1
|
Zhang M, Chen X, Zhang L, Li J, Sun C, Zhou G, Wan H, Lu W, Dong H. Zinc pyrithione ameliorates colitis in mice by interacting on intestinal epithelial TRPA1 and TRPV4 channels. Life Sci 2024; 358:123090. [PMID: 39384148 DOI: 10.1016/j.lfs.2024.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
AIMS Although zinc pyrithione (ZPT) has been studied as topical antimicrobial and cosmetic consumer products, little is known about its pharmacological actions in gastrointestinal (GI) health and inflammation. Our aims were to investigate the effects of ZPT on transient receptor potential (TRP) channels and Ca2+ signaling in intestinal epithelial cells (IECs) and its therapeutic potential for colitis. MAIN METHODS Digital Ca2+ imaging and patch-clamp electrophysiology were performed on human colonic epithelial cells (HCoEpiC) and rat small intestinal epithelial cells (IEC-6). The transcription levels of proinflammatory cytokines such as IL-1β were detected by RTq-PCR. Dextran sulfate sodium (DSS) was used to induce colitis in mice. KEY FINDINGS ZPT dose-dependently induced Ca2+ signaling and membrane currents in IECs, which were attenuated by selective blockers of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 4 (TRPV4) channels, respectively. Interestingly, Ca2+ entry via TRPA1 channels inhibited the activity of TRPV4 channels in HCoEpiC, but not vice versa. ZPT significantly promoted migration of IECs by activating TRPA1 and TRPV4 channels. ZPT reversed lipopolysaccharides (LPS)-induced changes in mRNA expression of TRPA1 and TRPV4. Moreover, ZPT decreased mRNA levels of pro-inflammatory factors promoted by LPS in HCoEpiC, which were restored by selective TRPA1 blocker. In whole animal studies in vivo, ZPT significantly ameliorated DSS-induced body weight loss, colon shortening and increases in stool score, serum calprotectin and lactic acid (LD) in mouse model of colitis. SIGNIFICANCE ZPT exerts anti-colitic action likely by anti-inflammation and pro-mucosal healing through TRP channels in IECs. The present study not only expands pharmacology spectrum of ZPT in GI tract, but also repurposes it to a potential drug for colitis therapy.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Xiongying Chen
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Luyun Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Junhui Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chensijin Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Guolong Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
2
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
4
|
Soyama A, Hidaka M, Hara T, Matsushima H, Nagakawa K, Migita K, Kawaguchi Y, Fukumoto M, Imamura H, Yamashita M, Adachi T, Kanetaka K, Eguchi S. A prospective randomized controlled study evaluating efficacy of Daikenchuto in the treatment of postoperative abdominal pain and bloating following hepatectomy. Asian J Surg 2024:S1015-9584(24)01935-3. [PMID: 39271348 DOI: 10.1016/j.asjsur.2024.08.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate the effectiveness and safety of TJ-100 TSUMURA Daikenchuto (DKT) Extract Granules in preventing post-hepatectomy digestive symptoms and the effects on small intestinal mucosal atrophy. METHODS Eligible patients were randomly assigned to the DKT therapy and usual care groups in a 1:1 ratio. The DKT therapy group was administered DKT for 14 days after surgery or until the day of discharge if the patient left the hospital before 14 days, and the usual care group did not receive DKT. We used the numeric rating scale to measure abdominal pain and bloating after surgery and compared the results between the two groups to determine the efficiency of DKT. We also evaluated postoperative small intestinal mucosal atrophy using diamine oxidase (DAO) and glucagon-like peptide-2 (GLP-2) activities in the serum, and postoperative complications. RESULTS No adverse effects were observed in the DKT group. No significant difference was observed in the area under the curve for postoperative abdominal pain or bloating throughout the study period. No differences were observed in DAO2, GLP2, and other nutrition assessment indicators. Four postoperative infections were observed in three patients (two with intra-abdominal surgical site infections [SSIs] and two with pneumonia). All cases of infection occurred in the control group. CONCLUSIONS Although DKT did not significantly improve postoperative symptoms, such as abdominal pain or bloating, it is widely used in Japan to improve bowel movement and is safely prescribed for patients undergoing hepatectomy with a tendency toward less postoperative infection.
Collapse
Affiliation(s)
- Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kantoku Nagakawa
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazushige Migita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuta Kawaguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masayuki Fukumoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mampei Yamashita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Tekulapally KR, Lee JY, Kim DS, Rahman MM, Park CK, Kim YH. Dual role of transient receptor potential ankyrin 1 in respiratory and gastrointestinal physiology: From molecular mechanisms to therapeutic targets. Front Physiol 2024; 15:1413902. [PMID: 39022308 PMCID: PMC11251976 DOI: 10.3389/fphys.2024.1413902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel plays a pivotal role in the respiratory and gastrointestinal tracts. Within the respiratory system, TRPA1 exhibits diverse distribution patterns across key cell types, including epithelial cells, sensory nerves, and immune cells. Its activation serves as a frontline sensor for inhaled irritants, triggering immediate protective responses, and influencing airway integrity. Furthermore, TRPA1 has been implicated in airway tissue injury, inflammation, and the transition of fibroblasts, thereby posing challenges in conditions, such as severe asthma and fibrosis. In sensory nerves, TRPA1 contributes to nociception, the cough reflex, and bronchoconstriction, highlighting its role in both immediate defense mechanisms and long-term respiratory reflex arcs. In immune cells, TRPA1 may modulate the release of pro-inflammatory mediators, shaping the overall inflammatory landscape. In the gastrointestinal tract, the dynamic expression of TRPA1 in enteric neurons, epithelial cells, and immune cells underscores its multifaceted involvement. It plays a crucial role in gut motility, visceral pain perception, and mucosal defense mechanisms. Dysregulation of TRPA1 in both tracts is associated with various disorders such as asthma, Chronic Obstructive Pulmonary Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Disease. This review emphasizes the potential of TRPA1 as a therapeutic target and discusses the efficacy of TRPA1 antagonists in preclinical studies and their promise for addressing respiratory and gastrointestinal conditions. Understanding the intricate interactions and cross-talk of TRPA1 across different cell types provides insight into its versatile role in maintaining homeostasis in vital physiological systems, offering a foundation for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kavya Reddy Tekulapally
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Dong Seop Kim
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Md. Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
6
|
Takahashi N, Sato K, Kiyota N, Tsuda S, Murayama N, Nakazawa T. A ginger extract improves ocular blood flow in rats with endothelin-induced retinal blood flow dysfunction. Sci Rep 2023; 13:22715. [PMID: 38123793 PMCID: PMC10733345 DOI: 10.1038/s41598-023-49598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this study was to investigate the effect of a ginger extract on optic nerve head blood flow (ONH BF) under endothelin-1 (ET-1) stimulation. Using laser speckle flowgraphy, we measured ONH BF in brown Norway rats. To establish the ONH BF impairment profile under ET-1 stimulation, we administered an intravitreal injection of ET-1 under anesthesia. We then gave the ginger extract sublingually to assess its effect on ONH BF in both normal and ET-1-induced ischemic conditions. Post ET-1 injection, there were no significant changes in parameters including intraocular pressure or systemic factors. ONH BF showed a dose-dependent decline after ET-1 injection, with a significant reduction after a 2.50 pmol ET-1 dose. Sublingual administration of the ginger extract significantly improved ONH BF in both normal and ET-1-stimulated rats. This suggests that our newly developed supplement for improving ONH BF has a potential role in retinal ischemic diseases, including glaucoma.
Collapse
Affiliation(s)
- Nana Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Naoki Kiyota
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan
| | - Namie Murayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
7
|
Onoda T, Tanaka H, Ishii T. Bibliometric analysis of Kampo medicine hotspots and trends for the decade: 2013-2022. Medicine (Baltimore) 2023; 102:e35897. [PMID: 37932994 PMCID: PMC10627683 DOI: 10.1097/md.0000000000035897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Kampo medicine is a traditional medicine that originated in ancient China and has since developed as a uniquely Japanese medicine. Although Kampo medicine is one of Japan's most important therapeutic modalities and numerous papers have been published recently, information on current hotspots and trends in Kampo research is lacking. This bibliometric analysis of Kampo medicine surveyed the latest research hotspots and trends. METHODS Articles on Kampo medicine were retrieved from the Web of Science Core Collection. We used medical subject headings related to Kampo medicine and searched for publications from 2013 to 2022. The retrieved articles were analyzed for countries, authors, journals, references, and keywords related to Kampo medicine using CiteSpace, VOSviewer, and SCImago Graphica. RESULTS A total of 1170 articles were included. The number of Kampo medicine-related publications and citations has recently increased, mainly from Japan. Author Keiko Ogawa-Ochiai published the most papers (40 papers), while Yoshio Kase had the highest frequency at 663 citations. Among the co-cited authors, Toru Kono was the most cited and had the highest total link strength. The journal with the most submissions was Evidence-based Complementary and Alternative Medicine. A comprehensive keyword and literature analysis revealed the following research hotspots: "Yokukansan and behavioral and psychological symptoms of dementia," "Ninjinyoeito and geriatric care," "Daikenchuto and postoperative gastrointestinal cancer," and "Rikkunshito and functional dyspepsia." We also identified a new research frontier by identifying an association between hochuekkito and COVID-19. CONCLUSIONS Our findings reveal trends in Kampo medicine research, with specific hotspots and the authors and publications with the largest research impact. Collecting a large volume of literature data, analyzing the impact of studies, and identifying research hotspots, as in this study, will provide researchers with future directions for Kampo research.
Collapse
Affiliation(s)
- Toshihisa Onoda
- Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Hiroyuki Tanaka
- Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Toshihiro Ishii
- Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| |
Collapse
|
8
|
Evans C, Howells K, Suzuki R, Brown AJH, Cox HM. Regional characterisation of TRPV1 and TRPA1 signalling in the mouse colon mucosa. Eur J Pharmacol 2023; 954:175897. [PMID: 37394028 PMCID: PMC10847397 DOI: 10.1016/j.ejphar.2023.175897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Capsaicin and allyl isothiocyanate (AITC) activate transient receptor potential (TRP) vanilloid-1 (TRPV1) and TRP ankyrin-1 (TRPA1), respectively. TRPV1 and TRPA1 expression have been identified in the gastrointestinal (GI) tract. GI mucosal functions remain largely undefined for TRPV1 and TRPA1 with side-dependence and regional differences in signalling unclear. Here we investigated TRPV1- and TRPA1-induced vectorial ion transport as changes in short-circuit current (ΔIsc), in defined segments of mouse colon mucosa (ascending, transverse and descending) under voltage-clamp conditions in Ussing chambers. Drugs were applied basolaterally (bl) or apically (ap). Capsaicin responses were biphasic, with primary secretory and secondary anti-secretory phases, observed with bl application only, which predominated in descending colon. AITC responses were monophasic and secretory, with ΔIsc dependent on colonic region (ascending vs. descending) and sidedness (bl vs. ap). Aprepitant (neurokinin-1 (NK1) antagonist, bl) and tetrodotoxin (Na+ channel blocker, bl) significantly inhibited capsaicin primary responses in descending colon, while GW627368 (EP4 receptor antagonist, bl) and piroxicam (cyclooxygenase inhibitor, bl) inhibited AITC responses in ascending and descending colonic mucosae. Antagonism of the calcitonin gene-related peptide (CGRP) receptor had no effect on mucosal TRPV1 signalling, while tetrodotoxin and antagonists of the 5-hydroxytryptamine-3 and 4 receptors, CGRP receptor, and EP1/2/3 receptors had no effect on mucosal TRPA1 signalling. Our data demonstrates the regional-specificity and side-dependence of colonic TRPV1 and TRPA1 signalling, with involvement of submucosal neurons and mediation by epithelial NK1 receptor activation for TRPV1, and endogenous prostaglandins and EP4 receptor activation for TRPA1 mucosal responses.
