1
|
Liu Q, Sun S, Chu X, Li H, Zhang H, Li F, Song Y. Study on Analgesic-Induced Endocrine Gland Damage and its potential mechanisms. Expert Opin Drug Saf 2025. [PMID: 40350711 DOI: 10.1080/14740338.2025.2505543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Analgesics are widely used for pain management, yet their association with endocrine dysfunction remains understudied. This pharmacovigilance study analyzes endocrine-related adverse events (AEs) linked to analgesics, identifies high-risk populations, and explores mechanistic pathways. RESEARCH DESIGN AND METHODS FAERS data (Q1 2004 to Q3 2023) were analyzed via OpenVigil 2.1 disproportionality analysis to assess analgesic-endocrine AE associations. Risk variations were evaluated through age/gender stratification, and molecular pathways were investigated via enrichment analysis. RESULTS Opioids exhibited the strongest endocrine associations, particularly codeine with parathyroid injury (Reporting Odds Ratio [ROR]: 14.867, 95% Confidence interval [95% CI]: 12.336-17.918) and hypothalamic-pituitary injury (ROR: 3.197, 95% CI: 1.52-6.722), and methadone with testicular injury (ROR: 2.126, 95% CI: 1.446-3.126). Flurbiprofen (NSAIDs) exhibited pancreatic injury risk (ROR: 8.416, 95% CI: 5.187-13.656). Gabapentin/pregabalin showed no significant associations. Stratified analyses revealed elevated risks in females (e.g. codeine-parathyroid injury: ROR = 19.028 vs. non-significance in males) and in patients aged ≥60 years. Enrichment analysis implicated dysregulated hormone-metabolic pathways underlying tissue-specific injuries and pointed to disruption of several key signaling pathways. CONCLUSIONS Specific analgesics (not all) are associated with endocrine risks, particularly in females and older adults, necessitating personalized monitoring despite limited dose-response data.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Shiwei Sun
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xinyue Chu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Huijie Li
- Department of Statistics and Medical Records Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haiqing Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Fei Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yongfeng Song
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Obal D, Liu Y. Opioid Preconditioning in Heart Failure: New Frontier or Old Dog? Anesth Analg 2025:00000539-990000000-01152. [PMID: 39908198 DOI: 10.1213/ane.0000000000007388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Affiliation(s)
- Detlef Obal
- From the Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Yu Liu
- Stanford University School of Medicine, Stanford, California
| |
Collapse
|
3
|
Xia B, Ding J, Li Q, Zheng K, Wu J, Huang C, Liu K, You Q, Yuan X. Loganin protects against myocardial ischemia-reperfusion injury by modulating oxidative stress and cellular apoptosis via activation of JAK2/STAT3 signaling. Int J Cardiol 2024; 395:131426. [PMID: 37813285 DOI: 10.1016/j.ijcard.2023.131426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is a pathological process that follows immediate revascularization of myocardial infarction and is characterized by exacerbation of cardiac injury. Loganin, a monoterpene iridoid glycoside derived from Cornus officinalis Sieb. Et Zucc, can exert cardioprotective effects in cardiac hypertrophy and atherosclerosis. However, its role in ischemic heart disease remains largely unknown. METHODS Considering that Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3) has a protective effect on the heart, we developed a mouse model of MIRI to investigate the potential role of this pathway in loganin-induced cardioprotection. RESULTS Our results showed that treatment with loganin (20 mg/kg) prevented the enlargement of myocardial infarction, myocyte destruction, serum markers of cardiac injury, and deterioration of cardiac function induced by MIRI. Myocardium subjected to I/R treatment exhibited higher levels of oxidative stress, as indicated by an increase in malondialdehyde (MDA) and dihydroethidium (DHE) density and a decrease in total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD), whereas treatment with loganin showed significant attenuation of I/R-induced oxidative stress. Loganin treatment also increased the expression of anti-apoptotic Bcl-2 and reduced the expression of caspase-3/9, Bax, and the number of TUNEL-positive cells in ischemic cardiac tissue. Moreover, treatment with loganin triggered JAK2/STAT3 phosphorylation, and AG490, a JAK2/STAT3 inhibitor, partially abrogated the cardioprotective effects of loganin, indicating the essential role of JAK2/STAT3 signaling in the cardioprotective effects of loganin. CONCLUSIONS Our data demonstrate that loganin protects the heart from I/R injury by inhibiting I/R-induced oxidative stress and cellular apoptosis via activation of JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiaqi Ding
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Naryzhnaya NV, Mukhomedzyanov AV, Sirotina M, Maslov LN, Kurbatov BK, Gorbunov AS, Kilin M, Kan A, Krylatov AV, Podoksenov YK, Logvinov SV. δ-Opioid Receptor as a Molecular Target for Increasing Cardiac Resistance to Reperfusion in Drug Development. Biomedicines 2023; 11:1887. [PMID: 37509526 PMCID: PMC10377504 DOI: 10.3390/biomedicines11071887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
An analysis of published data and the results of our own studies reveal that the activation of a peripheral δ2-opioid receptor (δ2-OR) increases the cardiac tolerance to reperfusion. It has been found that this δ2-OR is localized in cardiomyocytes. Endogenous opioids are not involved in the regulation of cardiac resistance to reperfusion. The infarct-limiting effect of the δ2-OR agonist deltorphin II depends on the activation of several protein kinases, including PKCδ, ERK1/2, PI3K, and PKG. Hypothetical end-effectors of the cardioprotective effect of deltorphin II are the sarcolemmal KATP channels and the MPT pore.
