1
|
Howe CS, Chulkina M, Syrcle R, McAninch C, McAninch S, Pinchuk IV, Beswick EJ. MK2 Inhibition in CD4+ T Cells Protects Against IFNγ and IL-17A, Chronic Inflammation, and Fibrosis in Inflammatory Bowel Disease Models. Inflamm Bowel Dis 2025:izaf026. [PMID: 39937137 DOI: 10.1093/ibd/izaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND CD4+ T cells contribute to chronic inflammation and fibrosis in inflammatory bowel disease (IBD), but the cellular mechanisms remain elusive. We have found that the mitogen-activated protein kinase 2 (MK2) pathway plays a major role in inflammation and overall pathology in IBD. Thus, here, we examined the role of MK2 in regulating CD4+ T cell responses in IBD models. METHODS Interleukin-10 (IL-10) knockout (KO) mice treated with MK2 inhibitors (MK2i) and CD4-specific MK2 knockdown mice treated with chronic dextran sodium sulfate (DSS) treatments were used to examine inflammation and fibrosis by multiplex array, gene expression, flow cytometry, and histology. Human tissues were treated with MK2i to examine Th1 and Th17 markers. RESULTS IL-10 KO mice treated with MK2i therapeutically showed significantly reduced interferon gamma (IFNγ) and interleukin-17A (IL-17A) and a significantly reduced number of IFNγ+ and IL-17A+ producing CD4+ T cells by flow cytometry. To investigate the direct role of MK2 in CD4+ T cells during IBD, we utilized CD4-specific MK2 knockdown mice in chronic DSS colitis. A decrease in colonic inflammation, IFNγ and IL-17, pro-fibrotic genes, and extracellular matrix deposition was observed in mice with MK2 knockdown in CD4+ T cells compared to control mice. Additionally, IL-17A and IFNγ directly regulated the expression of fibrosis genes in colon tissues. CONCLUSIONS The MK2 pathway regulates inflammatory CD4+ T cells and fibrosis in IBD models and is a potential therapeutic target.
Collapse
Affiliation(s)
- Cody S Howe
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Marina Chulkina
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Ryan Syrcle
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Christina McAninch
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Steven McAninch
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Irina V Pinchuk
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Ellen J Beswick
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Jacenik D, Lebish EJ, Beswick EJ. MK2 Promotes the Development and Progression of Pancreatic Neuroendocrine Tumors Mediated by Macrophages and Metabolomic Factors. Int J Mol Sci 2022; 23:13561. [PMID: 36362348 PMCID: PMC9658113 DOI: 10.3390/ijms232113561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/24/2023] Open
Abstract
Cases of pancreatic neuroendocrine tumors (PNETs) are growing in number, and new treatment options are needed in order to improve patient outcomes. The mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a crucial regulator of cytokine/chemokine production. The significance of MK2 expression and signaling pathway mediated by MK2 in PNETs has not been investigated. To characterize the impact of MK2 on PNET growth, we used the RipTag2 transgenic murine model of PNETs, and we developed a primary PNET cell line for both in vitro and in vivo studies. In the transgenic murine model of PNETs, we found that MK2 inhibition improves survival of mice and prevents PNET progression. MK2 blockade abolished cytokine/chemokine production, which was related to macrophage function. A role for MK2 in the regulation of metabolic factor secretion in PNETs was identified, making this the first study to identify a potential role for the MK2 pathway in regulation of tumor metabolism. Moreover, using an in vitro approach and allograft model of PNETs, we were able to show that macrophages with MK2 depletion exhibit increased cytotoxicity against PNET cells and substantially decreased production of pro-inflammatory cytokines and chemokines, as well as metabolic factors. Taken together, our work identifies MK2 as a potent driver of immune response and metabolic effectors in PNETs, suggesting it is a potential therapeutic target for patients with PNETs.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Eric J. Lebish
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Ellen J. Beswick
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
3
|
Qeadan F, Bansal P, Hanson JA, Beswick EJ. The MK2 pathway is linked to G-CSF, cytokine production and metastasis in gastric cancer: a novel intercorrelation analysis approach. J Transl Med 2020; 18:137. [PMID: 32216812 PMCID: PMC7098132 DOI: 10.1186/s12967-020-02294-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer is associated with chronic inflammation, but there is still much to understand about the tumor microenvironment and the underlying tumor-promoting mechanisms. The Map kinase-activated protein kinase 2 (MK2) pathway is a regulator of inflammatory cytokine production that we have been studying in gastrointestinal cancers. Here, we set out to determine the significance of this gene in gastric cancer along with its downstream mediators and if there were differences in the primary tumors with and without metastasis. Methods Human gastric cancer tissues with and without metastasis were examined for MK2 expression and cytokine profile in organ culture supernatants. Advanced statistical methods including a lower triangular correlation matrix, novel rooted correlation network, linear and logistic regression modeling along with Kruskal–Wallis testing with Sidak correction for multiple testing were applied to gain understanding of cytokines/chemokines linked to metastasis. Results The MK2 pathway is strongly linked with metastasis and a panel of cytokines. Gene expression was able to classify gastric cancer metastasis 85.7% of the time. A significant association with a panel of cytokines was found, including G-CSF, GM-CSF, Mip-1β, IFN-α, MCP-1, IL-1β, IL-6, and TNF-α. Mip-1β was found to have the strongest association with MK2 and metastasis after Sidak correction for multiple testing. Conclusions MK2 gene expression and a novel associated cytokine panel are linked to gastric cancer metastasis. G-CSF is the strongest cytokine to differentiate between metastasis and non-metastasis patients and had the lowest P value, while Mip-1β showed the strongest association with MK2 and metastasis after Sidak correction. MK2 and associated cytokines are potential biomarkers for gastric cancer metastasis. The novel intercorrelation analysis approach is a promising method for understanding the complex nature of cytokine/chemokine regulation and links to disease outcome.
