1
|
Kang SU, Kim HJ, Ma S, Oh DY, Jang JY, Seo C, Lee YS, Kim CH. Liquid plasma promotes angiogenesis through upregulation of endothelial nitric oxide synthase-induced extracellular matrix metabolism: potential applications of liquid plasma for vascular injuries. Cell Commun Signal 2024; 22:138. [PMID: 38374138 PMCID: PMC10875778 DOI: 10.1186/s12964-023-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Sukhwal Ma
- Medical Accelerator Research Team, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowonro, Nowon-gu, Seoul, 01812, South Korea
| | - Doo-Yi Oh
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chorong Seo
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea.
| |
Collapse
|
2
|
Fuseler JW, Valarmathi MT. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration. Front Cell Dev Biol 2016; 4:133. [PMID: 27933292 PMCID: PMC5122209 DOI: 10.3389/fcell.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) is a small free-radical gas molecule, which is highly diffusible and can activate a wide range of downstream effectors, with rapid and widespread cellular effects. NO is a versatile signaling mediator with a plethora of cellular functions. For example, NO has been shown to regulate actin, the microfilament, dependent cellular functions, and also acts as a putative stem cell differentiation-inducing agent. In this study, using a wound-healing model of cellular migration, we have explored the effect of exogenous NO on the kinetics of movement and morphological changes in postnatal bone marrow-derived mesenchymal stem cells (MSCs). Cellular migration kinetics and morphological changes of the migrating MSCs were measured in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP), especially, to track the dynamics of single-cell responses. Two experimental conditions were assessed, in which SNAP (200 μM) was applied to the MSCs. In the first experimental group (SN-1), SNAP was applied immediately following wound formation, and migration kinetics were determined for 24 h. In the second experimental group (SN-2), MSCs were pretreated for 7 days with SNAP prior to wound formation and the determination of migration kinetics. The generated displacement curves were further analyzed by non-linear regression analysis. The migration displacement of the controls and NO treated MSCs (SN-1 and SN-2) was best described by a two parameter exponential functions expressing difference constant coefficients. Additionally, changes in the fractal dimension (D) of migrating MSCs were correlated with their displacement kinetics for all the three groups. Overall, these data suggest that NO may evidently function as a stop migration signal by disordering the cytoskeletal elements required for cell movement and proliferation of MSCs.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina Columbia, SC, USA
| | - Mani T Valarmathi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
3
|
Yang HC, Wu YH, Liu HY, Stern A, Chiu DTY. What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 2016; 50:1047-1064. [PMID: 27684214 DOI: 10.1080/10715762.2016.1223296] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
G6PD deficiency has been the most pervasive inherited disorder in the world since having been discovered. G6PD has an antioxidant role by functioning as a major nicotinamide adenine dinucleotide phosphate (NADPH) provider to reduce excessive oxidative stress. NADPH can produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) mediated by NADPH oxidase (NOX) and nitric oxide synthase (NOS), respectively. Hence, G6PD also has a pro-oxidant role. Research in the past has focused on the enhanced susceptibility of G6PD-deficient cells or individuals to oxidative challenge. The cytoregulatory role of G6PD has largely been overlooked. By using a metabolomic approach, it is noted that upon oxidant challenge, G6PD-deficient cells will reprogram the GSH metabolism from regeneration to synthesis with exhaustive energy consumption. Recently, new cellular/physiologic roles of G6PD have been discovered. By using a proteomic approach, it has been found that G6PD plays a regulatory role in xenobiotic metabolism possibly via NOX and the redox-sensitive Nrf2-signaling pathway to modulate the expression of xenobiotic-metabolizing enzymes. Since G6PD is a key regulator responsible for intracellular redox homeostasis, G6PD deficiency can alter redox balance leading to many abnormal cellular effects such as the cellular inflammatory and immune response against viral infection. G6PD may play an important role in embryogenesis as G6PD-knockdown mouse cannot produce offspring and G6PD-deficient C. elegans with defective egg production and hatching. This array of findings indicates that the cellular and physiologic roles of G6PD, other than the classical role as an antioxidant enzyme, deserve further attention.