Collapse
Affiliation(s)
- Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Maria Sirotina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Alexander S Gorbunov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Mikhail Kilin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Artur Kan
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Andrey V Krylatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Yuri K Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Sergey V Logvinov
- Department of Histology, Embryology and Cytology, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
5
|
Mukhomedzyanov AV, Popov SV, Maslov LN, Diez ER, Azev VN. Role of PI3K, ERK1/2, and JAK2 Kinases in the Cardioprotective Effect of Deltorphin II during Cardiac Reperfusion. Bull Exp Biol Med 2023:10.1007/s10517-023-05801-6. [PMID: 37338759 DOI: 10.1007/s10517-023-05801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 06/21/2023]
Abstract
The signaling mechanism of the cardioprotective effect of deltorphin II was studied in models of coronary occlusion (45 min) and reperfusion (120 min) in male Wistar rats. We used the selective δ2-opioid receptor agonist deltorphin II (0.12 mg/kg), which was administered intravenously 5 min before reperfusion, the PI3K inhibitor wortmannin (0.025 mg/kg), the ERK1/2 blocker PD-098059 (0.5 mg/kg), the inhibitor JAK2 AG490 (3 mg/kg). All kinase blockers were administered 10 min before reperfusion. The infarct-limiting effect of deltorphin II is associated with the activation of PI3K and ERK1/2 and does not depend on JAK2.
Collapse
Affiliation(s)
- A V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - S V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E R Diez
- Instituto de Fisiología, FCM - UNCuyo, IMBECU - CONICET-UNCuyo, Mendoza, Argentina
| | - V N Azev
- Branch of M. M. Shemyakin and Yu. A. Ov-chinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
6
|
Popov SV, Mukhomedzyanov AV, Maslov LN, Naryzhnaya NV, Kurbatov BK, Prasad NR, Singh N, Fu F, Azev VN. The Infarct-Reducing Effect of the δ 2 Opioid Receptor Agonist Deltorphin II: The Molecular Mechanism. MEMBRANES 2023; 13:63. [PMID: 36676870 PMCID: PMC9862914 DOI: 10.3390/membranes13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The search for novel drugs for the treatment of acute myocardial infarction and reperfusion injury of the heart is an urgent aim of modern pharmacology. Opioid peptides could be such potential drugs in this area. However, the molecular mechanism of the infarct-limiting effect of opioids in reperfusion remains unexplored. The objective of this research was to study the signaling mechanisms of the cardioprotective effect of deltorphin II in reperfusion. Rats were subjected to coronary artery occlusion (45 min) and reperfusion (2 h). The ratio of infarct size/area at risk was determined. This study indicated that the cardioprotective effect of deltorphin II in reperfusion is mediated via the activation of peripheral δ2 opioid receptor (OR), which is most likely localized in cardiomyocytes. We studied the role of guanylyl cyclase, protein kinase Cδ (PKCδ), phosphatidylinositol-3-kinase (PI3-kinase), extracellular signal-regulated kinase-1/2 (ERK1/2-kinase), ATP-sensitive K+-channels (KATP channels), mitochondrial permeability transition pore (MPTP), NO synthase (NOS), protein kinase A (PKA), Janus 2 kinase, AMP-activated protein kinase (AMPK), the large conductance calcium-activated potassium channel (BKCa-channel), reactive oxygen species (ROS) in the cardioprotective effect of deltorphin II. The infarct-reducing effect of deltorphin II appeared to be mediated via the activation of PKCδ, PI3-kinase, ERK1/2-kinase, sarcolemmal KATP channel opening, and MPTP closing.
