam Clin Pharmacol 2009; 24:269-82. [DOI: 10.1111/j.1472-8206.2009.00765.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Krimi RB, Letteron P, Chedid P, Nazaret C, Ducroc R, Marie JC. Resistin-like molecule-beta inhibits SGLT-1 activity and enhances GLUT2-dependent jejunal glucose transport. Diabetes 2009; 58:2032-8. [PMID: 19502416 PMCID: PMC2731541 DOI: 10.2337/db08-1786] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE An increased expression of RELM-beta (resistin-like molecule-beta), a gut-derived hormone, is observed in animal models of insulin resistance/obesity and intestinal inflammation. Intestinal sugar absorption is modulated by dietary environment and hormones/cytokines. The aim of this study was to investigate the effect of RELM-beta on intestinal glucose absorption. RESEARCH DESIGN AND METHODS Oral glucose tolerance test was performed in mice and rats in the presence and the absence of RELM-beta. The RELM-beta action on glucose transport in rat jejunal sacs, everted rings, and mucosal strips was explored as well as downstream kinases modulating SGLT-1 and GLUT2 glucose transporters. RESULTS Oral glucose tolerance test carried out in rodents showed that oral administration of RELM-beta increased glycemia. Studies in rat jejunal tissue indicated that mucosal RELM-beta promoted absorption of glucose from the gut lumen. RELM-beta had no effect on paracellular mannitol transport, suggesting a transporter-mediated transcellular mechanism. In studies with jejunal mucosa mounted in Ussing chamber, luminal RELM-beta inhibited SGLT-1 activity in line with a diminished SGLT-1 abundance in brush border membranes (BBMs). Further, the potentiating effect of RELM-beta on jejunal glucose uptake was associated with an increased abundance of GLUT2 at BBMs. The effects of RELM-beta were associated with an increased amount of protein kinase C betaII in BBMs and an increased phosphorylation of AMP-activated protein kinase (AMPK). CONCLUSIONS The regulation of SGLT-1 and GLUT2 by RELM-beta expands the role of gut hormones in short-term AMPK/protein kinase C mediated control of energy balance.
Collapse
Affiliation(s)
- Rim Belharbi Krimi
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Philippe Letteron
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Pia Chedid
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Corinne Nazaret
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Robert Ducroc
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Jean-Claude Marie
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
- Corresponding author: Jean-Claude Marie,
| |
Collapse
|
19
|
Metabolic and Neuroendocrine Consequences of a Duodenal-Jejunal Bypass in Rats on a Choice Diet. Ann Surg 2009; 249:269-76. [DOI: 10.1097/sla.0b013e3181961d5d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Hosoi T, Ozawa K. Possible involvement of endoplasmic reticulum stress in obesity associated with leptin resistance. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56 Suppl:296-8. [DOI: 10.2152/jmi.56.296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical Sciences, Hiroshima University
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This review summarizes the past year's literature regarding the regulation and assessment of gastric acid secretion. RECENT FINDINGS Gastric acid secretion is regulated by biologic agents produced and released by enteroendocrine cells and neurons as well as by exogenously administered substances and infection. Too much acid can lead to gastroesophageal reflux disease, peptic ulcer disease, and stress-related erosion/ulcer disease. Too little acid can interfere with the absorption of certain nutrients, predispose to enteric infection, and interfere with the absorption of some medications. Gastrin, histamine, gastrin-releasing peptide, ghrelin, orexin, and glucocorticoids stimulate whereas leptin, glucagon-like peptide 1, and Helicobacter pylori inhibit acid secretion. Helicobacter pylori inhibits the transcriptional activity of HK-ATPase, the proton pump of the parietal cell. SUMMARY A better understanding of the pathways and mechanisms regulating gastric acid secretion should lead to improved management of patients with acid-induced disorders as well as those who secrete too little acid.
Collapse
|
22
|
Begriche K, Massart J, Abbey-Toby A, Igoudjil A, Lettéron P, Fromenty B. Beta-aminoisobutyric acid prevents diet-induced obesity in mice with partial leptin deficiency. Obesity (Silver Spring) 2008; 16:2053-67. [PMID: 19186330 DOI: 10.1038/oby.2008.337] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Beta-Aminoisobutyric acid (BAIBA), a thymine catabolite, increases fatty acid oxidation (FAO) in liver and reduces the gain of body fat mass in Swiss (lean) mice fed a standard chow. We determined whether BAIBA could prevent obesity and related metabolic disorders in different murine models. To this end, BAIBA (100 or 500 mg/kg/day) was administered for 4 months in mice totally deficient in leptin (ob/ob). BAIBA (100 mg/kg/day) was also given for 4 months in wild-type (+/+) mice and mice partially deficient in leptin (ob/+) fed a high-calorie (HC) diet. BAIBA did not limit obesity and hepatic steatosis in ob/ob mice, but reduced liver cytolysis and inflammation. In ob/+ mice fed the HC diet, BAIBA fully prevented, or limited, the gain of body fat, steatosis and necroinflammation, glucose intolerance, and hypertriglyceridemia. Plasma beta-hydroxybutyrate was increased, whereas expression of carnitine palmitoyltransferase-1 was augmented in liver and white adipose tissue. Acetyl-CoA carboxylase was more phosphorylated, and de novo lipogenesis was less induced in liver. These favorable effects of BAIBA in ob/+ mice were associated with a restoration of plasma leptin levels. The reduction of body adiposity afforded by BAIBA was less marked in +/+ mice. Finally, BAIBA significantly stimulated the secretion of leptin in isolated ob/+ adipose cells, but not in +/+ cells. Thus, BAIBA could limit triglyceride accretion in tissues through a leptin-dependent stimulation of FAO. As partial leptin deficiency is not uncommon in the general population, supplementation with BAIBA may help to prevent diet-induced obesity and related metabolic disorders in low leptin secretors.
Collapse
Affiliation(s)
- Karima Begriche
- INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Hansen GH, Niels-Christiansen LL, Danielsen EM. Leptin and the obesity receptor (OB-R) in the small intestine and colon: a colocalization study. J Histochem Cytochem 2008; 56:677-85. [PMID: 18413648 DOI: 10.1369/jhc.2008.950782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leptin is a hormone that plays an important role in overall body energy homeostasis, and the obesity receptor, OB-R, is widely distributed in the organism. In the intestine, a multitude of leptin actions have been reported, but it is currently unclear to what extent the hormone affects the intestinal epithelial cells by an endocrine or exocrine signaling pathway. To elucidate this, the localization of endogenous porcine leptin and OB-R in enterocytes and colonocytes was studied. By immunofluorescence microscopy, both leptin and OB-R were mainly observed in the basolateral membrane of enterocytes and colonocytes but also in the apical microvillar membrane of the cells. By electron microscopy, coclustering of hormone and receptor in the plasma membrane and localization in endosomes was frequently detected at the basolateral surface of the epithelial cells, indicative of leptin signaling activity. In contrast, coclustering occurred less frequently at the apical cell surface, and subapical endosomal localization was hardly detectable. We conclude that leptin action in intestinal epithelial cells takes place at the basolateral plasma membrane, indicating that the hormone uses an endocrine pathway both in the jejunum and colon. In contrast, the data obtained did not provide evidence for an exocrine, lumenal action of the hormone in the intestine.
Collapse
Affiliation(s)
- Gert H Hansen
- Department of Cellular and Molecular Medicine, Building 6.4, the Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|