Collapse
Affiliation(s)
- Fares Qeadan
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, UT, USA
| | - Pranshu Bansal
- New Mexico Oncology Hematology Consultants, Albuquerque, NM, USA
| | - Joshua A Hanson
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Wang Z, Liang XY, Chang X, Nie YY, Guo C, Jiang JH, Chang M. MMI-0100 Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice through Targeting MK2 Pathway. Molecules 2019; 24:molecules24152832. [PMID: 31382637 PMCID: PMC6696270 DOI: 10.3390/molecules24152832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023] Open
Abstract
Backgrounds: This study aimed to investigate the protective effects of MMI-0100, a cell-penetrating peptide inhibitor of MAPK-activated protein kinase II (MK2), on acute colitis induced by dextran sodium sulfate (DSS). Mice were injected intraperitoneally with different doses of MMI-0100 (0.5 and 1 mg/kg per day, six days). The physiological indexes, the parameters for colonic pathological injury and the intensity of inflammatory responses were evaluated by histological staining, quantitative PCR, western blotting, and immunostaining. MMI-0100 attenuated DSS-induced body weight loss, colon length shortening, and colonic pathological injury, including decreased myeloperoxidase (MPO) and inhibited inflammatory cell infiltration. MMI-0100 suppressed DSS-induced activation of CD11b+ and F4/80 positive cell, and dramatically decreased the expression of a series of pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β, TGF- β, IFN-γ, IL-17A, COX-2 and iNOS. A TUNEL assay showed that MMI-0100 protected against DSS-induced apoptosis. This is consistent with the results of Western blotting assay in apoptosis-related proteins including Bcl-2, BAX, caspase-3. The anti-inflammatory effects of MMI-0100 on DSS-induced colitis were achieved by down-regulating the phosphorylation level of MK2, IκBα and p65 protein. The current study clearly demonstrates a protective role for MMI-0100 in experimental IBD.
Collapse
Affiliation(s)
- Zhe Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xue Ya Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yao Yan Nie
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Guo
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jin Hong Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Wang N, Feng Z, Zhao W, Zhang Z, Zhang L. Ultrashortwave radiation promotes the recovery of spinal cord injury by inhibiting inflammation via suppression of the MK2/TNF‑α pathway. Int J Mol Med 2018; 42:1909-1916. [PMID: 30066830 PMCID: PMC6108855 DOI: 10.3892/ijmm.2018.3786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/12/2018] [Indexed: 01/10/2023] Open
Abstract
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) and its mediated inflammation are involved in various diseases, including spinal cord injury (SCI). Ultrashortwave (USW) radiation has previously been reported to exert a protective effect on SCI. In the present study, through a series of reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot and immunofluorescence assay, it was found that MK2 and tumor necrosis factor (TNF)-α/interleukin (IL)-1β were elevated in patients with SCI and in H2O2-treated C8-D1A cells. Through gene level and protein level detection by using of RT-qPCR, western blot, immunofluorescence assay and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay, it was demonstrated that USW radiation inhibited the expression of MK2/TNF-α/IL-1β and suppressed the apoptosis of H2O2-treated C8-D1A cells. Furthermore, it was confirmed that the overexpression of MK2 reversed the protective effect of USW on C8-D1A cells, which indicated that USW achieved its function via regulation of the MK2/TNF-α/IL-1β pathway. Finally, using a constructed in vivo model and a series of RT-qPCR, western blot and IHC detection, it was confirmed that USW suppressed the expression of MK2 to promote functional recovery following SCI. The findings of the present study may provide a novel target and improve on the current understanding of how USW functions in the treatment of SCI.
Collapse
Affiliation(s)
- Nan Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Zhiping Feng
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Zhiqiang Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
7
|
Wu Y, He H, Ding Y, Liu S, Zhang D, Wang J, Jiang H, Zhang D, Sun L, Ye RD, Qian F. MK2 mediates macrophage activation and acute lung injury by regulating let-7e miRNA. Am J Physiol Lung Cell Mol Physiol 2018; 315:L371-L381. [PMID: 29770701 DOI: 10.1152/ajplung.00019.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MAPK-activated protein kinase 2 (MK2) plays a critical role in the development of inflammation. However, the modulatory mechanisms in macrophage activation and acute lung injury (ALI) have not been completely defined. Here, we reported that MK2-deficient mice (MK2-/-) protected against sepsis-induced ALI. In response to lipopolysaccharide (LPS) challenge, MK2-/- mice and myeloid cell-specific MK2 conditional knockout mice (MK2Lyz2-KO) exhibited attenuated inflammatory response, especially producing fewer amounts of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and macrophage inflammatory protein 2 (MIP-2). LPS treatment in vitro resulted in reduced cytokine expression in MK2-/- bone marrow-derived macrophages (BMDMs). Furthermore, we found that LPS-induced microRNA lethal-7e ( let-7e) expression was significantly increased in MK2-/- macrophages. Transfection of let-7e antagomirs into MK2-/- BMDM rescued LPS-induced expression of TNF-α, IL-6, and MIP-2. In contrast, transfection of let-7e mimics into MK2+/+BMDM decreased cytokine expression. Meanwhile, LPS-induced phosphorylation of cAMP response element-binding (CREB) protein, a substrate of MK2, was downregulated in MK2-/- BMDMs. Lin28, an inhibitory molecule of let-7, was significantly reduced in MK2-/- macrophages. Our results suggested that MK2 boosts LPS-induced macrophage activation and ALI via increasing activation of CREB and consequently, the expression of Lin28 and downregulation of let-7e.
Collapse
Affiliation(s)
- Yaxian Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Huiqiong He
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Yunhe Ding
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Sirui Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Depeng Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Jun Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hongchao Jiang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Dan Zhang
- Research Center for Cancer Precision Medicine, Department of Medical Oncology, Bengbu Medical College, Bengbu, Anhui , People's Republic of China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Richard D Ye
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Research Center for Cancer Precision Medicine, Department of Medical Oncology, Bengbu Medical College, Bengbu, Anhui , People's Republic of China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University , Xuzhou , People's Republic of China
| |
Collapse
|
8
|
Ray AL, Berggren KL, Restrepo Cruz S, Gan GN, Beswick EJ. Inhibition of MK2 suppresses IL-1β, IL-6, and TNF-α-dependent colorectal cancer growth. Int J Cancer 2017; 142:1702-1711. [PMID: 29197088 DOI: 10.1002/ijc.31191] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) development and progression is associated with chronic inflammation. We have identified the MAPK-activated protein kinase 2 (MK2) pathway as a primary mediator of inflammation in CRC. MK2 signaling promotes production of proinflammatory cytokines IL-1β, IL-6 and TNF-α. These cytokines have been implicated in tumor growth, invasion and metastasis. For the first time, we investigate whether MK2 inhibition can improve outcome in two mouse models of CRC. In our azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated CRC, MK2 inhibitor treatment eliminated murine tumor development. Using the implanted, syngeneic murine CRC cell line CT26, we observe significant tumor volume reduction following MK2 inhibition. Tumor cells treated with MK2 inhibitors produced 80% less IL-1β, IL-6 and TNF-α and demonstrated decreased invasion. Replenishment of downstream proinflammatory MK2-mediated cytokines (IL-1β, IL-6 and TNF-α) to tumors led to restoration of tumor proliferation and rapid tumor regrowth. These results demonstrate the importance of MK2 in driving proinflammatory cytokine production, its relevance to in vivo tumor proliferation and invasion. Inhibition of MK2 may represent an attractive therapeutic target to suppress tumor growth and progression in patients.