Collapse
Affiliation(s)
- Hung-Chi Yang
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Wu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Ya Liu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Pediatric Hematology/Oncology , Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
4
|
Fosen KM, Thom SR. Hyperbaric oxygen, vasculogenic stem cells, and wound healing. Antioxid Redox Signal 2014; 21:1634-47. [PMID: 24730726 PMCID: PMC4175035 DOI: 10.1089/ars.2014.5940] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and also cell function. RECENT ADVANCES This review focuses on the impact of hyperoxia on vasculogenic stem cells and elements of wound healing. CRITICAL ISSUES Components of the wound-healing process in which oxidative stress has a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflammatory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/protein synthesis responses which mediate wound healing. FUTURE DIRECTIONS Our alternative perspective of the stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical processes. It also highlights the areas where additional research is needed.
Collapse
Affiliation(s)
- Katina M. Fosen
- Department of Emergency Medicine, Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Stephen R. Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
5
|
Aihara E, Montrose MH. Importance of Ca(2+) in gastric epithelial restitution-new views revealed by real-time in vivo measurements. Curr Opin Pharmacol 2014; 19:76-83. [PMID: 25108560 DOI: 10.1016/j.coph.2014.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
It has been a few decades since Ca(2+) was identified as one of the important factors that can accelerate gastric wound repair as well as contribute to epithelial homeostasis and regulation of gastric secretions. The mechanistic basis has remained largely unexplored in vivo because it was not possible to track in real time either intracellular Ca(2+) mobilization or wound repair in living tissues. Recent advances in technology, such as combining high resolution light microscopy and genetically encoded Ca(2+) reporters in mice, now allow the monitoring of Ca(2+) mobilization during gastric epithelial cell restitution. Ca(2+) is a ubiquitous second messenger that influences numerous cellular processes, including gastric acid/bicarbonate secretion, mucus secretion, and cell migration. We have demonstrated that cytosolic Ca(2+) mobilization within the restituting gastric epithelial cells is a central signal driving small wound repair. However, extracellular Ca(2+) is also mobilized in the juxtamucosal luminal space above a wound, and evidence suggests extracellular Ca(2+) is a third messenger that also promotes gastric epithelial restitution. Interplay between intracellular and extracellular Ca(2+) is necessary for efficient gastric epithelial restitution.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, OH 45267, USA
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Spitler R, Schwappacher R, Wu T, Kong X, Yokomori K, Pilz RB, Boss GR, Berns MW. Nitrosyl-cobinamide (NO-Cbi), a new nitric oxide donor, improves wound healing through cGMP/cGMP-dependent protein kinase. Cell Signal 2013; 25:2374-82. [PMID: 23920342 DOI: 10.1016/j.cellsig.2013.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 01/11/2023]
Abstract
Nitric oxide (NO) donors have been shown to improve wound healing, but the mechanism is not well defined. Here we show that the novel NO donor nitrosyl-cobinamide (NO-Cbi) improved in vitro wound healing in several cell types, including an established line of lung epithelial cells and primary human lung fibroblasts. On a molar basis, NO-Cbi was more effective than two other NO donors, with the effective NO-Cbi concentration ranging from 3 to 10μM, depending on the cell type. Improved wound healing was secondary to increased cell migration and not cell proliferation. The wound healing effect of NO-Cbi was mediated by cGMP, mainly through cGMP-dependent protein kinase type I (PKGI), as determined using pharmacological inhibitors and activators, and siRNAs targeting PKG type I and II. Moreover, we found that Src and ERK were two downstream mediators of NO-Cbi's effect. We conclude that NO-Cbi is a potent inducer of cell migration and wound closure, acting via cGMP, PKG, Src, and extracellular signal regulated kinase (ERK).