Collapse
Affiliation(s)
- Caryl Evans
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry and Neuroscience, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
| | - Kathryn Howells
- Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Rie Suzuki
- Heptares Therapeutics Ltd, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Alastair J H Brown
- Heptares Therapeutics Ltd, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry and Neuroscience, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
9
|
Lu X, Luo C, Wu J, Deng Y, Mu X, Zhang T, Yang X, Liu Q, Li Z, Tang S, Hu Y, Du Q, Xu J, Xie R. Ion channels and transporters regulate nutrient absorption in health and disease. J Cell Mol Med 2023; 27:2631-2642. [PMID: 37638698 PMCID: PMC10494301 DOI: 10.1111/jcmm.17853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Xianmin Lu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Chen Luo
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jiangbo Wu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ya Deng
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xingyi Mu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ting Zhang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xiaoxu Yang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qi Liu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Zhuo Li
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Siqi Tang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yanxia Hu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qian Du
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jingyu Xu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Rui Xie
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
10
|
Ohashi N, Tashima K, Namiki T, Horie S. Allyl isothiocyanate, an activator of TRPA1, increases gastric mucosal blood flow through calcitonin gene-related peptide and adrenomedullin in anesthetized rats. J Pharmacol Sci 2023; 151:187-194. [PMID: 36925217 DOI: 10.1016/j.jphs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Allyl isothiocyanate (AITC) activates transient receptor potential ankyrin 1 (TRPA1) channel, which is involved in the control of intestinal mucosal blood flow. However, the mechanism underlying the increased gastric mucosal blood flow (GMBF) in response to AITC remains unknown. We examined the effect of AITC on GMBF in the ex vivo stomachs of normal and sensory deafferented rats using a laser Doppler flowmeter. Mucosal application of AITC increased GMBF in a concentration-dependent manner. Repeated AITC exposure resulted in a marked desensitization. The increased GMBF response induced by AITC was entirely blocked by co-application of TRPA1 channel blockers HC-030031 or AP-18. Increased GMBF in response to AITC was significantly attenuated by chemical deafferentation following systemic capsaicin injections (total dose: 100 mg/kg). In contrast, increased GMBF responses to capsaicin, a transient receptor potential vanilloid 1 (TRPV1) activator, were completely abolished by chemical deafferentation. The increased GMBF response to AITC was markedly inhibited by BIBN 4096, a calcitonin gene-related peptide receptor (CGRP) antagonist, or AGP-8412, an adrenomedullin receptor antagonist. These results suggest that AITC-stimulated TRPA1 activation results in the increased GMBF through the release of CGRP and adrenomedullin.
Collapse
Affiliation(s)
- Noriyuki Ohashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Chiba, Japan; Department of Frontier Japanese-Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kimihito Tashima
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Chiba, Japan.
| | - Takao Namiki
- Department of Frontier Japanese-Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Chiba, Japan
| |
Collapse
|
11
|
Kunitomi Y, Nakashima M, Takeuchi M, Kawakami K. Efficacy of Daikenchuto in the prevention of bowel obstruction in patients with colorectal cancer undergoing laparoscopic surgery: An observational study using a Japanese administrative claims database. Support Care Cancer 2023; 31:133. [PMID: 36697914 DOI: 10.1007/s00520-023-07599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE Daikenchuto is an herbal medicine widely used in Japan without clear evidence to prevent bowel obstruction after abdominal surgery. We evaluated the efficacy of Daikenchuto in laparoscopic surgery for colorectal cancer (CRC). METHODS We included patients from the medical claims databases diagnosed with CRC between January 2012 and December 2019 and treated with laparoscopic surgery. We compared the Daikenchuto and control groups to evaluate early bowel obstruction (EBO) events for 1 year. The Daikenchuto group included patients prescribed Daikenchuto on postoperative day (POD) 0 or 1. An EBO event was defined as the use of a nasogastric tube, transnasal ileus tube, endoscopic balloon dilatation, or the requirement of reoperation for bowel obstruction from PODs 1 to 364. RESULTS In total, 46,458 patients met the eligibility criteria; 2407 and 44,051 patients were included in the Daikenchuto and control groups, respectively. Some of the patient's characteristics were significantly different between the groups. The frequencies of EBO events in the Daikenchuto and control groups were 5.7% (95% confidence interval: 4.8-6.7) and 4.6% (4.4-4.8), respectively. The most frequent events were nasogastric tube (3.1%, 2.9%) and transnasal ileus tube insertions (1.4%, 0.8%) in the Daikenchuto and control groups, respectively. The hospital stay was significantly shorter in the Daikenchuto group than in the control; this trend was confirmed in the sensitivity analysis. CONCLUSIONS Daikenchuto did not demonstrate efficacy for EBO. It might be adequate for shortening patient's hospital stay. Further studies are warranted.
Collapse
Affiliation(s)
- Yuji Kunitomi
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshida Konoecho, Sakyoku, Kyoto, 606-8501, Japan.,Department of Data Science, Taiho Pharmaceutical Co., Ltd., 1-27 Kandanishiki-cho, Chiyoda-ku, Tokyo, 101-8444, Japan
| | - Masayuki Nakashima
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshida Konoecho, Sakyoku, Kyoto, 606-8501, Japan
| | - Masato Takeuchi
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshida Konoecho, Sakyoku, Kyoto, 606-8501, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshida Konoecho, Sakyoku, Kyoto, 606-8501, Japan.
| |
Collapse
|
12
|
Clinical efficacy of Daikenchuto (DKT: TJ-100) for gastrointestinal symptoms in patients with a history of colon and rectosigmoid cancer surgery: a randomized crossover study. Surg Today 2023:10.1007/s00595-022-02640-2. [PMID: 36662306 DOI: 10.1007/s00595-022-02640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE This randomized crossover trial investigated the effects of Daikenchuto (DKT: TJ-100) on gastrointestinal symptoms of patients after colon and rectosigmoid cancer surgery. METHODS Among patients who had completed surgery for colon cancer, including rectosigmoid cancer, over 6 months ago, 20 who complained of gastrointestinal symptoms were enrolled. Subjects were randomly assigned to two sequences: sequences: A and B. In period 1, sequence A subjects were orally administered DKT, whereas sequence B subjects were untreated for 28 days. After a 5-day interval, in period 2, sequences A and B were reversed. Quality-of-life markers (GSRS and VAS), the Sitzmark transit study, the orocecal transit time (lactulose hydrogen breath test) and Gas volume score were evaluated before and after each period with findings compared between the presence of absence of DKT administration. RESULTS Between sequences, there were no significant differences in clinicopathological characters or any evaluations before randomization. There was no carryover effect in this crossover trial. The administration of DKT significantly ameliorated the GSRS in total, indigestion, and diarrhea, although the planned number of subjects for inclusion in this trial was not reached. CONCLUSIONS DKT may ameliorate subjective symptoms for postoperative patients who complain of gastrointestinal symptoms.
Collapse
|
13
|
Watanabe S, Inoue M, Miyata M, Boda H. The effect of Daikenchuto on blood flow of the superior mesenteric artery and portal vein in ELBW: A prospective study. J Neonatal Perinatal Med 2023; 16:423-428. [PMID: 37718870 DOI: 10.3233/npm-230132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Focal intestinal perforation (FIP) is a devastating complication of premature birth, and extremely low birth weight (ELBW) infants are at highest risk. This study aimed to evaluate the relationship of the superior mesenteric artery (SMA) and portal vein (PV) blood flow velocities to investigate the association between intestinal blood flow and FIP. In addition, the herbal formula Daikenchuto (TJ-100) is expected to improve intestinal blood flow disorders; therefore, we evaluated its effect. METHODS We conducted a prospective cohort study of 15 ELBW infants from January 2020 to August 2021. Measured variables included birth weight, 5-minute Apgar score, time of oral feeding initiation, ductus arteriosus (PDA) closure (percent), diastolic and systolic blood pressure, SMA and PV blood flow velocity, and FIP onset data. Fifteen infants were divided into three groups: a non-surgery group (Group I; 6), a surgery group with FIP (Group II; 4), and a TJ-100 administration group (Group III; 5). The main outcome parameters included SMA and PV blood flow velocities with TJ-100. RESULTS SMA and PV blood flow differed significantly for the SMA of Group I and the SMA and PV of Group III (P < 0.01, P = 0.01, and P = 0.04, respectively). There was a correlation between SMA and PV in Group III (P = 0.03). CONCLUSION TJ-100 may increase SMA and PV blood flow and improve intestinal blood flow in ELBW infants at risk of FIP. Therefore, the effects of TJ-100 should undergo further study.
Collapse
Affiliation(s)
- S Watanabe
- Department of Pediatric Surgery, Fujita Health University Hospital, Aichi, Japan
| | - M Inoue
- Department of Pediatric Surgery, Fujita Health University Hospital, Aichi, Japan
| | - M Miyata
- Department of Pediatric, Fujita Health University Hospital, Aichi, Japan
| | - H Boda
- Department of Pediatric, Fujita Health University Hospital, Aichi, Japan
| |
Collapse
|
14
|
Onoe A, Muroya T, Nakamura F, Ikegawa H, Kuwagata Y, Kobayakawa R, Kobayakawa K. EFFECTS OF 2-METHYL-2-THIAZOLINE ON CIRCULATORY DYNAMICS AND INTESTINAL VASCULAR SYSTEM IN RABBITS WITH ENDOTOXIC SHOCK. Shock 2022; 58:341-347. [PMID: 36256628 PMCID: PMC9584048 DOI: 10.1097/shk.0000000000001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023]
Abstract
ABSTRACT We hypothesized that circulatory and jejunal mucosal blood flow would improve after 2-methyl-2thiazoline (2MT) administration in endotoxic shock. This study aimed to evaluate changes in systemic circulation and in superior mesenteric venous (SMV) blood flow and jejunal mucosal tissue blood flow of the intestinal vascular system over time after administration of 2MT in rabbits with endotoxic shock. We created four groups (n = 6 each): control group, LPS (1 mg/kg) group, 2MT (80 mg/kg) group, and LPS-2MT group. As indicators of circulation, we measured MAP, heart rate, cardiac index, lactic acid level, SMV blood flow, and jejunal mucosal tissue blood flow every 30 min from 0 to 240 min. The drop in MAP observed in the LPS group was suppressed by 2MT administration. Superior mesenteric venous blood flow dropped temporarily with LPS administration but then rose thereafter. After administration of 2MT to the LPS group, SMV blood flow began to rise earlier than that in the LPS group and did not decline below that of the control group thereafter. In the LPS group, jejunal mucosal tissue blood flow transiently decreased and then increased but at a lower level than that in the control group. However, in the LPS-2MT group, although a transient decrease in jejunal mucosal tissue blood flow was observed, its flow then improved to the level of the control group. An interaction between 2MT and LPS was observed for jejunal mucosal tissue blood flow from 90 to 180 min and at 240 min (P < 0.05). We showed that 2MT maintained MAP and improved SMV blood flow and jejunal mucosal tissue blood flow. In a rabbit model of endotoxic shock, 2MT had a positive effect on MAP and jejunal mucosal tissue blood flow.