Collapse
Affiliation(s)
- Anita L Ray
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Kiersten L Berggren
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Sebastian Restrepo Cruz
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gregory N Gan
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ellen J Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
9
|
Regulation of Postoperative Ileus by Lentivirus-Mediated HuR RNA Interference via the p38/MK2 Signaling Pathway. J Gastrointest Surg 2017; 21:389-397. [PMID: 27796636 DOI: 10.1007/s11605-016-3303-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/10/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The objective of the present study is to explore the effect of lentivirus-mediated HuR interference on the development and progression of postoperative ileus and the role of HuR in the regulation of the p38/MAPK-activated protein kinase-2 (MK2) signaling pathway during postoperative ileus. METHODS To establish a mouse model of lentiviral transduction, we first determined the optimum effective titer of lentiviral vectors for transduction of the murine small intestine via the abdominal cavity by using hematoxylin and eosin (HE) staining, immunohistochemistry, detection of GFP messenger RNA (mRNA) and protein, and Western blotting. To investigate the effect of HuR interference on gene expression during postoperative ileus, we established a mouse model of postoperative ileus and used RT-PCR to measure the expression of proinflammatory genes, ELISA to measure the expression of serum inflammatory cytokines, immunohistochemistry to evaluate inflammatory cell infiltration in the small intestine, HE staining of paraffin sections to examine the pathology of the small intestine, and Western blotting to measure HuR expression and identify its role in the regulation of the p38/MK2 inflammatory pathway. RESULTS We successfully designed a mouse model of intraperitoneal transduction of HuR-RNAi lentivirus. When HuR gene expression was suppressed in a mouse model of postoperative ileus, the infiltration of inflammatory cells, the expression of proinflammatory genes, and the levels of serum inflammatory cytokines were significantly reduced. This reduction in inflammation correlated with reduced cytoplasmic localization of HuR and reduced activation of MK2. CONCLUSIONS Within the p38/MK2 signal transduction pathway, HuR may increase the mRNA stability of various inflammatory cytokines, thereby promoting inflammation that causes postoperative ileus. Suppressing the expression of HuR in a postoperative ileus model can effectively suppress the postoperative ileus inflammatory reaction. HuR might serve as a candidate drug target for the prevention and mitigation of postoperative ileus.
Collapse
|
10
|
Chen Y, Yang W, Zhang X, Yang S, Peng G, Wu T, Zhou Y, Huang C, Reinach PS, Li W, Liu Z. MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea. Sci Rep 2016; 6:28145. [PMID: 27329698 PMCID: PMC4916419 DOI: 10.1038/srep28145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
MK2 activation by p38 MAPK selectively induces inflammation in various diseases. We determined if a MK2 inhibitor (MK2i), improves cornea wound healing by inhibiting inflammation caused by burning rat corneas with alkali. Our study, for the first time, demonstrated that MK2i inhibited alkali burn-induced MK2 activation as well as rises in inflammation based on: a) blunting rises in inflammatory index, inflammatory cell infiltration, ED1+ macrophage and PMN+ neutrophil infiltration; b) suppressing IL-6 and IL-1β gene expression along with those of macrophage inflammatory protein-1α (MIP-1α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1); c) reducing angiogenic gene expression levels and neovascularization (NV) whereas anti-angiogenic PEDF levels increased. In addition, this study found that MK2i did not affect human corneal epithelial cell (HCEC) proliferation and migration and had no detectable side effects on ocular surface integrity. Taken together, MK2i selectively inhibited alkali burn-induced corneal inflammation by blocking MK2 activation, these effects have clinical relevance in the treatment of inflammation related ocular surface diseases.
Collapse
Affiliation(s)
- Yanfeng Chen
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Wenzhao Yang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Xiaobo Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Shu Yang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Gao Peng
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Ting Wu
- Department of Basic Medical Sciences, Cancer Research Center, Medical College, Xiamen University, Xiamen, China
| | - Yueping Zhou
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Caihong Huang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, People's Republic of China.,Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.,Affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.,Affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Ray AL, Castillo EF, Morris KT, Nofchissey RA, Weston LL, Samedi VG, Hanson JA, Gaestel M, Pinchuk IV, Beswick EJ. Blockade of MK2 is protective in inflammation-associated colorectal cancer development. Int J Cancer 2015; 138:770-5. [PMID: 26238259 DOI: 10.1002/ijc.29716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
Chronic inflammation is a risk factor for colorectal cancer. The MAPK-activated protein kinase 2 (MK2) pathway controls multiple cellular processes including p38-dependent inflammation. This is the first study to investigate the role of MK2 in development of colitis-associated colon cancer (CAC). Herein, we demonstrate that MK2(-/-) mice are highly resistant to neoplasm development when exposed to AOM/DSS, while wild type (WT) C57BL/6 develop multiple neoplasms with the same treatment. MK2-specific cytokines IL-1, IL-6 and TNF-α were substantially decreased in AOM/DSS treated MK2(-/-) mouse colon tissues compared with WT mice, which coincided with a marked decrease in macrophage influx. Restoring MK2-competent macrophages by injecting WT bone marrow derived macrophages into MK2(-/-) mice led to partial restoration of inflammatory cytokine production with AOM/DSS treatment; however, macrophages were not sufficient to induce neoplasm development. These results indicate that MK2 functions as an inflammatory regulator to promote colonic neoplasm development and may be a potential target for CAC.
Collapse
Affiliation(s)
- Anita L Ray
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| | - Eliseo F Castillo
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| | | | - Robert A Nofchissey
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| | - Lea L Weston
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| | - Von G Samedi
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - Joshua A Hanson
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - Matthias Gaestel
- Department of Biochemistry, Hannover Medical University, Hannover, Germany
| | - Irina V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Ellen J Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
12
|
Irrera N, Bitto A, Interdonato M, Squadrito F, Altavilla D. Evidence for a role of mitogen-activated protein kinases in the treatment of experimental acute pancreatitis. World J Gastroenterol 2014; 20:16535-16543. [PMID: 25469021 PMCID: PMC4248196 DOI: 10.3748/wjg.v20.i44.16535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/23/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis of AP is still not well understood. In recent years several papers have highlighted the cellular and molecular events of acute pancreatitis. Pancreatitis is initiated by activation of digestive enzymes within the acinar cells that are involved in autodigestion of the gland, followed by a massive infiltration of neutrophils and macrophages and release of inflammatory mediators, responsible for the local and systemic inflammatory response. The hallmark of AP is parenchymal cell necrosis that represents the cause of the high morbidity and mortality, so that new potential therapeutic approaches are indispensable for the treatment of patients at high risk of complications. However, not all factors that determine the onset and course of the disease have been explained. Aim of this article is to review the role of mitogen-activated protein kinases in pathogenesis of acute pancreatitis.