Collapse
Affiliation(s)
- Ryan Spitler
- University of California Irvine, Irvine, CA, United States.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bae JS, Kim JW. Effect of Nitric Oxide on Adhesion and Migration of Trabecular Meshwork Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2013. [DOI: 10.3341/jkos.2013.54.4.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jin Seong Bae
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
8
|
Fuseler JW, Valarmathi MT. Modulation of the migration and differentiation potential of adult bone marrow stromal stem cells by nitric oxide. Biomaterials 2011; 33:1032-43. [PMID: 22071099 DOI: 10.1016/j.biomaterials.2011.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/11/2011] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is a diffusible free radical, which serves as a pluripotent intracellular messenger in numerous cell systems. NO has been demonstrated to regulate actin dependent cellular functions and functions as a putative inductive agent in directing stem cells differentiation. In this study, we investigated the effect of exogenous NO on the kinetics of movement and morphological changes in adult bone marrow stromal cells (BMSCs) in a wound healing model of cellular migration. Cellular migration and morphological changes were determined by measurement of changes in the area and fractal dimension of BMSCs monolayer as a function of time in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP) compared to untreated BMSCs. Response of the BMSCs' actin cytoskeleton and desmin to NO was assessed by determining changes in their integrated optical density (IOD) and fractal dimension at 24 h and 7 days. NO suppressed BMSCs' migration accompanied by a reduction in cell size, with maintenance of their stellate to polygonal morphology. In response to NO, the actin cytoskeleton expressed an increase in randomness but maintained a constant amount of F-actin relative to the cell size. The presence of NO also induced an increase in randomly organized cytoplasmic desmin. These data suggest that NO has an apparent inductive effect on adult BMSCs and is capable of initiating phenotypic change at the gross cellular, cytoskeletal and molecular levels. It is apparent, however, that additional factors or conditions are required to further drive the differentiation of adult BMSCs into specific phenotypes, such as cardiomyocytes.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | |
Collapse
|
9
|
Pyrogallol-mediated toxicity and natural antioxidants: Triumphs and pitfalls of preclinical findings and their translational limitations. Chem Biol Interact 2010; 183:333-40. [DOI: 10.1016/j.cbi.2009.11.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/02/2009] [Accepted: 11/23/2009] [Indexed: 11/20/2022]
|
10
|
Kim JW, Lee JH, Lee SH. Role of Nitric Oxide in the Proliferative and Migratory Effect of Triamcinolone in RPE Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2010. [DOI: 10.3341/jkos.2010.51.1.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu College of Medicine, Daegu, Korea
| | - Jae Hyung Lee
- Department of Ophthalmology, Catholic University of Daegu College of Medicine, Daegu, Korea
| | - Seung Hee Lee
- Department of Ophthalmology, Catholic University of Daegu College of Medicine, Daegu, Korea
| |
Collapse
|
11
|
Mustonen H, Kiviluoto T, Puolakkainen P, Paimela H, Mentula P, Kemppainen E, Kivilaakso E. Taurocholate-induced nitric oxide signaling and the ensuing production of reactive oxygen species lead to an increase in epithelial permeability in cultivated mouse gastric epithelium. Dig Dis Sci 2008; 53:3119-27. [PMID: 18465234 DOI: 10.1007/s10620-008-0300-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 04/10/2008] [Indexed: 12/09/2022]
Abstract
We have here elucidated whether ulcerogenic agents affect the production of NO and reactive oxygen species (ROS). The ulcerogenic agents dose dependently induced NO and ROS production in mouse gastric epithelial cells. Taurocholate (TC, 5 mM) exposure did not affect cell viability, but it increased inducible nitric oxide synthase (iNOS) expression, NO production, ROS production, and epithelial permeability. Epithelial permeability was inhibited with NOS inhibitors or antioxidants. Oxidative stress induced by acetylsalicylic acid (ASA) and ethanol was not inhibited with NOS inhibitors. ASA induced ROS production even at low concentrations (1 mM), which did not affect cell viability. Ethanol-induced ROS production was linked to cell viability, suggesting direct oxidative stress caused by ethanol. Taurocholate-induced NO signaling and the ensuing production of ROS might contribute to initiation of defensive or adaptive cellular mechanisms. ASA-induced ROS signaling might have similar effects, whereas ethanol induced direct oxidative stress, having an influence on cell viability.
Collapse
Affiliation(s)
- Harri Mustonen
- Department of Surgery, Helsinki University Central Hospital, Box 700, 00029 HUS, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Liu JL, Du J, Fan LL, Liu XY, Gu L, Ge YB. Effects of quercetin on hyper-proliferation of gastric mucosal cells in rats treated with chronic oral ethanol through the reactive oxygen species-nitric oxide pathway. World J Gastroenterol 2008; 14:3242-8. [PMID: 18506933 PMCID: PMC2712860 DOI: 10.3748/wjg.14.3242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of quercetin (3,3’,4’,5,7-pentahydroxy flavone), a major flavonoid in human diet, on hyper-proliferation of gastric mucosal cells in rats treated with chronic oral ethanol.