Collapse
Affiliation(s)
- Atsunori Onoe
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | - Takashi Muroya
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | - Fumiko Nakamura
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | - Hitoshi Ikegawa
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | - Yasuyuki Kuwagata
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | - Reiko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Ko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| |
Collapse
|
15
|
Yamamoto M. KAMPOmics: A framework for multidisciplinary and comprehensive research on Japanese traditional medicine. Gene X 2022; 831:146555. [PMID: 35569769 DOI: 10.1016/j.gene.2022.146555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Traditional Japanese medicines, known as "Kampo medicines", are pharmaceutical-grade multi-herbal treatments that are integrated within the modern medical system in Japan. Although basic and clinical research including placebo-controlled double-blind trials is attempting to clarify their effectiveness and mechanisms of action, such studies are seriously limited due to the multi-targeted, multi-component "long-tail" properties of Kampo medicines, which are fundamentally different from modern western therapeutics. However, recent progress in high-throughput analytical technology, coupled with an exponential increase in biomedical information on various levels from molecular biology to clinical "big" data, is enabling us to commence a multidisciplinary and comprehensive investigation of Kampo medicines based on multi-omics, bio-informatics, and systems biology. In addition to deriving an inclusive understanding of the benefits and mechanisms of Kampo medicines, "KAMPOmics" may lead to the development of new principles to control and treat diseases in a systems-oriented manner. Furthermore, elucidation of "sho" and "mibyo" - classical concepts of Kampo, which loosely approximate to the notions of "precise medicine" and "pre-symptomatic aberration", respectively - may contribute to the development of patient-oriented medicine, an area attracting enormous growth and interest in contemporary medicine.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Yoshiwara 3586, Ami, Inashiki, Ibaraki 300-1192, Japan.
| |
Collapse
|
16
|
Du Y, Chen J, Shen L, Wang B. TRP channels in inflammatory bowel disease: potential therapeutic targets. Biochem Pharmacol 2022; 203:115195. [DOI: 10.1016/j.bcp.2022.115195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
|
17
|
Kono T, Maejima T, Ono Y, Ito T, Furukawa S, Nishiyama M, Yamamoto M, Sugitani A, Karasaki H, Mizukami Y, Maemoto A. Distinct effects of TU-100 (daikenchuto) on long-lasting dysbiosis in the small intestine in patients with colorectal cancer and inflammatory bowel disease. Gene 2022; 820:146266. [PMID: 35134471 DOI: 10.1016/j.gene.2022.146266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
The profile of the human small intestinal microbiota remains to be uncovered primarily due to sampling difficulties. Ileostomy provides the intestinal luminal contents as ileostomy effluents (IE) that offer opportunity for performing extensive analyses of nutrients, gastrointestinal fluids, metabolites, and microbiome. In the present study, we evaluated changes in the microbiome, pH, and bacterial short-chain fatty acids (SCFAs) in IE obtained from patients who had undergone ileostomy following surgical resection of colon cancer and inflammatory bowel disease (IBD). We enrolled 11 patients who varied in the duration of ileostomy from 3 days to >5 years after surgery and had no inflammation in the small intestine. The analyses suggested that IE from patients previously having IBD had less diversity and greater intraday and interday fluctuations, and increased pH and decreased levels of propionic acid and acetic acid than those in IE from patients previously having cancer. Furthermore, correlation analysis suggested a possible effect of the intestinal microbiome on luminal pH, presumably via SCFA production. The present study suggested that inflammation in the colon may induce long-term dysbiosis in the small intestine even after removal of diseased parts of the colon. Moreover, pharmaceutical-grade Japanese traditional medicine daikenchuto (TU-100) was found to have beneficial effects on postoperative bowel dysfunction and the human small intestinal microbiota. Taken together, these results suggest the necessity of a direct remedy for dysbiosis and the treatment of gastrointestinal lesions to achieve favorable outcomes for chronic gastrointestinal disorders.
Collapse
Affiliation(s)
- Toru Kono
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Taku Maejima
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Takahiro Ito
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Shigeru Furukawa
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Mitsue Nishiyama
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 300-1192, Japan
| | - Masahiro Yamamoto
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 300-1192, Japan
| | - Ayumu Sugitani
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan; Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Atsuo Maemoto
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan.
| |
Collapse
|
18
|
Shimizu T, Terawaki K, Sekiguchi K, Sanechika S, Ohbuchi K, Matsumoto C, Ikeda Y. Tokishakuyakusan ameliorates lowered body temperature after immersion in cold water through the early recovery of blood flow in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114896. [PMID: 34896207 DOI: 10.1016/j.jep.2021.114896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Cold feeling' is a subjective feeling of unusual coldness that aggravates fatigue, stiffness, and other symptoms, thereby reducing quality of life. Tokishakuyakusan (TSS) is a Kampo medicine reported to improve cold feeling and is used to treat symptoms aggravated by cold feeling. However, the mechanism of action of TSS is unclear. Cold feeling may involve reduced blood flow and subsequent inhibition of heat transport. Therefore, elucidating the effects of TSS on blood flow is one of the most important research topics for clarifying the mechanism of action of TSS. AIM OF THE STUDY We aimed to evaluate the effect of TSS on recovery from lowered body temperature by the immersion of rats in cold water and to clarify the involvement of blood flow in the action of TSS. MATERIALS AND METHODS After female Wistar rats underwent 9 days of low room temperature stress loading (i.e. room temperature of 18 °C), they were subjected to immersion in cold water (15 °C) for 15 min. Body surface temperature, rectal temperature, and plantar temperature were measured before and after immersion in cold water. Blood flow was measured before and after immersion in cold water without low room temperature stress loading. TSS (0.5 g/kg or 1 g/kg) or the vehicle (i.e. distilled water) was orally administered once daily for 10 days for the measurement of body temperature or once 30 min before immersion in cold water for the measurement of blood flow. In addition, we examined the effect of TSS on calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) cells, the effect of TSS ingredients on transient receptor potential (TRP) channels, and the effect of TSS ingredients on the membrane potential of vascular smooth muscle cells and evaluated the mechanism of the effects of TSS on blood flow. RESULTS Body temperature and blood flow decreased after immersion in cold water and then recovered over time. A comparison of body temperature at each timepoint or area under the curve showed that TSS (1 g/kg) accelerated the recovery of body surface temperature, rectal temperature, and blood flow. TSS significantly increased CGRP release from DRG cells, which disappeared after pretreatment with HC-030031 (a transient receptor potential ankyrin 1 [TRPA1] antagonist). The effects of seven TSS ingredients on TRP channels were examined. The agonistic effect on TRPA1 was observed for atractylodin, atractylodin carboxylic acid and levistolide A. Among the TSS ingredients, atractylodin carboxylic acid had significant hyperpolarising effects. CONCLUSIONS The mechanism by which TSS accelerates the recovery of lowered body temperature in rats after immersion in cold water may involve the acceleration of the recovery of lowered blood flow. Increased CGRP release from DRG cells by TSS, TRPA1 activation by TSS ingredients, and membrane potential changes in vascular smooth muscle cells caused by TSS ingredients are part of the mechanism of action of TSS. These findings may partly contribute to the interpretation of the beneficial effects of TSS on cold feeling.
Collapse
Affiliation(s)
- Tomofumi Shimizu
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Kiyoshi Terawaki
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Kyoji Sekiguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Sho Sanechika
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Chinami Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Yoshiki Ikeda
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| |
Collapse
|
19
|
Shimazutsu K, Watadani Y, Ohge H. Efficacy and Safety of the Japanese Herbal Medicine Daikenchuto (DKT) in Elderly Fecal Incontinence Patients: A Prospective Study. J Anus Rectum Colon 2022; 6:32-39. [PMID: 35128135 PMCID: PMC8801247 DOI: 10.23922/jarc.2021-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives: Methods: Results: Conclusions:
Collapse
Affiliation(s)
| | - Yusuke Watadani
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital
| |
Collapse
|
20
|
TRPA1 channel activation with cinnamaldehyde induces cutaneous vasodilation through NOS, but not COX and KCa channel, mechanisms in humans. J Cardiovasc Pharmacol 2021; 79:375-382. [PMID: 34983913 DOI: 10.1097/fjc.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Transient receptor potential ankyrin 1 (TRPA1) channel activation induces cutaneous vasodilation in humans in vivo. However, the mechanisms underlying this response remains equivocal. We hypothesized that nitric oxide (NO) synthase (NOS) and Ca2+ activated K+ (KCa) channels contribute to the TRPA1 channel-induced cutaneous vasodilation with no involvement of cyclooxygenase (COX). Cutaneous vascular conductance (CVC) in 9 healthy young adults was assessed at four dorsal forearm skin sites treated by intradermal microdialysis with either: 1) vehicle control (98% propylene glycol + 1.985% dimethyl sulfoxide + 0.015% lactated Ringer solution), 2) 10 mM L-NAME, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM tetraethylammonium, a non-selective KCa channel blocker. Cinnamaldehyde, a TRPA1 channel activator, was administered to each skin site in a dose-dependent manner (2.9, 8.8, 26 and 80 %, each lasting ≥30min). Administration of ≥8.8% cinnamaldehyde increased CVC from baseline at the vehicle control site by as much as 27.4% [95 % confidence interval of 5.3] (P<0.001). NOS inhibitor attenuated the cinnamaldehyde induced-increases in CVC at the 8.8, 26.0, and 80.0% concentrations relative to the vehicle control site (all P≤0.05). In contrast, both the COX inhibitor and KCa channel blockers did not attenuate the cinnamaldehyde induced-increases in CVC relative to the vehicle control site for all concentrations (all P≥0.130). We conclude that in human skin in vivo, NOS plays a role in modulating the regulation of cutaneous vasodilation in response to TRPA1 channel activation with no detectable contributions of COX and KCa channels.
Collapse
|
21
|
Tobita N, Tsuneto K, Ito S, Yamamoto T. Human TRPV1 and TRPA1 are receptors for bacterial quorum sensing molecules. J Biochem 2021; 170:775-785. [PMID: 34557892 DOI: 10.1093/jb/mvab099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the activation of TRPV1 and TRPA1 by N-acyl homoserine lactones, quorum sensing molecules produced by Gram-negative bacteria, and the inhibitory effect of TRPV1 and TRPA1 by autoinducing peptides, quorum sensing molecules produced by Gram-positive bacteria, using human embryonic kidney 293T cell lines stably expressing human TRPV1 and TRPA1, respectively. As a result, we found that some N-acyl homoserine lactones, such as N-octanoyl-L-homoserine lactone (C8-HSL), N-nonanoyl-L-homoserine lactone (C9-HSL) and N-decanoyl-L-homoserine lactone (C10-HSL) activated both TRPV1 and TRPA1. In addition, we clarified that some N-acyl homoserine lactones, for example, N-3-oxo-dodecanoyl-L-homoserine lactone (3-oxo-C12-HSL) only activated TRPV1, and N-acyl homoserine lactones having saturated short acyl chain, such as N-acetyl-L-homoserine lactone (C2-HSL) and N-butyryl-L-homoserine lactone (C4-HSL) only activated TRPA1, respectively. Furthermore, we found that an autoinducing peptide, simple linear peptide CHWPR, inhibited both TRPV1 and TRPA1, and peptide having thiolactone ring DICNAYF, thiolactone ring were formed between C3 to F7, strongly inhibited only the TRPV1. Although the specificity of TRPV1 and TRPA1 for quorum sensing molecules were different, these data suggest that both TRPV1 and TRPA1 would function as receptors for quorum sensing molecule produced by bacteria.