Collapse
|
13
|
Liu X, Wu T, Chi P. Inhibition of MK2 shows promise for preventing postoperative ileus in mice. J Surg Res 2013; 185:102-12. [DOI: 10.1016/j.jss.2013.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 04/01/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
|
14
|
Moens U, Kostenko S, Sveinbjørnsson B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes (Basel) 2013; 4:101-33. [PMID: 24705157 PMCID: PMC3899974 DOI: 10.3390/genes4020101] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| | - Sergiy Kostenko
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway.
| |
Collapse
|
15
|
Inhibition of p38/Mk2 signaling pathway improves the anti-inflammatory effect of WIN55 on mouse experimental colitis. J Transl Med 2013; 93:322-33. [PMID: 23381627 DOI: 10.1038/labinvest.2012.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
P38/Mk2 (mitogen-activated protein kinase (MAPK)-activated protein kinase-2, also known as MAKAP kinase-2) is a member of the mitogen-activated protein kinases (MAPKs) family, and participates in inflammatory responses directly or indirectly. WIN55, 212-2 (WIN55) is a synthetic non-selective agonist of cannabinoid (CB) receptors with remarkable anti-inflammatory properties. This study was to explore the roles of WIN55 and p38/Mk2 signaling pathway in dextran sodium sulfate (DSS)-induced mouse colitis and ascertain their anti-inflammatory mechanisms. Colitis was induced in C57BL Mk2 gene homozygous deletion (Mk2-/-) and wild-type mice by replacing the drinking water with 4% DSS solution for 7 days. DSS-treated mice developed bloody stool, weight loss, and eye-visible multiple bleeding ulcers on colon mucosa. The mRNA expressions levels of TNF-α and IL-6, as well as the protein levels of p38 and its phosphorylated form (p-p38), were upregulated in the colon. The plasma levels of TNF-α, IL-6, cytokine-induced neutrophil chemoattractant-1 (CINC-1), monocyte chemoattractant protein-1 (MCP-1), and lung myeloperoxidase (MPO) activities were raised; however, all these changes were less severe in Mk2-/- mice. After WIN55 intervention, the Mk2-/- mice recovered faster and better from the induced colitis than their wild-type counterparts. The results indicate that the Mk2 homozygous deletion in mice impedes the induction of experimental colitis by DSS, confirming the notion that p38/Mk2 is involved in this inflammatory response. WIN55 protects mice against DSS-induced colitis, in particular when the p38/Mk2 pathway is obstructed, implying that the activation of CB system, together with blocking of p38/Mk2 pathway, serves as a potential drug target for colitis treatment.
Collapse
|
16
|
Michler T, Storr M, Kramer J, Ochs S, Malo A, Reu S, Göke B, Schäfer C. Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms. Am J Physiol Gastrointest Liver Physiol 2013; 304:G181-92. [PMID: 23139224 DOI: 10.1152/ajpgi.00133.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines. Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases. Cerulein pancreatitis was induced in wild-type, CB(1)-/-, and MK2-/- mice pretreated with selective cannabinoid receptor agonists or antagonists. Severity of pancreatitis was determined by serum amylase and IL-6 levels, intracellular activation of pancreatic trypsinogen, lung myeloperoxidase activity, pancreatic edema, and histological examinations. Pancreatic lysates were investigated by Western blotting using phospho-specific antibodies against p38 and JNK. Quantitative PCR data, Western blotting experiments, and immunohistochemistry clearly show that CB(1) and CB(2) are expressed in mouse pancreatic acini. During acute pancreatitis, an upregulation especially of CB(2) on apoptotic cells occurred. The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2). Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology. Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini. With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications.
Collapse
Affiliation(s)
- Thomas Michler
- Department of Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Feng YJ, Li YY. The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease. J Dig Dis 2011; 12:327-32. [PMID: 21955425 DOI: 10.1111/j.1751-2980.2011.00525.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) includes ulcerative colitis and Crohn's disease which is characterized by the recurrent intestinal inflammation and overactive immune responses. The signaling pathways of p38 mitogen-activated protein kinase (MAPK) play an important role in bowel inflammation. The inhibition of p38 MAPK can effectively suppress the expression of inflammatory mediators. However, due to the obvious preclinical and clinical side effects, p38 inhibitors are unacceptable in safety profiles and cannot be applied in the treatment of IBD. MAPK-activated protein kinase 2 (MK2), as the direct substrate of p38α and p38β, is a multifunctional signaling protein in the progression of inflammation and several lines of evidence demonstrate that the inhibition of MK2 may produce the same beneficial effect as the inhibition of p38 MAPK. Hence, MK2 is likely to be a potential drug target for the treatment of IBD.
Collapse
Affiliation(s)
- Ya Jing Feng
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | | |
Collapse
|
18
|
Abstract
The p38 pathway has been at the center of interest for anti-inflammatory drug discovery for many years as it is crucial for the biosynthesis of TNF-α, IL-1β and other mediators. Most of the anti-inflammatory effects of p38 inhibition are mediated through MAPK-activated protein kinase-2 (MK2), a direct downstream target of p38, which makes MK2 a very interesting drug target. Within the last 5 years, several classes of low-molecular-weight MK2 inhibitors were disclosed in the patent and primary literature. Advanced compounds could be optimized to nanomolar potencies and inhibit TNF-α release, as well as the phosphorylation of the MK2 substrate heat-shock protein 27 in cellular assays. This article will review the recent progress in this field and will highlight and discuss the most promising compound series disclosed so far.