METHODS: Forty male Sprague-Dawley rats, weighing 200-250 g, were randomly divided into control group (tap water ad libitum), ethanol treatment group (6 mL/L ethanol), quercetin treatment group (intragastric gavage with 100 mg/kg of quercetin per day), and ethanol plus quercetin treatment group (quercetin and 6 mL/L ethanol). Expression levels of proliferating cell nuclear antigen (PCNA) and Cyclin D1 were detected by Western blot to assay gastric mucosal cell proliferation in rats. To demonstrate the influence of quercetin on the production of extra-cellular reactive oxygen species/nitrogen species (ROS/RNS) in rats, changes in levels of thiobarbituric acid reactive substance (TBARS), protein carbonyl, nitrite and nitrate (NOx) and nitrotyrosine (NT) were determined. The activity of inducible nitric oxide synthase (NOS) including iNOS and nNOS was also detected by Western blot.
RESULTS: Compared to control animals, cell proliferation in the gastric mucosa of animals subjected to ethanol treatment for 7 days was significant increased (increased to 290% for PCNA density P < 0.05, increased to 150 for Cyclin D1 density P < 0.05 and 21.6 ± 0.8 vs 42.3 ± 0.7 for PCNA positive cells per view field), accompanied by an increase in ROS generation (1.298 ± 0.135 &mgr;mol vs 1.772 ± 0.078 &mgr;mol for TBARS P < 0.05; 4.36 ± 0.39 mmol vs 7.48 ± 0.40 mmol for carbonyl contents P < 0.05) and decrease in NO generation (11.334 ± 0.467 &mgr;mol vs 7.978 ± 0.334 &mgr;mol P < 0.01 for NOx; 8.986 ± 1.351 &mgr;mol vs 6.854 ± 0.460 &mgr;mol for nitrotyrosine P < 0.01) and nNOS activity (decreased to 43% P < 0.05). This function was abolished by the co-administration of quercetin.
CONCLUSION: The antioxidant action of quercetin relies, in part, on its ability to stimulate nNOS and enhance production of NO that would interact with endogenously produced reactive oxygen to inhibit hyper-proliferation of gastric mucosal cells in rats treated with chronic oral ethanol.
Collapse
|
13
|
Bove PF, Hristova M, Wesley UV, Olson N, Lounsbury KM, van der Vliet A. Inflammatory levels of nitric oxide inhibit airway epithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J Biol Chem 2008; 283:17919-28. [PMID: 18424783 DOI: 10.1074/jbc.m709914200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased synthesis of NO during airway inflammation, caused by induction of nitric-oxide synthase 2 in several lung cell types, may contribute to epithelial injury and permeability. To investigate the consequence of elevated NO production on epithelial function, we exposed cultured monolayers of human bronchial epithelial cells to the NO donor diethylenetriaamine NONOate. At concentrations generating high nanomolar levels of NO, representative of inflammatory conditions, diethylenetriaamine NONOate markedly reduced wound closure in an in vitro scratch injury model, primarily by inhibiting epithelial cell migration. Analysis of signaling pathways and gene expression profiles indicated a rapid induction of the mitogen-activated protein kinase phosphatase (MPK)-1 and decrease in extracellular signal-regulated kinase (ERK)1/2 activation, as well as marked stabilization of hypoxia-inducible factor (HIF)-1alpha and activation of hypoxia-responsive genes, under these conditions. Inhibition of ERK1/2 signaling using U0126 enhanced HIF-1alpha stabilization, implicating ERK1/2 dephosphorylation as a contributing mechanism in NO-mediated HIF-1alpha activation. Activation of HIF-1alpha by the hypoxia mimic cobalt chloride, or cell transfection with a degradation-resistant HIF-1alpha mutant construct inhibited epithelial wound repair, implicating HIF-1alpha in NO-mediated inhibition of cell migration. Conversely, NO-mediated inhibition of epithelial wound closure was largely prevented after small interfering RNA suppression of HIF-1alpha. Finally, NO-mediated inhibition of cell migration was associated with HIF-1alpha-dependent induction of PAI-1 and activation of p53, both negative regulators of epithelial cell migration. Collectively, our results demonstrate that inflammatory levels of NO inhibit epithelial cell migration, because of suppression of ERK1/2 signaling, and activation of HIF-1alpha and p53, with potential consequences for epithelial repair and remodeling during airway inflammation.