Collapse
Affiliation(s)
- Naoya Tobita
- Tobacco Science Research Center, Japan Tobacco Inc., 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Kana Tsuneto
- Tobacco Science Research Center, Japan Tobacco Inc., 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Takeshi Yamamoto
- Tobacco Science Research Center, Japan Tobacco Inc., 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
22
|
Eguchi S, Hidaka M, Soyama A, Hara T, Kugiyama T, Hamada T, Tanaka T, Matsushima H, Adachi T, Inoue Y, Ito S, Kanetaka K. A Pilot Study Evaluating the Effectiveness and Safety of Daikenchuto (TJ-100) for the Treatment of Postoperative Abdominal Pain or Bloating in Patients Undergoing Hepatectomy: Study Protocol for a Randomized, Open, Controlled Trial. Kurume Med J 2021; 66:169-174. [PMID: 34373384 DOI: 10.2739/kurumemedj.ms663005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study is being performed to evaluate the effectiveness and safety of TJ-100 TSUMURA Daikenchuto (DKT) Extract Granules in preventing post-hepatectomy digestive symptoms, and to examine the effects of DKT on small intestinal mucosal atrophy using diamine oxidase (DAO) and glucagon-like peptide-2 (GLP-2) activities. This is a randomized, open, controlled trial using patients treated with usual care as the control group. Patients who meet the inclusion criteria are randomized to the study groups. Eligible patients are randomized to the DKT therapy group (DKT administration for 14 days postoperatively or until the day of discharge if a patient leaves the hospital less than 14 days after the surgery) or the usual care group (no administration of DKT (ratio 1:1). Using the NRS (numeric rating scale) as an indicator, we will attempt to show whether DKT is effective for abdominal pain and bloating after surgery by comparing both groups. We will also attempt to evaluate postoperative small intestinal mucosal atrophy using DAO and GLP-2 activities in the serum, and postoperative nutrient absorption using nutrient assessment indicators. This study is being conducted according to the CONSORT statement. A consent form was signed by all participants, and the study protocol has been approved by the Central Review Board and Local Ethics Committee (CRB7180001).
Collapse
Affiliation(s)
- Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Tota Kugiyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Hamada
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takayuki Tanaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Yusuke Inoue
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Shinichiro Ito
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
23
|
Hanada K, Wada T, Kawada K, Hoshino N, Okamoto M, Hirata W, Mizuno R, Itatani Y, Inamoto S, Takahashi R, Yoshitomi M, Watanabe T, Hida K, Obama K, Sakai Y. Effect of herbal medicine daikenchuto on gastrointestinal symptoms following laparoscopic colectomy in patients with colon cancer: A prospective randomized study. Biomed Pharmacother 2021; 141:111887. [PMID: 34237597 DOI: 10.1016/j.biopha.2021.111887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
We conducted a prospective randomized study to investigate the effect of daikenchuto (DKT) on abdominal symptoms following laparoscopic colectomy in patients with left-sided colon cancer. Patients who suffered from abdominal pain or distention on postoperative day 1 were randomized to either the DKT group or non-DKT group. The primary endpoints were the evaluation of abdominal pain, abdominal distention, and quality of life. The metabolome and gut microbiome analyses were conducted as secondary endpoints. A total of 17 patients were enrolled: 8 patients in the DKT group and 9 patients in the non-DKT group. There were no significant differences in the primary endpoints and postoperative adverse events between the two groups. The metabolome and gut microbiome analyses showed that the levels of plasma lipid mediators associated with the arachidonic acid cascade were lower in the DKT group than in the non-DKT group, and that the relative abundance of genera Serratia and Bilophila were lower in the DKT group than in the non-DKT group. DKT administration did not improve the abdominal symptoms following laparoscopic colectomy. The effects of DKT on metabolites and gut microbiome have to be further investigated.
Collapse
Affiliation(s)
- Keita Hanada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiaki Wada
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Nobuaki Hoshino
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michio Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rei Mizuno
- Department of Surgery, Uji Tokushukai Medical Center, Kyoto, Japan
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Inamoto
- Department of Surgery, Osaka Red Cross Hospital, Osaka, Japan
| | - Ryo Takahashi
- Department of Surgery, Kokura Memorial Hospital, Fukuoka Japan
| | - Mami Yoshitomi
- Department of Surgery, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Takeshi Watanabe
- Department of Surgery, Takashima Municipal Hospital, Shiga, Japan
| | - Koya Hida
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Osaka Red Cross Hospital, Osaka, Japan
| |
Collapse
|
24
|
Sanechika S, Shimobori C, Ohbuchi K. Identification of herbal components as TRPA1 agonists and TRPM8 antagonists. J Nat Med 2021; 75:717-725. [PMID: 33877504 DOI: 10.1007/s11418-021-01515-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Transient receptor potential (TRP) channels are non-selective cation channels that are implicated in analgesia, bowel motility, wound healing, thermoregulation, vasodilation and voiding dysfunction. Many natural products have been reported to affect the activity of TRP channels. We hypothesize that numerous traditional herbal medicines (THMs) might exert their pharmacological activity through modulating the activity of TRP channels. The present study aimed to evaluate the effects of flavonoid aglycones and their glycosides, which are the main components of many THMs, on the TRP channel subtypes. A Ca2+ influx assay was performed using recombinant human TRPA1, TRPV1, TRPV4 and TRPM8 cell lines. Our findings showed that flavonoid aglycones and glycycoumarin activated TRPA1. In particular, isoflavone and chalcone compounds displayed potent TRPA1 agonistic activity. Furthermore, flavone aglycones showed concomitant potent TRPM8 inhibiting activity. Indeed, flavone, isoflavone aglycones, non-prenylated chalcones and glycycoumarin were found to be TRPM8 inhibitors. Hence, flavonoid aglycones metabolized by lactase-phlorizin hydrolase and β-glucosidase in the small intestine or gut microbiota of the large intestine could generate TRPA1 agonists and TRPM8 antagonists.
Collapse
Affiliation(s)
- Sho Sanechika
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co, 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Chika Shimobori
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co, 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co, 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| |
Collapse
|
25
|
Mukaiyama M, Usui T, Nagumo Y. Non-electrophilic TRPA1 agonists, menthol, carvacrol and clotrimazole, open epithelial tight junctions via TRPA1 activation. J Biochem 2021; 168:407-415. [PMID: 32428205 DOI: 10.1093/jb/mvaa057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Activation of the transient receptor potential A1 channel (TRPA1) by electrophilic agonists was reported to induce the opening of tight junctions (TJs). Because compounds that increase TJ permeability can be paracellular permeability enhancers, we investigated the effect of non-electrophilic TRPA1 activators, including food ingredients (menthol and carvacrol) and medication (clotrimazole), on epithelial permeability. We show that all three compounds induced increase of the permeability of fluorescein isothiocyanate-conjugated dextran (4 kDa) and decrease of transepithelial electrical resistance, accompanied by Ca2+ influx and cofilin activation in epithelial MDCK II monolayers. These phenotypes were attenuated by pretreatment of a TRPA1 antagonist, suggesting TRPA1-mediated opening of TJs. These results suggest that non-electrophilic TRPA1 activators with established safety can be utilized to regulate epithelial barriers.
Collapse
Affiliation(s)
| | - Takeo Usui
- Faculty of Life and Environmental Sciences.,Microbiology Research Center for Sustainability (MiCS)
| | - Yoko Nagumo
- Faculty of Life and Environmental Sciences.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
26
|
Suzuki K, Takehara Y, Sakata M, Kawate M, Ohishi N, Sugiyama K, Akai T, Suzuki Y, Sugiyama M, Kawamura T, Morita Y, Kikuchi H, Hiramatsu Y, Yamamoto M, Nasu H, Johnson K, Wieben O, Kurachi K, Takeuchi H. Daikenchuto increases blood flow in the superior mesenteric artery in humans: A comparison study between four-dimensional phase-contrast vastly undersampled isotropic projection reconstruction magnetic resonance imaging and Doppler ultrasound. PLoS One 2021; 16:e0245878. [PMID: 33503053 PMCID: PMC7840032 DOI: 10.1371/journal.pone.0245878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory-gated four-dimensional phase-contrast vastly undersampled isotropic projection reconstruction (4D PC-VIPR) is magnetic resonance (MR) imaging technique that enables analysis of vascular morphology and hemodynamics in a single examination using cardiac phase resolved 3D phase-contrast magnetic resonance imaging. The present study aimed to assess the usefulness of 4D PC-VIPR for the superior mesenteric artery (SMA) flowmetry before and after flow increase was induced by the herbal medicine Daikenchuto (TJ-100) by comparing it with Doppler ultrasound (DUS) as a current standard. Twenty healthy volunteers were enrolled in this prospective single-arm study. The peak cross-sectionally averaged velocity was measured by 4D PC-VIPR, peak velocity was measured by DUS, and flow volume (FV) of SMA and aorta were measured by 4D PC-VIPR and DUS 25 min before and after the peroral administration of TJ-100. The peak cross-sectionally averaged velocity, peak velocity, and FV of SMA measured by 4D PC-VIPR and DUS significantly increased after administration of TJ-100 (4D PC-VIPR: the peak cross-sectionally averaged velocity; p = 0.004, FV; p = 0.035, DUS: the peak velocity; p = 0.003, FV; p = 0.010). Furthermore, 4D PC-VIPR can analyze multiple blood vessels simultaneously. The ratio of the SMA FV to the aorta, before and after oral administration on the 4D PC-VIPR test also increased (p = 0.015). The rate of change assessed by 4D PC-VIPR and DUS were significantly correlated (the peak cross-sectionally averaged velocity and peak velocity: r = 0.650; p = 0.005, FV: r = 0.659; p = 0.004). Retrospective 4D PC-VIPR was a useful modality for morphological and hemodynamic analysis of SMA.