Collapse
|
19
|
Ward BC, Kavalukas S, Brugnano J, Barbul A, Panitch A. Peptide inhibitors of MK2 show promise for inhibition of abdominal adhesions. J Surg Res 2011; 169:e27-36. [PMID: 21492875 DOI: 10.1016/j.jss.2011.01.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/24/2010] [Accepted: 01/21/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abdominal adhesions are a common side effect of surgical procedures with complications including infertility, chronic pain, and bowel obstruction, which may lead to the need for surgical lyses of the adhesions. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) has been implicated in several diseases, involving inflammation and fibrosis. Thus, the development of a cell-penetrating peptide (CPP) that modulates MK2 activity may confer therapeutic benefit after abdominal surgery in general and more specifically after bowel anastomosis. METHODS This study evaluated the function of a CPP inhibitor of MK2 in human mesothelial cells and in a rat bowel anastomosis model. To determine IC50 and basic specificity, kinase inhibition was performed using a radiometric assay. Enzyme-linked immunoassay (ELISA) was used to evaluate interleukin-6 (IL-6) expression in response to IL-1β and tumor necrosis factor-α (TNF-α) stimulation in vitro to validate MK2 kinase inhibition. Following bowel anastomosis (10 rats for each control and treatment at 4 and 10 d), the rats were evaluated for weight loss, normal healing (colonic burst strength and hydroxyproline content at the anastomosis), and number and density of adhesions. RESULTS The IC50 of the MK2 inhibitor peptide (22 μM) was similar to that of the nonspecific small molecule rottlerin (IC50 = 5 μM). The MK2 inhibitor peptide was effective at suppressing IL-1β and TNF-α stimulated IL-6 expression in mesothelial cells. In vivo, the MK2 inhibitor peptide was effective at suppressing both the density and number of adhesions formed as a result of bowel an anastamosis. Importantly, the peptide had no negative effect on normal healing. CONCLUSIONS In conclusion, the peptide inhibitor of MK2, MMI-0100, has the potential to significantly reduce inflammation through suppression of inflammatory cytokine expression and showed promise as a therapeutic for abdominal adhesions.
Collapse
Affiliation(s)
- Brian C Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, USA
| | | | | | | | | |
Collapse
|
20
|
Chiang PC, South SA, Foster KA, Daniels JS, Wene SP, Albin LA, Thompson DC. Utilizing a novel tandem oral dosing strategy to enhance exposure of low-solubility drug candidates in a preclinical setting. J Pharm Sci 2010; 99:3132-40. [PMID: 20229600 DOI: 10.1002/jps.22092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Time and resource constraints necessitate increasingly early decision making to accelerate or stop preclinical drug discovery programs. Early discovery drug candidates may be potent inhibitors of new targets, but all too often exhibit poor pharmaceutical and pharmacokinetic properties that limit the in vivo exposure. Low solubility of a drug candidate often leads to poor oral bioavailability and poor dose linearity that creates an issue for efficacy and target safety studies, where high drug exposures are desired. When solubility issues are encountered, enabling formulations are often used to improve the exposure. However, this approach often requires a substantial and lengthy investment to develop the formulation. In our study, two drug candidates with poor aqueous solubility were dosed in rats as simple suspension formulations using a novel tandem dosing strategy, which employs dosing orally in 2.5 h increments up to three times to simulate an oral infusion by avoiding saturation of absorption associated with bolus dosing. These compounds were also dosed using the same suspension formulations and a standard dosing strategy. The resulting in vivo exposures were compared. It was found that this novel tandem dosing strategy significantly improved the in vivo exposures.
Collapse
Affiliation(s)
- Po-Chang Chiang
- Pfizer Global Research and Development, St. Louis Laboratories, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kang JS, Kim HM, Choi IY, Han SB, Yoon YD, Lee H, Park KH, Cho IJ, Lee CW, Lee K, Lee KH, Park SK. DBM1285 suppresses tumor necrosis factor alpha production by blocking p38 mitogen-activated protein kinase/mitogen-activated protein kinase-activated protein kinase 2 signaling pathway. J Pharmacol Exp Ther 2010; 334:657-64. [PMID: 20427474 DOI: 10.1124/jpet.109.161687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) is a major inflammatory cytokine that plays an important role in the development of various inflammatory diseases. TNF-alpha has been considered as a potential therapeutic target for the treatment of chronic inflammatory diseases, including rheumatoid arthritis and inflammatory bowel disease. In this study, we report that cyclopropyl-{4-[4-(4-fluorophenyl)-2-piperidin-4-yl-thiazol-5-yl]pyrimidin-2-yl}amine (DBM1285) is a novel inhibitor of TNF-alpha production. DBM1285 concentration-dependently inhibited lipopolysaccharide (LPS)-induced TNF-alpha secretion in various cells of macrophage/monocyte lineage, including mouse bone marrow macrophages, THP-1 cells, and RAW 264.7 cells. However, LPS-induced mRNA expression of TNF-alpha was not affected by DBM1285 in these cells. Further studies demonstrated that the inhibitory effect of DBM1285 on TNF-alpha production might be mediated by post-transcriptional regulation through the modulation of the p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein kinase 2 (MK2) signaling pathway. We also confirmed that DBM1285 directly inhibits p38 MAPK enzymatic activity. In vivo administration of DBM1285 inhibited LPS-induced increase in the plasma level of TNF-alpha in mice. Whole-blood in vivo target inhibition assay also revealed that DBM1285 attenuates p38 MAPK activity after oral administration in mice. Moreover, DBM1285 suppressed zymosan-induced inflammation and adjuvant-induced arthritis in murine models. Collectively, these results suggest that DBM1285 inhibits TNF-alpha production, at least in part, by blocking the p38 MAPK/MK2 pathway. Furthermore, in vivo results suggest that DBM1285 might be a possible therapeutic candidate for the treatment of TNF-alpha-related chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jong Soon Kang
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakamura Y, Do JH, Yuan J, Odinokova IV, Mareninova O, Gukovskaya AS, Pandol SJ. Inflammatory cells regulate p53 and caspases in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G92-100. [PMID: 19850968 PMCID: PMC2806100 DOI: 10.1152/ajpgi.00324.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inflammatory response during pancreatitis regulates necrotic and apoptotic rates of parenchymal cells. Neutrophil depletion by use of anti-polymorphonuclear serum (anti-PMN) increases apoptosis in experimental pancreatitis but the mechanism has not been determined. Our study was designed to investigate signaling mechanisms in pancreatic parenchymal cells regulating death responses with neutrophil depletion. Rats were neutrophil depleted with anti-PMN treatment. Then cerulein pancreatitis was induced, followed by measurements of apoptosis signaling pathways. There was greater activation of executioner caspases-3 in the pancreas with anti-PMN treatment compared with control. There were no differences between these groups of animals in mitochondrial cytochrome c release or in activities of initiator caspase-8 and -9. However, there was greater activation of caspase-2 with anti-PMN treatment during cerulein pancreatitis. The upstream regulation of caspases-2 includes p53, which was increased; the p53 negative regulator, Mdm2, was decreased by anti-PMN treatment during cerulein pancreatitis. In vitro experiments using isolated pancreatic acinar cells a pharmacological inhibitor of Mdm2 increased caspase-2/-3 activities, and an inhibitor of p53 decreased these activities during cholecystokinin-8 treatment. Furthermore, experiments using the AR42J cell line Mdm2 small interfering RNA (siRNA) increased caspase-2/-3 activities, and p53 siRNA decreased these activities during cholecystokinin-8 treatment. These results suggest that during acute pancreatitis the inflammatory response inhibits apoptosis. The mechanism of this inhibition involves caspase-2 and its upstream regulation by p53 and Mdm2. Because previous findings indicate that promotion of apoptosis decreases necrosis and severity of pancreatitis, these results suggest that strategies to inhibit Mdm2 or activate p53 will have beneficial effects for treatment of pancreatitis.