Collapse
Affiliation(s)
- Peter F Bove
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta Gen Subj 2008; 1780:1348-61. [PMID: 18249195 DOI: 10.1016/j.bbagen.2008.01.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 12/31/2007] [Accepted: 01/14/2008] [Indexed: 12/19/2022]
Abstract
Physical trauma represents one of the most primitive challenges that threatened survival. Healing a problem wound requires a multi-faceted comprehensive approach. First and foremost, the wound environment will have to be made receptive to therapies. Second, the appropriate therapeutic regimen needs to be identified and provided while managing systemic limitations that could secondarily limit the healing response. Unfortunately, most current solutions seem to aim at designing therapeutic regimen with little or no consideration of the specific details of the wound environment and systemic limitations. One factor that is centrally important in making the wound environment receptive is correction of wound hypoxia. Recent work have identified that oxygen is not only required to disinfect wounds and fuel healing but that oxygen-dependent redox-sensitive signaling processes represent an integral component of the healing cascade. Over a decade ago, it was proposed that in biological systems oxidants are not necessarily always the triggers for oxidative damage and that oxidants such as H2O2 could actually serve as signaling messengers and drive several aspects of cellular signaling. Today, that concept is much more developed and mature. Evidence supporting the role of oxidants such as H2O2 as signaling messenger is compelling. A complete understanding of the continuum between the classical and emergent roles of oxygen requires a thorough consideration of current concepts in redox biology. The objective of this review is to describe our current understanding of how redox-sensitive processes may drive dermal tissue repair.
Collapse
Affiliation(s)
- Chandan K Sen
- Comprehensive Wound Center, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
15
|
Lee JI, Lee SY, Kim JW. Effect of Nitric Oxide on the Migration and Fibroblast-mediated Contraction of Collagen Gels. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2008. [DOI: 10.3341/jkos.2008.49.4.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jeong Il Lee
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Soo Yoon Lee
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
16
|
Nylander-Koski O, Kiviluoto T, Puolakkainen P, Kivilaakso E, Mustonen H. The effect of nitric oxide, growth factors, and estrogen on gastric cell migration. J Surg Res 2007; 143:230-7. [PMID: 17950324 DOI: 10.1016/j.jss.2006.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 12/03/2006] [Accepted: 12/04/2006] [Indexed: 01/15/2023]
Abstract
BACKGROUND To study gastric epithelial cell migration during nitric oxide (NO) and growth factor treatment, simulating inflammation and infection. Also, the effects of estrogen on migration of different malignant and nonmalignant gastric epithelial cell lines were explored. MATERIAL AND METHODS Isolated primary cultured rabbit gastric epithelial cells, rat gastric mucosal cells, human gastric adenocarcinoma cells, and human colon adenocarcinoma cells (WiDr) were cultured to confluency in appropriate media (5% CO2, 37 degrees C). The cells were treated by hepatocyte growth factor (HGF), transforming growth factor-alpha (TGF-alpha) and keratinocyte growth factor (KGF), with and without sodium nitroprusside (SNP, NO donor) or 17beta-estradiol. Caspase-3 activity and cell viability and migration speed after wounding were measured. RESULTS HGF was the most potent growth factor to stimulate migration. SNP dose-dependently decreased the speed of migration. HGF and TGF-alpha were able to overcome the SNP-induced inhibition of migration, whereas KGF was not. SNP also induced caspase-3 activity, which was inhibited by HGF and TGF-alpha. 17beta-estradiol decreased migration in all epithelial cells, but the decrease was more profound in malignant cell lines. HGF could overcome the estrogen retarded migration. CONCLUSIONS Growth factors can overcome NO-induced retardation of cell migration and inhibit NO-induced caspase-3 activity, which altogether might also have physiological significance in in vivo inflammation and in gastric cancer. The more profound decrease in migration speed of gastric adenocarcinoma cell line may suggest that estrogen might be one of the protective factor against female gastric adenocarcinoma before menopausal age.