Collapse
Affiliation(s)
- Katsunori Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yasuo Takehara
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mayu Sakata
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masanori Kawate
- Department of Radiology, Hamamatsu University Hospital, Hamamatsu, Shizuoka, Japan
| | - Naoki Ohishi
- Department of Radiology, Hamamatsu University Hospital, Hamamatsu, Shizuoka, Japan
| | - Kosuke Sugiyama
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshiya Akai
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuhi Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masataka Sugiyama
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takafumi Kawamura
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshihiro Hiramatsu
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masayoshi Yamamoto
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hatsuko Nasu
- Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kevin Johnson
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- Department of Radiology, University of Wisconsin, Madison, WI, United States of America
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- Department of Radiology, University of Wisconsin, Madison, WI, United States of America
| | - Kiyotaka Kurachi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
27
|
Wada Y, Tokuda K, Morine Y, Okikawa S, Yamashita S, Ikemoto T, Imura S, Saito Y, Yamada S, Shimada M. The inhibitory effect of TU-100 on hepatic stellate cell activation in the tumor microenvironment. Oncotarget 2020; 11:4593-4604. [PMID: 33346211 PMCID: PMC7733620 DOI: 10.18632/oncotarget.27835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION The tumor microenvironment is involved in acquiring tumor malignancies of colorectal liver metastasis (CRLM). We have reported that TU-100 (Daikenchuto) suppresses hepatic stellate cell (HSC) activation in obstructive jaundice. In this study, we report new findings as the direct and indirect inhibitory effects of TU-100 on cancer cell growth through the suppression of HSC activation. MATERIALS AND METHODS The HSCs (LX2) were cultured in colon cancer cells (HCT116 and HT29)-conditioned medium (CM) with or without TU-100 treatment (90, 270, 900 μg/ml). Activated HSCs (aHSCs) were detected by α-SMA and IL-6 mRNA expressions and cytokine arrays of HSC's culture supernatants. Cancer cell growth was analyzed for proliferation and migration ability, compared with TU-100 treatment. To investigate the direct anti-tumor effect of TU-100, cancer cells were cultured in the presence of aHSC-CM and TU-100 (90, 270, 900) or aHSC-CM alone, and assessed autophagosomes, conversion to LC3-II protein, and Beclin-1 mRNA expression. RESULTS Colon cancer-CM significantly increased α-SMA and IL-6 mRNA expressions of aHSC. α-SMA and IL-6 mRNA expressions of aHSC, and IL-6 secretions from aHSCs were significantly decreased with TU-100 (270, 900) treatment, compared to colon cancer-CM alone. Compared with normal culture medium, aHSC-CM led to a significantly increased cell number and modified HSC-CM (TU-100; 270, 900) significantly suppressed cancer cell growth and migration. TU-100 (900) treatment induced autophagy and significantly promoted the autophagic cell death. CONCLUSIONS TU-100 inhibited colon cancer cell malignant potential by both suppressing HSC activation and inducing directly autophagy of cancer cells.
Collapse
Affiliation(s)
- Yuma Wada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,These authors contributed equally to this work
| | - Kazunori Tokuda
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,These authors contributed equally to this work
| | - Yuji Morine
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shohei Okikawa
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shoko Yamashita
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Satoru Imura
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
28
|
Tazawa K, Kawashima N, Kuramoto M, Noda S, Fujii M, Nara K, Hashimoto K, Okiji T. Transient Receptor Potential Ankyrin 1 Is Up-Regulated in Response to Lipopolysaccharide via P38/Mitogen-Activated Protein Kinase in Dental Pulp Cells and Promotes Mineralization. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2417-2426. [PMID: 32919979 DOI: 10.1016/j.ajpath.2020.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Increased expression of the transient receptor potential ankyrin 1 (TRPA1) channel has been detected in carious tooth pulp, suggesting involvement of TRPA1 in defense or repair of this tissue after exogenous noxious stimuli. This study aimed to elucidate the induction mechanism in response to lipopolysaccharide (LPS) stimulation and the function of TRPA1 in dental pulp cells. Stimulation of human dental pulp cells with LPS up-regulated TRPA1 expression, as demonstrated by quantitative RT-PCR and Western blotting. LPS stimulation also promoted nitric oxide (NO) synthesis and p38/mitogen-activated protein kinase (MAPK) phosphorylation. NOR5, an NO donor, up-regulated TRPA1 expression, whereas 1400W, an inhibitor of inducible nitric oxide synthase, and SB202190, a p38/MAPK inhibitor, down-regulated LPS-induced TRPA1 expression. Moreover, JT010, a TRPA1 agonist, increased the intracellular calcium concentration and extracellular signal-regulated kinase 1/2 phosphorylation, and up-regulated alkaline phosphatase mRNA in human dental pulp cells. Icilin-a TRPA1 agonist-up-regulated secreted phosphoprotein 1 mRNA expression and promoted mineralized nodule formation in mouse dental papilla cells. In vivo expression of TRPA1 was detected in odontoblasts along the tertiary dentin of carious teeth. In conclusion, this study demonstrated that LPS stimulation induced TRPA1 via the NO-p38 MAPK signaling pathway and TRPA1 agonists promoted differentiation or mineralization of dental pulp cells.
Collapse
Affiliation(s)
- Kento Tazawa
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Nobuyuki Kawashima
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Masashi Kuramoto
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sonoko Noda
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mayuko Fujii
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Nara
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Hashimoto
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Okiji
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
29
|
Duitama M, Vargas-López V, Casas Z, Albarracin SL, Sutachan JJ, Torres YP. TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Front Neurosci 2020; 14:782. [PMID: 32848557 PMCID: PMC7417429 DOI: 10.3389/fnins.2020.00782] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential (TRP) are cation channels expressed in both non-excitable and excitable cells from diverse tissues, including heart, lung, and brain. The TRP channel family includes 28 isoforms activated by physical and chemical stimuli, such as temperature, pH, osmotic pressure, and noxious stimuli. Recently, it has been shown that TRP channels are also directly or indirectly activated by reactive oxygen species. Oxidative stress plays an essential role in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, and TRP channels are involved in the progression of those diseases by mechanisms involving changes in the crosstalk between Ca2+ regulation, oxidative stress, and production of inflammatory mediators. TRP channels involved in nociception include members of the TRPV, TRPM, TRPA, and TRPC subfamilies that transduce physical and chemical noxious stimuli. It has also been reported that pain is a complex issue in patients with Alzheimer's and Parkinson's diseases, and adequate management of pain in those conditions is still in discussion. TRPV1 has a role in neuroinflammation, a critical mechanism involved in neurodegeneration. Therefore, some studies have considered TRPV1 as a target for both pain treatment and neurodegenerative disorders. Thus, this review aimed to describe the TRP-dependent mechanism that can mediate pain sensation in neurodegenerative diseases and the therapeutic approach available to palliate pain and neurodegenerative symptoms throughout the regulation of these channels.
Collapse
|
30
|
Arita R, Numata T, Takayama S, Obara T, Kikuchi A, Ohsawa M, Suzuki A, Yokota T, Kusaba M, Yaegashi N, Ishii T. Responder Analysis of Daikenchuto Treatment for Constipation in Poststroke Patients: A Subanalysis of a Randomized Control Trial. J Evid Based Integr Med 2020; 24:2515690X19889271. [PMID: 31823650 PMCID: PMC6906340 DOI: 10.1177/2515690x19889271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A traditional Japanese medicine, daikenchuto (DKT), is used for treating abdominal
bloating and pain with coldness. In modern medicine, it is used to treat postoperative
intestinal dysfunction and ileus. We previously showed the effective improvement in
functional constipation with DKT in poststroke patients. However, response prediction for
the treatment has not been elucidated. We investigated the data from the prior trial
(UMIN000007393) to predict the DKT treatment response. We assessed the efficacy of DKT for
chronic constipation in poststroke patients. Neurogenic bowel dysfunction score (NBDS) and
the Gastrointestinal Symptom Rating Scale–constipation subscale (GSRS-C) score were newly
analyzed comparing the pre- and postintervention data after intake of 15 g of DKT extract
granule daily for 4 weeks. Single and multiple regression analyses were performed to
examine the correlations between the changes in NBDS, GSRS-C score, patient
characteristics, clinical symptom score, gas volume in the gut, and serum calcitonin
gene–related peptide level. The total NBDS and GSRS-C score were significantly reduced
after DKT administration. The total NBDS, GSRS-C score, and gas volume score at baseline
were significantly correlated with the change in these scores. Higher NBDS and GSRS-C
scores and more gas volume in the gut may be possible predictors of response to DKT when
treating constipation.
Collapse
Affiliation(s)
| | | | - Shin Takayama
- Tohoku University Hospital, Sendai, Miyagi, Japan.,Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taku Obara
- Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiko Kikuchi
- Tohoku University Hospital, Sendai, Miyagi, Japan.,Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Minoru Ohsawa
- Tohoku University Hospital, Sendai, Miyagi, Japan.,Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | - Mizue Kusaba
- Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tadashi Ishii
- Tohoku University Hospital, Sendai, Miyagi, Japan.,Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
31
|
Oyama F, Futagami M, Shigeto T, Miura R, Osawa Y, Oishi M, Oikiri H, Yokoyama M, Takabayashi A, Yokoyama Y. Preventive effect of daikenchuto, a traditional Japanese herbal medicine, on onset of ileus after gynecological surgery for malignant tumors. Asia Pac J Clin Oncol 2020; 16:254-258. [PMID: 32220126 DOI: 10.1111/ajco.13329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/09/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Postoperative ileus is a major complication of abdominal surgical procedures. The purpose of this study was to investigate preventive effect of daikenchuto (DKT) on onset of ileus in patients who received gynecological surgery for malignant tumors. METHODS A total of 904 patients who received gynecological surgery for malignant tumors by opening retroperitoneum along with retroperitoneal lymph node dissection during a period between 2004 and 2018 were included in this retrospective study. The retroperitoneum was not sutured in all patients. Comparisons were made for proportion of patients developing ileus (frequency of postoperative ileus onset), timing of ileus onset, and treatment types for ileus among following three groups: a group treated with enema or laxatives to release gas if they did not pass the intestinal gas for 3 days postoperatively (Group A, n = 152); a group treated with adhesion-inhibitory absorptive barrier at the opening to the retroperitoneum (Group B, n = 188); and a group treated with adhesion-inhibitory absorptive barrier and oral intake of DKT 7.5 g per day (Group C, n = 564). RESULTS The frequency of ileus onset significantly decreased in both Groups B (4.8%) and C (3.5%) compared to Group A (16.4%). Furthermore, the frequency of ileus onset was significantly less in Group C compared to Group B. For the treatment types, frequency of ileus, which was successfully treated only with conservative therapy, was the same for Groups B and C. However, incidence of serious ileus that required surgery decreased by 45% in Group C (2/564) compared to Groups A (2/152) and B (3/188). CONCLUSIONS Results suggest that DKT prevents development of serious ileus after gynecological surgery for malignant tumors and therefore contributes to improvement in patients' QOL.
Collapse
Affiliation(s)
- Fumie Oyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Masayuki Futagami
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuhiko Shigeto
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Rie Miura
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuuki Osawa
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Maika Oishi
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hiroe Oikiri
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Minako Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Anna Takabayashi
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
32
|
Fujita F, Torashima Y, Inoue Y, Ito S, Kobayashi K, Kanetaka K, Takatsuki M, Eguchi S. Daikenchuto improved perioperative nutritional status of the patients with colorectal cancer: A prospective open-labeled randomized exploratory study. Interv Med Appl Sci 2020; 11:84-88. [PMID: 32148910 PMCID: PMC7044534 DOI: 10.1556/1646.11.2019.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background and aims The aim of this study is to exploratively evaluate the effect of Tsumura Daikenchuto Extract Granules (DKT, TJ-100) on abdominal symptoms, body weight, and nutritional function following colorectal cancer surgery. Methods The subjects included 20 patients for curative resection of colorectal cancer. A TJ-100 administration group (n = 10) and non-administration group (n = 10) were randomized and compared. In the administration group, TJ-100 was administered from 2 days prior to surgery up to 12 weeks following surgery. The endpoints included body weight gain, Gastrointestinal Symptom Rating Scale (GSRS), and blood biochemical factors. For the purpose of observing safety, drug adverse events were evaluated including liver function tests. Results Excluding one patient, we compared 9 cases in the administration group and 10 cases in the non-administration group. No obvious adverse events were observed in any of the cases. In the comparison of body weight gain, the TJ-100 administration group showed significantly higher values at 2, 4, and 12 weeks following the surgery. There was a tendency for lower stable GSRS scores in the administration group overall, with no statistically significant difference. Conclusion It is suggested that TJ-100 can be safely administered in the perioperative period for cases undergoing colorectal cancer surgery, potentially preventing weight loss during the early postoperative period.