Collapse
Affiliation(s)
- Yuji Nakamura
- 1Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California; ,2Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan;
| | - Jae Hyuk Do
- 1Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California; ,3Division of Gastroenterology, Department of Internal Medicine, Chung-Ang University School of Medicine, Seoul, Korea; and
| | - Jingzhen Yuan
- 1Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California;
| | - Irina V. Odinokova
- 1Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California; ,4Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Olga Mareninova
- 1Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California;
| | - Anna S. Gukovskaya
- 1Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California;
| | - Stephen J. Pandol
- 1Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California;
| |
Collapse
|
23
|
Ward B, Seal BL, Brophy CM, Panitch A. Design of a bioactive cell-penetrating peptide: when a transduction domain does more than transduce. J Pept Sci 2009; 15:668-74. [PMID: 19691016 DOI: 10.1002/psc.1168] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of cell-penetrating peptides (CPPs) has facilitated delivery of peptides into cells to affect cellular behavior. Previously, we were successful at developing a phosphopeptide mimetic of the small heat shock-like protein HSP20 . Building on this success we developed a cell-permeant peptide inhibitor of mitogen-activated protein kinase-activated protein kinase 2 (MK2). It is well documented that inhibition of MK2 may be beneficial for a myriad of human diseases including those involving inflammation and fibrosis. During the optimization of the activity and specificity of the MK2 inhibitor (MK2i) we closely examined the effect of cell-penetrating peptide identity. Surprisingly, the identity of the CPP dictated kinase specificity and functional activity to an extent that rivaled that of the therapeutic peptide. The results reported herein have wide implications for delivering therapeutics with CPPs and indicate that judicious choice of CPP is crucial to the ultimate therapeutic success.
Collapse
Affiliation(s)
- Brian Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2032, USA
| | | | | | | |
Collapse
|
24
|
Li YY, Ochs S, Gao ZR, Malo A, Chen CJ, Lv S, Gallmeier E, Göke B, Schäfer C. Regulation of HSP60 and the role of MK2 in a new model of severe experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 2009; 297:G981-9. [PMID: 20501446 DOI: 10.1152/ajpgi.00225.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objective of this study was to investigate the role of MAPKAP kinase 2 (MK2) and heat shock protein (HSP) HSP60 in the pathogenesis of a new model of severe acute pancreatitis (AP). MK2 plays a significant role in the regulation of cytokines. It has been shown that induction and expression of several HSPs can protect against experimental pancreatitis. Interplay between both systems seems of high interest. Mice with a homozygous deletion of the MK2 gene were used. Severe AP was induced by combined intraperitoneal injections of cerulein with lipopolysaccharide (LPS). Severity of AP was assessed by biochemical markers and histology. The serum IL-6 and lung myeloperoxidase (MPO) levels were determined for assessing the extent of systemic inflammatory response. Expression of HSP25, HSP60, HSP70, and HSP90 was analyzed by Western blotting. Repeated injections of cerulein alone or cerulein plus LPS (Cer+LPS) resulted in local inflammatory responses in the pancreas and corresponding systemic inflammatory changes with pronounced severity in the Cer+LPS group. Compared with the C57Bl wild-type mice, the MK2-/- mice presented with significant milder pancreatitis and attenuated responses of serum amylase and trypsinogen activity. Furthermore, serum IL-6 was decreased as well as lung MPO activity. Injection of LPS alone displayed neither pancreatic inflammatory responses nor alterations of pancreatic enzyme activities but evidently elevated serum IL-6 levels and increased lung MPO activity. In contrast hereto, in the MK2-/- mice, these changes were much milder. Increased expression of HSP25 and HSP60 occurred after induction of AP. Especially, HSP60 was robustly elevated after Cer+LPS treatment, in both MK2-/- and wild-type mice. Thus the homozygous deletion of the MK2 gene ameliorates the severity of acute pancreatitis and accompanying systemic inflammatory reactions in a new model of severe acute pancreatitis. Our data support the hypothesis that MK2 participates in the multifactorial regulation of early inflammatory responses in AP, independently of the regulation of stress proteins like HSP25 and HSP60 and most likely due to its effect on cytokine regulation.
Collapse
Affiliation(s)
- Yong-Yu Li
- Department of Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hamagami KI, Sakurai Y, Shintani N, Higuchi N, Ikeda K, Hashimoto H, Suzuki A, Kiyama H, Baba A. Over-expression of pancreatic pituitary adenylate cyclase-activating polypeptide (PACAP) aggravates cerulein-induced acute pancreatitis in mice. J Pharmacol Sci 2009; 110:451-8. [PMID: 19672038 DOI: 10.1254/jphs.09119fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Development of human chronic pancreatitis is associated with intrapancreatic accumulation of pituitary adenylate cyclase-activating polypeptide (PACAP) accompanied with an altered inflammatory response (Michalski et al., Am J Physiol Gastrointest Liver Physiol. 2008;294:G50-G57). To investigate the role of pancreatic PACAP in the development of acute pancreatitis, we employed transgenic mice over-expressing PACAP in pancreatic beta-cells (PACAP-Tg). In comparison to wild-type mice, PACAP-Tg mice exhibited more severe pathophysiological signs of the cerulein-induced pancreatitis at 12 h, as evidenced by higher serum amylase and lipase levels accompanied by the exacerbation of pancreatic edema, necrosis, and inflammation. Cerulein treatment increased mRNA expression of several proinflammatory cytokines (TNFalpha, IL-1beta, and IL-6) at 12 h with similar magnitude both in wild-type and PACAP-Tg mice. In addition, the mRNA and protein levels of regenerating gene III beta (RegIIIbeta), a key factor in the pancreatic response to acute pancreatitis, were up-regulated at 24 h in wild-type mice upon cerulein administration, whereas they were attenuated in PACAP-Tg mice. These data indicate that over-expressed PACAP in pancreas enhances the cerulein-induced inflammatory response of both acinar cells, leading to aggravated acute pancreatitis, which was accompanied by a down-regulation of RegIIIbeta, an anti-inflammatory factor.