Collapse
Affiliation(s)
- Outi Nylander-Koski
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
17
|
Cetin S, Leaphart CL, Li J, Ischenko I, Hayman M, Upperman J, Zamora R, Watkins S, Ford HR, Wang J, Hackam DJ. Nitric oxide inhibits enterocyte migration through activation of RhoA-GTPase in a SHP-2-dependent manner. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1347-58. [PMID: 17272518 DOI: 10.1152/ajpgi.00375.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diseases of intestinal inflammation like necrotizing enterocolitis (NEC) are associated with impaired epithelial barrier integrity and the sustained release of intestinal nitric oxide (NO). NO modifies the cytoskeletal regulator RhoA-GTPase, suggesting that NO could affect barrier healing by inhibiting intestinal restitution. We now hypothesize that NO inhibits enterocyte migration through RhoA-GTPase and sought to determine the pathways involved. The induction of NEC was associated with increased enterocyte NO release and impaired migration of bromodeoxyuridine-labeled enterocytes from terminal ileal crypts to villus tips. In IEC-6 enterocytes, NO significantly inhibited enterocyte migration and activated RhoA-GTPase while increasing the formation of stress fibers. In parallel, exposure of IEC-6 cells to NO increased the phosphorylation of focal adhesion kinase (pFAK) and caused a striking increase in cell-matrix adhesiveness, suggesting a mechanism by which NO could impair enterocyte migration. NEC was associated with increased expression of pFAK in the terminal ileal mucosa of wild-type mice and a corresponding increase in disease severity compared with inducible NO synthase knockout mice, confirming the dependence of NO for FAK phosphorylation in vivo and its role in the pathogenesis of NEC. Strikingly, inhibition of the protein tyrosine phosphatase SHP-2 in IEC-6 cells prevented the activation of RhoA by NO, restored focal adhesions, and reversed the inhibitory effects of NO on enterocyte migration. These data indicate that NO impairs mucosal healing by inhibiting enterocyte migration through activation of RhoA in a SHP-2-dependent manner and support a possible role for SHP-2 as a therapeutic target in diseases of intestinal inflammation like NEC.
Collapse
Affiliation(s)
- Selma Cetin
- Div. of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hasebe K, Horie S, Yano S, Watanabe K. Stimulatory effects of nitric oxide donors on histamine release in isolated rat gastric mucosal cells. Biol Pharm Bull 2003; 26:950-3. [PMID: 12843616 DOI: 10.1248/bpb.26.950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported stimulatory effects of endogenous and exogenous nitric oxide (NO) on gastric acid secretion. In the present study, we investigated effects of NO donors on release of histamine, which is related to acid secretion, in isolated rat gastric mucosal cells. NO donors such as (+/-)-(E)-4-methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexanamide (NOR 1) and sodium nitroprusside significantly augmented the histamine release. It was inhibited by 2-(4-carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-amide (carboxy-PTIO), a NO scavenger, and 6-(phenylamino)-5,8-quinolinedione (LY83583), a soluble guanylate cyclase inhibitor. Dibutyryl cyclic GMP also stimulated histamine release. These results suggest that NO donors act on cyclic GMP pathway in isolated gastric mucosal cells, resulting in facilitation of histamine release. NO may stimulate gastric acid secretion through histamine release from the histamine-containing cells, possibly enterochromaffin-like cells.
Collapse
Affiliation(s)
- Ko Hasebe
- Laboratory of Chemical Pharmacology, Chiba University, Japan
| | | | | | | |
Collapse
|
19
|
Puolakkainen P, Bradshaw AD, Kyriakides TR, Reed M, Brekken R, Wight T, Bornstein P, Ratner B, Sage EH. Compromised production of extracellular matrix in mice lacking secreted protein, acidic and rich in cysteine (SPARC) leads to a reduced foreign body reaction to implanted biomaterials. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:627-35. [PMID: 12547720 PMCID: PMC1851143 DOI: 10.1016/s0002-9440(10)63856-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, modulates the interaction of cells with the extracellular matrix (ECM). Recently, accelerated cutaneous wound closure and altered deposition of collagen were reported in SPARC-null mice. Herein we asked whether SPARC might influence the foreign body reaction to biomaterial implants. Polydimethylsiloxane (silicone rubber) disks and cellulose Millipore filters were implanted into wild-type and SPARC-null mice. In wild-type animals, significant levels of SPARC were observed in the cells and the ECM comprising the capsules around the implants. After 4 weeks, SPARC-null mice exhibited a significant decrease in the thickness of the foreign body capsule, as compared to that observed in wild-type mice. A significant reduction in capsular vascular density was also associated with the silicone implants in the SPARC-null animals. Electron microscopy revealed that collagen fibers in the capsules produced by SPARC-null mice were smaller and more uniform in size than those in wild-type animals. Furthermore, staining with picrosirius-red showed that the collagen fibers were less mature in SPARC-null than in wild-type mice. The altered ECM resulting in decreased capsular thickness, indicative of an altered foreign body reaction in SPARC-null mice, implicates SPARC as an important modulator of the encapsulation of implanted biomaterials.
Collapse
Affiliation(s)
- Pauli Puolakkainen
- Department of Vascular Biology, The Hope Heart Institute, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|