Collapse
Affiliation(s)
- Fumihiko Fujita
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuhiro Torashima
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Inoue
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichiro Ito
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuma Kobayashi
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
33
|
Alaimo A, Rubert J. The Pivotal Role of TRP Channels in Homeostasis and Diseases throughout the Gastrointestinal Tract. Int J Mol Sci 2019; 20:ijms20215277. [PMID: 31652951 PMCID: PMC6862298 DOI: 10.3390/ijms20215277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential (TRP) channels superfamily are a large group of proteins that play crucial roles in cellular processes. For example, these cation channels act as sensors in the detection and transduction of stimuli of temperature, small molecules, voltage, pH, and mechanical constrains. Over the past decades, different members of the TRP channels have been identified in the human gastrointestinal (GI) tract playing multiple modulatory roles. Noteworthy, TRPs support critical functions related to the taste perception, mechanosensation, and pain. They also participate in the modulation of motility and secretions of the human gut. Last but not least, altered expression or activity and mutations in the TRP genes are often related to a wide range of disorders of the gut epithelium, including inflammatory bowel disease, fibrosis, visceral hyperalgesia, irritable bowel syndrome, and colorectal cancer. TRP channels could therefore be promising drug targets for the treatment of GI malignancies. This review aims at providing a comprehensive picture of the most recent advances highlighting the expression and function of TRP channels in the GI tract, and secondly, the description of the potential roles of TRPs in relevant disorders is discussed reporting our standpoint on GI tract–TRP channels interactions.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| |
Collapse
|
34
|
Sałat K, Furgała A, Malikowska-Racia N. Searching for analgesic drug candidates alleviating oxaliplatin-induced cold hypersensitivity in mice. Chem Biol Drug Des 2019; 93:1061-1072. [PMID: 30900821 DOI: 10.1111/cbdd.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Oxaliplatin is a third-generation, platinum-based derivative used to treat advanced colorectal cancer. Within the patient population on oxaliplatin therapy, a lower incidence of hematological adverse effects and gastrointestinal toxicity is noted, but severe neuropathic pain episodes characterized by increased cold and tactile hypersensitivity are present in ~95% of patients. This drug is also used to induce a rodent model of chemotherapy-induced peripheral neuropathy (CIPN)-related neuropathic pain which is widely used in the search for novel therapies for CIPN prevention and treatment. This paper provides a step-by-step, detailed description of the prevention and intervention protocols used in our laboratory for the assessment of oxaliplatin-induced cold allodynia in mice. To establish cold sensitivity in mice, the cold plate test was used. Latencies to pain reaction in response to cold stimulus (2.5°C) for vehicle-treated non-neuropathic mice, vehicle-treated mice injected with oxaliplatin (neuropathic control), and oxaliplatin-treated mice treated additionally with duloxetine are compared. Duloxetine is a serotonin/noradrenaline reuptake inhibitor which was found to produce significant pain relief in patients with CIPN symptoms. In our present study, duloxetine administered intraperitoneally at the dose of 30 mg/kg served as a model antiallodynic drug which attenuated or partially prevented cold allodynia caused by oxaliplatin.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Furgała
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Malikowska-Racia
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
35
|
Inoue R, Kurahara LH, Hiraishi K. TRP channels in cardiac and intestinal fibrosis. Semin Cell Dev Biol 2018; 94:40-49. [PMID: 30445149 DOI: 10.1016/j.semcdb.2018.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
It is now widely accepted that advanced fibrosis underlies many chronic inflammatory disorders and is the main cause of morbidity and mortality of the modern world. The pathogenic mechanism of advanced fibrosis involves diverse and intricate interplays between numerous extracellular and intracellular signaling molecules, among which the non-trivial roles of a stress-responsive Ca2+/Na+-permeable cation channel superfamily, the transient receptor potential (TRP) protein, are receiving growing attention. Available evidence suggests that several TRP channels such as TRPC3, TRPC6, TRPV1, TRPV3, TRPV4, TRPA1, TRPM6 and TRPM7 may play central roles in the progression and/or prevention of fibroproliferative disorders in vital visceral organs such as lung, heart, liver, kidney, and bowel as well as brain, blood vessels and skin, and may contribute to both acute and chronic inflammatory processes involved therein. This short paper overviews the current knowledge accumulated in this rapidly growing field, with particular focus on cardiac and intestinal fibrosis, which are tightly associated with the pathogenesis of atrial fibrillation and inflammatory bowel diseases such as Crohn's disease.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Lin-Hai Kurahara
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
36
|
Maeda H, Okada KI, Fujii T, Oba MS, Kawai M, Hirono S, Kodera Y, Sho M, Akahori T, Shimizu Y, Ambo Y, Kondo N, Murakami Y, Ohuchida J, Eguchi H, Nagano H, Sakamoto J, Yamaue H. Transition of serum cytokines following pancreaticoduodenectomy: A subsidiary study of JAPAN-PD. Oncol Lett 2018; 16:6847-6853. [PMID: 30333892 DOI: 10.3892/ol.2018.9422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/22/2018] [Indexed: 02/04/2023] Open
Abstract
Our previous study aimed to examine the effect of TJ-100, a widely used herbal medicine, on intestinal function following pancreaticoduodenectomy (PD) in a multicenter, randomized, double-blinded, placebo-controlled manner (JAPAN-PD study). This concomitant study investigated the effect of TJ-100 on serum cytokine levels in patients who underwent PD. Due to the fact that several clinical variables can affect the absolute values of baseline serum cytokine levels, the ratios of the cytokine levels on postoperative day (POD)3 to those on POD1 were also used for analysis. The present study enrolled 180/224 randomized patients, of whom 91 received TJ-100 and 89 received placebo. As the main findings of the analysis, Wilcoxon signed-rank test revealed no significant difference in the levels of serum cytokines between the groups; however, patients in the TJ-100 group without severe inflammatory complications exhibited significantly higher ratios of interleukin (IL)-4 (n=123), IL-9 (n=72), IL-10 (n=97), PDGF-BB (n=143) and tumor necrosis factor-α (n=135), compared with patients in the Placebo Group (P<0.05). According to the results of the present study, TJ-100 has an effect on the change in serum cytokine levels from POD1 to POD3 following PD. However, the role of different transition pattern of cytokines in postoperative recovery following PD has to be investigated by further mechanical studies focusing on these extracted cytokines (ClinicalTrials.gov; no. NCT01607307; May 30, 2012).
Collapse
Affiliation(s)
- Hiromichi Maeda
- Cancer Treatment Center, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Ken-Ichi Okada
- Second Department of Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8510, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Mari S Oba
- Department of Medical Statistics Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Manabu Kawai
- Second Department of Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8510, Japan
| | - Seiko Hirono
- Second Department of Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8510, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Akahori
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi 464-8681, Japan
| | - Yoshiyasu Ambo
- Department of Surgery, Teine-Keijinkai Hospital, Sapporo, Hokkaido 006-8555, Japan
| | - Naru Kondo
- Department of Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan
| | - Yoshiaki Murakami
- Department of Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan
| | - Jiro Ohuchida
- Department of Surgery, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Miyazaki 880-8510, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Nagano
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8510, Japan
| |
Collapse
|
37
|
Liang Q, Lv X, Cai Q, Cai Y, Zhao B, Li G. Novobiocin, a Newly Found TRPV1 Inhibitor, Attenuates the Expression of TRPV1 in Rat Intestine and Intestinal Epithelial Cell Line IEC-6. Front Pharmacol 2018; 9:1171. [PMID: 30374305 PMCID: PMC6196238 DOI: 10.3389/fphar.2018.01171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/26/2018] [Indexed: 01/26/2023] Open
Abstract
Background and Purpose: Novobiocin (NOVO), an ABC transporter inhibitor, decreases intestinal wall permeability of capsaicin (CAP), an ABC transporter substrate. However, the mechanism of this effect is not consistent with the action of NOVO as an ABC transporter inhibitor. We previously found that CAP can also be transported via TRPV1, which was site-specific in the permeability of CAP across the intestine. We explored the regulation by NOVO of TRPV1 in the present study. Methods: Rats and transfected IEC-6 cells were used as the models to assess intestinal permeability and expression of TRPV1. Ussing chamber and intracellular accumulation were used to evaluate the influence of NOVO on the transport of CAP in vitro. The expression of TRPV1 was detected after administration of NOVO by qRT-PCR, western blot and immunofluorescent imaging. In addition, MTT and lactate dehydrogenase (LDH) were used to evaluate the cytotoxicity of NOVO in both rat and cell models. Finally, the effect of NOVO on the absorption of CAP in vivo was studied by LC-MS/MS. Results: In vitro data showed that there existed a dose-dependent relationship in the range of concentration between 5 and 50 μM, and even 5 μM NOVO could decrease intestinal permeability of CAP across the intestine. Meanwhile, cytosolic accumulation of CAP decreased when NOVO was used simultaneously or 24 h in advance. NOVO exhibited an inhibition level similar to that of ruthenium red (RR) or SB-705498, a TRPV1-specific inhibitor. NOVO down-regulated TRPV1 expression in the intestine and in transfected cells in a concentration-dependent fashion, hinting that its inhibition of the permeability of CAP is due to its inhibition of TRPV1 expression. Immunofluorescent imaging data showed that the fluorescence intensity of TRPV1 was reduced after pre-treatment with NOVO and SB-705498. In vivo data further demonstrated that oral co-administration of NOVO decreased Cmax and AUC of CAP in dosage-dependent ways, consistent with its role as a TRPV1 inhibitor. Conclusion: NOVO could be a potential TRPV1 inhibitor by attenuating the expression of TRPV1 and may be used to attenuate permeability of TRPV1 substrates.
Collapse
Affiliation(s)
- Qianying Liang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueli Lv
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Cai
- General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Yun Cai
- Department of Pharmacy, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofeng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Hiraishi K, Kurahara LH, Sumiyoshi M, Hu YP, Koga K, Onitsuka M, Kojima D, Yue L, Takedatsu H, Jian YW, Inoue R. Daikenchuto (Da-Jian-Zhong-Tang) ameliorates intestinal fibrosis by activating myofibroblast transient receptor potential ankyrin 1 channel. World J Gastroenterol 2018; 24:4036-4053. [PMID: 30254408 PMCID: PMC6148431 DOI: 10.3748/wjg.v24.i35.4036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/06/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anti-fibrotic effects of the traditional oriental herbal medicine Daikenchuto (DKT) associated with transient receptor potential ankyrin 1 (TRPA1) channels in intestinal myofibroblasts.
METHODS Inflammatory and fibrotic changes were detected in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) chronic colitis model of wild-type and TRPA1-knockout (TRPA1-KO) mice via pathological staining and immunoblotting analysis. Ca2+ imaging experiments examined the effects of DKT and its components/ingredients on intestinal myofibroblast (InMyoFib) cell TRPA1 channel function. Pro-fibrotic factors and transforming growth factor (TGF)-β1-associated signaling were tested in an InMyoFib cell line by qPCR and immunoblotting experiments. Samples from non-stenotic and stenotic regions of the intestines of patients with Crohn’s disease (CD) were used for pathological analysis.