Collapse
Affiliation(s)
- Ken-ichi Hamagami
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ding JL, Li Y, Zhou XY, Wang L, Zhou B, Wang R, Liu HX, Zhou ZG. Potential role of the TLR4/IRAK-4 signaling pathway in the pathophysiology of acute pancreatitis in mice. Inflamm Res 2009; 58:783-90. [PMID: 19434478 DOI: 10.1007/s00011-009-0048-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 04/08/2009] [Accepted: 04/16/2009] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE AND DESIGN Toll-like receptor 4 (TLR4) is potentially associated with acute pancreatitis (AP), but its exact role remains controversial. IL-1 receptor-associated kinase 4 (IRAK-4) is a common mediator of Toll-like receptors pathways, with an essential role in transducing downstream signals. This study investigates the potential role of the TLR4 pathway, in particular IRAK-4, in a murine model of AP. METHODS Acute pancreatitis was induced in wild-type and TLR4-deficient mice by intraperitoneal injections of caerulein (50 microg/kg). Pancreatic pathological scores and myeloperoxidase activity were dynamically measured, along with pancreatic TLR4 and IRAK-4 mRNA and protein. RESULTS In wild-type mice, pathological scores and myeloperoxidase activity were rapidly increased at 1, 2 and 4 h, followed by alleviation at 12 and 24 h. In TLR4-deficient mice, they were slightly increased within 2 h, but became more severe at 12 and 24 h. IRAK-4 mRNA and protein were significantly down-regulated at 1, 2 and 4 h in wild-type mice. Unexpectedly, TLR4-deficient mice showed more profound reductions of IRAK-4 mRNA and protein at the same time. CONCLUSIONS TLR4 deficiency delayed the initiation of pancreatitis, implying a potential role for TLR4 during AP. IRAK-4 might function during AP, but independently of TLR4.
Collapse
Affiliation(s)
- Jun-Li Ding
- State Key Laboratory of Biotherapy, Institute of Digestive Surgery, West China Hospital, Sichuan University, Sichuan, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chiang PC, South SA, Daniels J, Anderson DR, Wene SP, Albin LA, Mourey RJ, Selbo JG. Aqueous versus non-aqueous salt delivery strategies to enhance oral bioavailability of a mitogen-activated protein kinase-activated protein kinase (MK-2) inhibitor in rats. J Pharm Sci 2009; 98:248-56. [DOI: 10.1002/jps.21425] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Jung WS, Chae YS, Kim DY, Seo SW, Park HJ, Bae GS, Kim TH, Oh HJ, Yun KJ, Park RK, Kim JS, Kim EC, Hwang SY, Park SJ, Song HJ. Gardenia jasminoides protects against cerulein-induced acute pancreatitis. World J Gastroenterol 2008; 14:6188-94. [PMID: 18985809 PMCID: PMC2761580 DOI: 10.3748/wjg.14.6188] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of Gardenia jasminoides (GJ) on cerulein-induced acute pancreatitis (AP) in mice.
METHODS: C57BL/6 mice weighing 18-20 g were divided into three groups. (1) Normal saline-treated group, (2) treatment with GJ at a dose of 0.1 g/kg, (3) treatment with GJ at a dose of 1 g/kg. GJ was administered orally (n = 6 per group) for 1 wk. Three hours later, the mice were given an intraperitoneal injection of cerulein (50 μg/kg), a stable cholecystokinin (CCK) analogue, every hour for a total of 6 h as described previously. The mice were sacrificed at 6 h after completion of cerulein injections. Blood samples were obtained to determine serum amylase, lipase and cytokine levels. The pancreas was rapidly removed for morphologic examination and scoring. A portion of pancreas was stored at -70°C and prepared for the measurement of tissue myeloperoxidase (MPO) activity, an indicator of neutrophil sequestration, and for reverse-transcriptase PCR (RT-PCR) and real-time PCR measurements.
RESULTS: Treatment with GJ decreased significantly the severity of pancreatitis and pancreatitis-associated lung injury. Treatment with GJ attenuated the severity of AP compared with saline-treated mice, as shown by reduction in pancreatic edema, neutrophil infiltration, serum amylase and lipase levels, serum cytokine levels, and mRNA expression of multiple inflammatory mediators.
CONCLUSION: These results suggest that GJ attenuated the severity of AP as well as pancreatitis-associated lung injury.
Collapse
|
29
|
Abstract
BACKGROUND The activation of p38 mitogen-activated protein kinases (MAPK) is implicated in cold ischemia-reperfusion injury of donor organs. The islet isolation process, from pancreas procurement through islet collection, may activate p38MAPK leading to cytokine release and islet damage. This damage may be prevented by treating pancreata with a p38MAPK inhibitor (p38IH) before cold preservation. METHODS Pancreata removed from Beagle dogs were infused with University of Wisconsin solution containing the p38IH, SB203580, and Pefabloc (n=6) or vehicle (dimethyl sulfoxide and Pefabloc) alone (n=7), through the pancreatic duct and preserved using the two-layer method. After 20 to 22 hr, islets were isolated and 3000 IEQ/kg were autotransplanted into the corresponding dog to monitor glucose metabolism. RESULTS p38IH-treated pancreata yielded significantly more islets than control pancreata (IEQ/g: 2134+/-297 vs. 1477+/-145 IEQ/g or 65,012+/-9385 vs. 45,700+/-5103 IEQ/pancreas; P<0.05). Apoptotic beta-cell percentages assessed by laser scanning cytometry were lower in p38IH-treated than the controls (44%+/-9.4% vs. 61.6%+/-4.8%, P<0.05). Tumor necrosis factor-alpha expression assessed by real-time reverse transcription polymerase chain reaction was significantly lower in the p38IH-treated group than controls. All dogs (3000 IEQ/kg) transplanted with p38IH-treated islets (n=5) became euglycemic versus four of five dogs that received untreated islets. Plasma C-peptide levels after glucagon challenge were higher in animals receiving p38IH-treated islets (n=5) versus untreated islets (n=4) (0.40+/-0.78 vs. 0.21+/-0.05 ng/mL, P<0.05). CONCLUSIONS Infusion of pancreata with University of Wisconsin solution containing p38IH through the duct before preservation suppresses cytokine release, prevents beta-cell apoptosis, and improves islet yield significantly with no adverse effect on islet function after transplantation. p38IH treatment of human pancreata may improve islet yield for use in clinical transplantation.