RESULTS Chronic treatment with TNBS caused more severe inflammation and fibrotic changes in TRPA1-KO than in wild-type mice. A one-week enema administration of DKT reduced fibrotic lesions in wild-type but not in TRPA1-KO mice. The active ingredients of DKT, i.e., hydroxy α-sanshool and 6-shogaol, induced Ca2+ influxes in InMyoFib, and this was antagonized by co-treatment with a selective TRPA1 channel blocker, HC-030031. DKT counteracted TGF-β1-induced expression of Type I collagen and α-smooth muscle actin (α-SMA), which were accompanied by a reduction in the phosphorylation of Smad-2 and p38-mitogen-activated protein kinase (p38-MAPK) and the expression of myocardin. Importantly, 24-h incubation with a DKT active component Japanese Pepper increased the mRNA and protein expression levels of TRPA1 in InMyoFibs, which in turn negatively regulated collagen synthesis. In the stenotic regions of the intestines of CD patients, TRPA1 expression was significantly enhanced.
CONCLUSION The effects of DKT on the expression and activation of the TRPA1 channel could be advantageous for suppressing intestinal fibrosis, and benefit inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Lin-Hai Kurahara
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Miho Sumiyoshi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Yao-Peng Hu
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Miki Onitsuka
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Daibo Kojima
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, United States
| | - Hidetoshi Takedatsu
- Department of Gastroenterology and Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Yu-Wen Jian
- College of Letters and Science, University of California, Davis, CA 95616, United States
| | - Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| |
Collapse
|
39
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
40
|
Boonen B, Alpizar YA, Meseguer VM, Talavera K. TRP Channels as Sensors of Bacterial Endotoxins. Toxins (Basel) 2018; 10:toxins10080326. [PMID: 30103489 PMCID: PMC6115757 DOI: 10.3390/toxins10080326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
The cellular and systemic effects induced by bacterial lipopolysaccharides (LPS) have been solely attributed to the activation of the Toll-like receptor 4 (TLR4) signalling cascade. However, recent studies have shown that LPS activates several members of the Transient Receptor Potential (TRP) family of cation channels. Indeed, LPS induces activation of the broadly-tuned chemosensor TRPA1 in sensory neurons in a TLR4-independent manner, and genetic ablation of this channel reduced mouse pain and inflammatory responses triggered by LPS and the gustatory-mediated avoidance to LPS in fruit flies. LPS was also shown to activate TRPV4 channels in airway epithelial cells, an effect leading to an immediate production of bactericidal nitric oxide and to an increase in ciliary beat frequency. In this review, we discuss the role of TRP channels as sensors of bacterial endotoxins, and therefore, as crucial players in the timely detection of invading gram-negative bacteria.
Collapse
Affiliation(s)
- Brett Boonen
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Victor M Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | - Karel Talavera
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| |
Collapse
|
41
|
Nobutani K, Miyoshi J, Musch MW, Nishiyama M, Watanabe J, Kaneko A, Yamamoto M, Yoshida M, Kono T, Jeong H, Chang EB. Daikenchuto (TU-100) alters murine hepatic and intestinal drug metabolizing enzymes in an in vivo dietary model: effects of gender and withdrawal. Pharmacol Res Perspect 2018; 5. [PMID: 28971602 PMCID: PMC5625165 DOI: 10.1002/prp2.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Herbal medicines and natural products used for maintenance of health or treatment of diseases have many biological effects, including altering the pharmacokinetics and metabolism of other medications. Daikenchuto (TU‐100), an aqueous extract of ginger, ginseng, and Japanese green pepper fruit, is a commonly prescribed Kampo (Japanese herbal medicine) for postoperative ileus or bloating. The effects of TU‐100 on drug metabolism have not been investigated. In this study, we analyzed the effect of TU‐100 on expression of key drug‐metabolizing enzymes (DMEs) and drug transporters (DTs) in murine liver and gastrointestinal tract using a dietary model. Liver, jejunum, and proximal colon were analyzed for phase I and II DMEs and DT mRNA expression by reverse transcription (RT) first by nonquantitative and followed by quantitative polymerase chain reaction (PCR) and protein expression. Liver, jejunum, and proximal colon expressed some identical but also unique DMEs and DTs. TU‐100 increased the greatest changes in cytochrome (Cyp) 2b10 and Cyp3a11 and Mdr1a. Basal and TU‐100 stimulated levels of DME and DT expression were gender‐dependent, dose‐dependent and reversible after cessation of TU‐100 supplementation, except for some changes in the intestine. Quantitative Western blot analysis of protein extracts confirmed the quantitative PCR results.
Collapse
Affiliation(s)
- Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mark W Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | | | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan.,Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hyunyoung Jeong
- Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
42
|
Efficacy and Safety of Daikenchuto for Constipation and Dose-Dependent Differences in Clinical Effects. Int J Chronic Dis 2018; 2018:1296717. [PMID: 29693001 PMCID: PMC5859840 DOI: 10.1155/2018/1296717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background Daikenchuto (DKT) is a Kampo medicine used for the treatment of constipation. In this study, we evaluated the effectiveness of DKT against constipation. Patients and Methods Thirty-three patients administered DKT for constipation were selected and divided into low-dose (7.5 g DKT; n = 22) and high-dose (15 g DKT; n = 11) groups. We retrospectively evaluated weekly defaecation frequency, side effects, and clinical laboratory data. Results Median defaecation frequencies after DKT administration (5, 5.5, 5, and 8 for the first, second, third, and fourth weeks, resp.) were significantly higher than that before DKT administration (2) in all 33 cases (P < 0.01). One case (3%) of watery stool, one case of loose stools (3%), and no cases of abdominal pain (0%) were observed. Median defaecation frequencies in the high-dose group (7 and 9) were significantly higher than those in the low-dose group (4 and 3) in the first (P = 0.0133) and second (P = 0.0101) weeks, respectively. There was no significant change in clinical laboratory values. Conclusion We suggest that DKT increases defaecation frequency and is safe for treating constipation.
Collapse
|
43
|
Miyoshi J, Nobutani K, Musch MW, Ringus DL, Hubert NA, Yamamoto M, Kase Y, Nishiyama M, Chang EB. Time-, Sex-, and Dose-Dependent Alterations of the Gut Microbiota by Consumption of Dietary Daikenchuto (TU-100). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7415975. [PMID: 29681983 PMCID: PMC5842691 DOI: 10.1155/2018/7415975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/15/2018] [Indexed: 02/08/2023]
Abstract
Medications or dietary components can affect both the host and the host's gut microbiota. Changes in the microbiota may influence medication efficacy and interactions. Daikenchuto (TU-100), a herbal medication, comprised of ginger, ginseng, and Japanese pepper, is widely used in Japanese traditional Kampo medicine for intestinal motility and postoperative paralytic ileus. We previously showed in mice that consumption of TU-100 for 4 weeks changed the gut microbiota and increased bioavailability of bacterial ginsenoside metabolites. Since TU-100 is prescribed in humans for months to years, we examined the time- and sex-dependent effects of TU-100 on mouse gut microbiota. Oral administration of 1.5% TU-100 for 24 weeks caused more pronounced changes in gut microbiota in female than in male mice. Changes in both sexes largely reverted to baseline upon TU-100 withdrawal. Effects were time and dose dependent. The microbial profiles reverted to baseline within 4 weeks after withdrawal of 0.75% TU-100 but were sustained after withdrawal of 3% TU-100. In summary, dietary TU-100 changed mouse microbiota in a time-, sex-, and dose-dependent manner. These findings may be taken into consideration when determining optimizing dose for conditions of human health and disease with the consideration of differences in composition and response of the human intestinal microbiota.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Mark W. Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Daina L. Ringus
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Nathaniel A. Hubert
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | | | - Yoshio Kase
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
44
|
Enhanced anastomotic healing by Daikenchuto (TJ-100) in rats. Sci Rep 2018; 8:1091. [PMID: 29348453 PMCID: PMC5773623 DOI: 10.1038/s41598-018-19550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/03/2018] [Indexed: 02/08/2023] Open
Abstract
Daikenchuto (DKT), a traditional Japanese medicine, is widely used to treat various gastrointestinal disorders. This study aimed to investigate whether DKT could promote the anastomotic healing in a rat model. Pedicled colonic segments were made in left colon by ligation of the feeding arteries, and then intestinal continuity was restored. Colonic blood flow was analyzed by using ICG fluorescence imaging: Fmax, Tmax, T1/2, and Slope were calculated. Anastomotic leakage (AL) was found in 6 of 19 rats (31.6%) in the control group, whereas in 1 of 16 rats (6.2%) in the DKT group. The Fmax and Slope of DKT group were significantly higher than those of control group. DKT could promote the anastomotic healing, with the higher bursting pressure on postoperative day (POD) 2 and 5, the larger granulation thickness on POD 5, and neoangiogenesis on POD 5. Histological examination showed DKT exhibited a decreased inflammatory cell infiltration, enhanced fibroblast infiltration, and enhanced collagen density on POD 5. In the DKT group, the levels of TGFβ1 on POD 2 and VEGFα on POD5 were significantly higher, whereas the level of TNFα on POD 2 was significantly lower. Therefore, DKT could be effective for the prevention of AL following colorectal surgery.
Collapse
|
45
|
Inoue A, Furukawa A, Yamamoto H, Ohta S, Linh NDH, Syerikjan T, Kaida S, Yamaguchi T, Murata S, Obata T, Tani M, Murata K. Acceleration of small bowel motility after oral administration of dai-kenchu-to (TJ-100) assessed by cine magnetic resonance imaging. PLoS One 2018; 13:e0191044. [PMID: 29320574 PMCID: PMC5761958 DOI: 10.1371/journal.pone.0191044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Dai-kenchu-to (TJ-100) is an herbal medicine used to shorten the duration of intestinal transit by accelerating intestinal movement. However, intestinal movement in itself has not been evaluated in healthy volunteers using radiography, fluoroscopy, and radioisotopes because of exposure to ionizing radiation. The purpose of this study was to evaluate the effect of TJ-100 on intestinal motility using cinematic magnetic resonance imaging (cine MRI) with a steady-state free precession sequence. Ten healthy male volunteers received 5 g of either TJ-100 or lactose without disclosure of the identity of the substance. Each volunteer underwent two MRI examinations after taking the substances (TJ-100 and lactose) on separate days. They drank 1200 mL of tap water and underwent cine MRI after 10 min. A steady-state free precession sequence was used for imaging, which was performed thrice at 0, 10, 20, 30, 40, and 50 min. The bowel contraction frequency and distention score were assessed. Wilcoxon signed-rank test was used, and differences were considered significant at a P-value <0.05. The bowel contraction frequency tended to be greater in the TJ-100 group and was significantly different in the ileum at 20 (TJ-100, 8.95 ± 2.88; lactose, 4.80 ± 2.92; P < 0.05) and 50 min (TJ-100, 9.45 ± 4.49; lactose, 4.45 ± 2.65; P < 0.05) between the groups. No significant differences were observed in the bowel distention scores. Cine MRI demonstrated that TJ-100 activated intestinal motility without dependence on ileum distention.