Collapse
|
30
|
Duraisamy S, Bajpai M, Bughani U, Dastidar SG, Ray A, Chopra P. MK2: a novel molecular target for anti-inflammatory therapy. Expert Opin Ther Targets 2008; 12:921-36. [DOI: 10.1517/14728222.12.8.921] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007; 403:217-34. [PMID: 17376031 DOI: 10.1042/bj20070024] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent advances in our understanding of both the regulation of components of the translational machinery and the upstream signalling pathways that modulate them have provided important new insights into the mechanisms by which hormones, growth factors, nutrients and cellular energy status control protein synthesis in mammalian cells. The importance of proper control of mRNA translation is strikingly illustrated by the fact that defects in this process or its control are implicated in a number of disease states, such as cancer, tissue hypertrophy and neurodegeneration. Signalling pathways such as those involving mTOR (mammalian target of rapamycin) and mitogen-activated protein kinases modulate the phosphorylation of translation factors, the activities of the protein kinases that act upon them and the association of RNA-binding proteins with specific mRNAs. These effects contribute both to the overall control of protein synthesis (which is linked to cell growth) and to the modulation of the translation or stability of specific mRNAs. However, important questions remain about both the contributions of individual regulatory events to the control of general protein synthesis and the mechanisms by which the translation of specific mRNAs is controlled.
Collapse
Affiliation(s)
- Christopher G Proud
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| |
Collapse
|
32
|
Zhang XP, Zhang L, Chen LJ, Cheng QH, Wang JM, Cai W, Shen HP, Cai J. Influence of dexamethasone on inflammatory mediators and NF-kappaB expression in multiple organs of rats with severe acute pancreatitis. World J Gastroenterol 2007; 13:548-56. [PMID: 17278220 PMCID: PMC4065976 DOI: 10.3748/wjg.v13.i4.548] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 09/27/2006] [Accepted: 12/12/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To observe the therapeutic effects of dexamethasone on rats with severe acute pancreatitis (SAP) and investigate the influences of dexamethasone on the inflammatory mediators and NF-kappaB expression in multiple organs of SAP rats as well as the mechanisms involved. METHODS Ninety Sprague-Dawley (SD) rats with SAP were randomly divided into the model group (n = 45) and dexamethasone treatment group (n = 45), and another 45 rats were selected for the sham operation group. All groups were randomly subdivided into the 3 h, 6 h and 12 h groups, each group containing 15 rats. The survival of all groups and pathological changes of multiple organs (liver, kidney and lung) were observed at different time points after the operation. The pathological score of multiple organs was carried out, followed by the determination of amylase, endotoxin and TNF-alpha contents in blood. The tissue microarray was used to detect the expression levels of NF-kappaB p65 protein in multiple organs. RESULTS There was no marked difference between the model group and treatment group in the survival rate. The amylase content of the treatment group was significantly lower compared to the model group at 12 h (P < 0.01, 7791.00 vs 9195.00). Moreover, the endotoxin and TNF-alpha levels of the treatment group were significantly lower than that of the model group at 6 h and 12 h (P < 0.01, 0.040 vs 0.055, 0.042 vs 0.059 and P < 0.05, 58.30 vs 77.54, 38.70 vs 67.30, respectively). Regarding the changes in liver NF-kappaB expression, the model group significantly exceeded the sham operation group at 3 h (P < 0.01, 1.00 vs 0.00), and the treatment group significantly exceeded the sham operation group at 12 h (P < 0.01, 1.00 vs 0.00), whereas no marked difference was observed between the model group and treatment group at all time points. The kidney NF-kappaB expression level in the treatment group significantly exceeded the model group (P < 0.05, 2.00 vs 0.00) and the sham operation group (P < 0.01, 2.00 vs 0.00) at 12 h. No NF-kappaB expression in the lung was found in any group. CONCLUSION Dexamethasone can lower the amylase, endotoxin and TNF-alpha levels as well as mortality of SAP rats. NF-kappaB plays an important role in multiple organ injury. Further studies should be conducted to determine whether dexamethasone can ameliorate the pathological changes of multiple organs by reducing the NF-kappaB expression in the liver and kidney. The advantages of tissue microarrays in pancreatitis pathological examination include time- and energy- saving, and are highly efficient and representative. The restriction of tissue microarrays on the representation of tissues to various extents due to small diameter may lead to the deviation of analysis.
Collapse
Affiliation(s)
- Xi-Ping Zhang
- Department of General Surgery, Hangzhou First People's Hospital, 261 Huansha Road, Hangzhou 310006, Zhejiang Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gerits N, Kostenko S, Moens U. In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice. Transgenic Res 2007; 16:281-314. [PMID: 17219248 DOI: 10.1007/s11248-006-9052-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/24/2006] [Indexed: 01/09/2023]
Abstract
Multicellular organisms achieve intercellular communication by means of signalling molecules whose effect on the target cell is mediated by signal transduction pathways. Such pathways relay, amplify and integrate signals to elicit appropriate biological responses. Protein kinases form crucial intermediate components of numerous signalling pathways. One group of protein kinases, the mitogen-activated protein kinases (MAP kinases) are kinases involved in signalling pathways that respond primarily to mitogens and stress stimuli. In vitro studies revealed that the MAP kinases are implicated in several cellular processes, including cell division, differentiation, cell survival/apoptosis, gene expression, motility and metabolism. As such, dysfunction of specific MAP kinases is associated with diseases such as cancer and immunological disorders. However, the genuine in vivo functions of many MAP kinases remain elusive. Genetically modified mouse models deficient in a specific MAP kinase or expressing a constitutive active or a dominant negative variant of a particular MAP kinase offer valuable tools for elucidating the biological role of these protein kinases. In this review, we focus on the current status of MAP kinase knock-in and knock-out mouse models and their phenotypes. Moreover, examples of the application of MAP kinase transgenic mice for validating therapeutic properties of specific MAP kinase inhibitors, and for investigating the role of MAP kinase in pathogen-host interactions will be discussed.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|