Collapse
Affiliation(s)
- Akitoshi Inoue
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
- * E-mail:
| | - Akira Furukawa
- Department of Radiological Science, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
| | - Hiroshi Yamamoto
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shinichi Ohta
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nguyen Dai Hung Linh
- Department of Radiological Science, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
| | - Tulyeubai Syerikjan
- Department of Radiological Science, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
| | - Sachiko Kaida
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tsuyoshi Yamaguchi
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Satoshi Murata
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Toru Obata
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kiyoshi Murata
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
46
|
Kurahara LH, Hiraishi K, Hu Y, Koga K, Onitsuka M, Doi M, Aoyagi K, Takedatsu H, Kojima D, Fujihara Y, Jian Y, Inoue R. Activation of Myofibroblast TRPA1 by Steroids and Pirfenidone Ameliorates Fibrosis in Experimental Crohn's Disease. Cell Mol Gastroenterol Hepatol 2017; 5:299-318. [PMID: 29552620 PMCID: PMC5852292 DOI: 10.1016/j.jcmgh.2017.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The transient receptor potential ankyrin 1 (TRPA1) channel is highly expressed in the intestinal lamina propria, but its contribution to gut physiology/pathophysiology is unclear. Here, we evaluated the function of myofibroblast TRPA1 channels in intestinal remodeling. METHODS An intestinal myofibroblast cell line (InMyoFibs) was stimulated by transforming growth factor-β1 to induce in vitro fibrosis. Trpa1 knockout mice were generated using the Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. A murine chronic colitis model was established by weekly intrarectal trinitrobenzene sulfonic acid (TNBS) administration. Samples from the intestines of Crohn's disease (CD) patients were used for pathologic staining and quantitative analyses. RESULTS In InMyoFibs, TRPA1 showed the highest expression among TRP family members. In TNBS chronic colitis model mice, the extents of inflammation and fibrotic changes were more prominent in TRPA1-/- knockout than in wild-type mice. One-week enema administration of prednisolone suppressed fibrotic lesions in wild-type mice, but not in TRPA1 knockout mice. Steroids and pirfenidone induced Ca2+ influx in InMyoFibs, which was antagonized by the selective TRPA1 channel blocker HC-030031. Steroids and pirfenidone counteracted transforming growth factor-β1-induced expression of heat shock protein 47, type 1 collagen, and α-smooth muscle actin, and reduced Smad-2 phosphorylation and myocardin expression in InMyoFibs. In stenotic intestinal regions of CD patients, TRPA1 expression was increased significantly. TRPA1/heat shock protein 47 double-positive cells accumulated in the stenotic intestinal regions of both CD patients and TNBS-treated mice. CONCLUSIONS TRPA1, in addition to its anti-inflammatory actions, may protect against intestinal fibrosis, thus being a novel therapeutic target for highly incurable inflammatory/fibrotic disorders.
Collapse
Key Words
- AITC, allyl isothiocyanate
- CD, Crohn’s disease
- Crohn’s Disease
- EGTA, ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
- HSP47, heat shock protein 47
- InMyoFib, intestinal myofibroblast cell line
- Intestinal Fibrosis
- KO, knockout
- MT, Masson trichrome
- Myofibroblast
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- RT-PCR, reverse-transcription polymerase chain reaction
- TGF, transforming growth factor
- TNBS, trinitrobenzene sulfonic acid
- TNF, tumor necrosis factor
- TRP, transient receptor potential
- TRPA1, transient receptor potential ankyrin 1
- TRPC, transient receptor potential canonical
- Transient Receptor Potential Ankyrin 1
- WT, wild-type
- mRNA, messenger RNA
- sgRNA, single-guide RNA
- siRNA, small interfering RNA
- α-SMA, α smooth muscle actin
Collapse
Affiliation(s)
- Lin Hai Kurahara
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan,Correspondence Address correspondence to: Lin Hai Kurahara, PhD, Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan. fax: (81) 92-865-6032.Department of PhysiologyFaculty of MedicineFukuoka UniversityFukuoka814-0180Japan
| | - Keizo Hiraishi
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yaopeng Hu
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Miki Onitsuka
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Mayumi Doi
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan,Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Kunihiko Aoyagi
- Department of Gastroenterology, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Hidetoshi Takedatsu
- Department of Gastroenterology and Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Daibo Kojima
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuwen Jian
- College of Letters and Science, University of California—Davis, Davis, California
| | - Ryuji Inoue
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
47
|
Endo M, Hori M, Mihara T, Ozaki H, Oikawa T, Odaguchi H, Hanawa T. Zingiberis Siccatum Rhizoma, the active component of the Kampo formula Daikenchuto, induces anti-inflammatory actions through α7 nicotinic acetylcholine receptor activation. Neurogastroenterol Motil 2017; 29. [PMID: 28656709 DOI: 10.1111/nmo.13139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/23/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND We previously reported that Daikenchuto (DKT), a gastrointestinal prokinetic Japanese herbal (Kampo) medicine used for the treatment of postoperative ileus (POI), has characteristic potent anti-inflammatory activity. This effect may be partly mediated by the activation of α7 nicotinic acetylcholine receptor (nAChR). In this study, we identified the specific herbs in DKT that induce anti-inflammatory action. METHODS The herbal components of DKT were individually administered orally to each mouse four times before and after intestinal manipulation (IM) was carried out on the distal ileum. The anti-inflammatory activity of each crude drug was subsequently evaluated using immunohistochemical analyses of relevant molecules. KEY RESULTS Treatment with Zingiberis Siccatum Rhizoma (ZSR) but not the other components inhibited the infiltration of cluster of differentiation 68 (CD68)-positive macrophages as effectively as DKT treatment. Selective α7nAChR antagonists, such as methyllycaconitine citrate, or transient receptor potential ankyrin 1 (TRPA1) antagonists, such as HC-030031, significantly inhibited the amelioration of macrophage infiltration by ZSR. The inhibition of macrophage infiltration by ZSR was abolished in both α7nAChR and 5-hydroxytryptamine 4 receptor (5-HT4 R) knockout mice. CONCLUSIONS & INFERENCES Daikenchuto-induced anti-inflammatory activity, which was mediated by inhibiting macrophage infiltration in POI, is dependent on the effects of ZSR. Zingiberis Siccatum Rhizoma activates TRPA1 channels possibly in enterochromaffin (EC) cells to release 5-HT, which stimulates 5-HT4 R in the myenteric plexus neurons to release ACh, which in turn activates α7nAChR on macrophages to inhibit inflammation in POI.
Collapse
Affiliation(s)
- M Endo
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - M Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - T Mihara
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - T Oikawa
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - H Odaguchi
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - T Hanawa
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Tokyo, Japan.,Department of Oriental Medicine Research, Research and Development Center for Medical Education, Kitasato University School of Medicine, Tokyo, Japan.,Department of Oriental Medicine, Doctoral Program of Medical Science, Kitasato University Graduate School, Tokyo, Japan
| |
Collapse
|
48
|
Balemans D, Boeckxstaens GE, Talavera K, Wouters MM. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2017; 312:G635-G648. [PMID: 28385695 DOI: 10.1152/ajpgi.00401.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.
Collapse
Affiliation(s)
- Dafne Balemans
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven Belgium
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| |
Collapse
|
49
|
Kheradpezhouh E, Choy JMC, Daria VR, Arabzadeh E. TRPA1 expression and its functional activation in rodent cortex. Open Biol 2017; 7:rsob.160314. [PMID: 28424320 PMCID: PMC5413904 DOI: 10.1098/rsob.160314] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
TRPA1 is a non-selective cation channel involved in pain sensation and neurogenic inflammation. Although TRPA1 is well established in a number of organs including the nervous system, its presence and function in the mammalian cortex remains unclear. Here, we demonstrate the expression of TRPA1 in rodent somatosensory cortex through immunostaining and investigate its functional activation by whole-cell electrophysiology, Ca2+ imaging and two-photon photoswitching. Application of TRPA1 agonist (AITC) and antagonist (HC-030031) produced significant modulation of activity in layer 5 (L5) pyramidal neurons in both rats and mice; AITC increased intracellular Ca2+ concentrations and depolarized neurons, and both effects were blocked by HC-030031. These modulations were absent in the TRPA1 knockout mice. Next, we used optovin, a reversible photoactive molecule, to activate TRPA1 in individual L5 neurons of rat cortex. Optical control of activity was established by applying a tightly focused femtosecond-pulsed laser to optovin-loaded neurons. Light application depolarized neurons (n = 17) with the maximal effect observed at λ = 720 nm. Involvement of TRPA1 was further confirmed by repeating the experiment in the presence of HC-030031, which diminished the light modulation. These results demonstrate the presence of TRPA1 in L5 pyramidal neurons and introduce a highly specific approach to further understand its functional significance.
Collapse
Affiliation(s)
- Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia .,The Australian Research Council Centre of Excellence for Integrative Brain Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia
| | - Julian M C Choy
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia
| | - Vincent R Daria
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia.,The Australian Research Council Centre of Excellence for Integrative Brain Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
50
|
Li Q, Guo CH, Chowdhury MA, Dai TL, Han W. TRPA1 in the spinal dorsal horn is involved in post-inflammatory visceral hypersensitivity: in vivo study using TNBS-treated rat model. J Pain Res 2016; 9:1153-1160. [PMID: 27980434 PMCID: PMC5144908 DOI: 10.2147/jpr.s118581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction The transient receptor potential ankyrin-1 (TRPA1) channel, a pain transducer and amplifier, is drawing increasing attention in the field of visceral hypersensitivity, commonly seen in irritable bowel syndrome and inflammatory bowel disease. However, the role of TRPA1 in visceral nociception during post-inflammatory states is not well defined. Here, we explore the correlation between TRPA1 expression in the spinal dorsal horn (SDH) and persistent post-inflammatory visceral hypersensitivity. Methods We injected rats intracolonically with 2,4,6-trinitrobenzene sulfonic acid (TNBS) or vehicle (n=12 per group). Post-inflammatory visceral hypersensitivity was assessed by recording the electromyographic activity of the external oblique muscle in response to colorectal distension. TRPA1 expression and distribution in the spinal cord and colon were examined by Western blotting and immunohistochemistry. Results Animals exposed to TNBS had more abdominal contractions than vehicle-injected controls (P<0.05), which corresponded to a lower nociceptive threshold. Expression of TRPA1 in the SDH (especially in the substantia gelatinosa) and the colon was significantly greater in the TNBS-treated group than in controls (P<0.05). In the SDH, the number of TRPA1-immunopositive neurons was 25.75±5.12 in the control group and 34.25±7.89 in the TNBS-treated group (P=0.023), and integrated optical density values of TRPA1 in the control and TNBS-treated groups were 14,544.63±6,525.54 and 22,532.75±7,608.11, respectively (P=0.041). Conclusion Our results indicate that upregulation of TRPA1 expression in the SDH is associated with persistent post-inflammatory visceral hypersensitivity in the rat and provides insight into potential therapeutic targets for the control of persistent visceral hypersensitivity.
Collapse
Affiliation(s)
- Qian Li
- Department of Gastroenterology, Qilu Hospital of Shandong University
| | - Cheng-Hao Guo
- Department of Pathology, Medical School of Shandong University
| | | | - Tao-Li Dai
- Department of Gastroenterology, Qilu Hospital of Shandong University
| | - Wei Han
- Department of Gastroenterology, Qilu Hospital of Shandong University; Laboratory of Translational Gastroenterology, Shandong University, Qilu Hospital, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|