Collapse
Affiliation(s)
- Sergey V. Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexandr V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Boris K. Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an 710032, China
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Pushchino, Russia
| |
Collapse
|
7
|
Mahdiani S, Omidkhoda N, Rezaee R, Heidari S, Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 2022; 155:113751. [PMID: 36162372 DOI: 10.1016/j.biopha.2022.113751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Insufficiency in coronary blood supply results in myocardial ischemia and consequently, various clinical syndromes and irreversible injuries. Myocardial damage occurs as a result of two processes during acute myocardial infarction (MI): ischemia and subsequent reperfusion. According to the available evidence, oxidative stress, excessive inflammation reaction, reactive oxygen species (ROS) generation, and apoptosis are crucial players in the pathogenesis of myocardial ischemia/reperfusion (IR) injury. There is emerging evidence that Janus tyrosine kinase 2 (JAK2) signal transducer and activator of the transcription 3 (STAT3) pathway offers cardioprotection against myocardial IR injury. This article reviews therapeutics that exert cardioprotective effects against myocardial IR injury through induction of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Opioids and Vitamin C: Known Interactions and Potential for Redox-Signaling Crosstalk. Antioxidants (Basel) 2022; 11:antiox11071267. [PMID: 35883757 PMCID: PMC9312198 DOI: 10.3390/antiox11071267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Opioids are among the most widely used classes of pharmacologically active compounds both clinically and recreationally. Beyond their analgesic efficacy via μ opioid receptor (MOR) agonism, a prominent side effect is central respiratory depression, leading to systemic hypoxia and free radical generation. Vitamin C (ascorbic acid; AA) is an essential antioxidant vitamin and is involved in the recycling of redox cofactors associated with inflammation. While AA has been shown to reduce some of the negative side effects of opioids, the underlying mechanisms have not been explored. The present review seeks to provide a signaling framework under which MOR activation and AA may interact. AA can directly quench reactive oxygen and nitrogen species induced by opioids, yet this activity alone does not sufficiently describe observations. Downstream of MOR activation, confounding effects from AA with STAT3, HIF1α, and NF-κB have the potential to block production of antioxidant proteins such as nitric oxide synthase and superoxide dismutase. Further mechanistic research is necessary to understand the underlying signaling crosstalk of MOR activation and AA in the amelioration of the negative, potentially fatal side effects of opioids.
Collapse
|
9
|
Zheng Q, Wu Q, Yang H, Chen Q, Li X, Guo J. A κ-OR Agonist Protects the Endothelial Function Impaired by Hyperuricemia Through Regulating the Akt/eNOS Signal Pathway. Probiotics Antimicrob Proteins 2022; 14:751-759. [PMID: 35536506 DOI: 10.1007/s12602-022-09945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
To investigate the effects of κ-OR agonist on hyperuricemia rats and injured endothelial function, as well as the underlying mechanism. A hyperuricemia model was established on rats. The endothelial protective effects of U50,488H were evaluated and compared to the controlled groups. The protein levels of eNOS, p-eNOS, Akt, and p-Akt were determined using western blot analysis. ELISA was employed to measure the expression of soluble ET-1, ICAM-1, TNF-α, and NO in cell supernatants and rat serum samples. Cell migration and the artery tension were determined by in vitro functional assays. The suppressed production of ET-1, ICAM-1, and NO in the hyperuricemia rats was promoted by the treatment of U50,488H, which was reversed by the co-administration of nor-BNI. P-eNOS/eNOS and p-Akt/Akt were up-regulated by the incubation of serum from hyperuricemia rats, which was down-regulated by the introduction of U50,488H. The vascular tension of vessels incubated with U50,488H was higher than the baseline in the presence of ACh, which was lower than baseline in the presence of SNAP. U50,488H significantly promoted the release of ET-1, ICAM-1, and NO, and inhibited the release of TNF-α from endothelial cells and the migration ability of neutrophils in the presence of hyperuricemia rat serum, which were reversed by the co-incubation with nor-BNI, Akt inhibitor or L-NAME. U50,488H protected the endothelial function impaired by hyperuricemia through regulating the Akt/eNOS signal pathway.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Sichuan, Chengdu, China
| | - Qi Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Chengdu Medical College, Sichuan, China.
| | - Hong Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chengdu Medical College, Sichuan, Chengdu, China
| | - Qiuhong Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chengdu Medical College, Sichuan, Chengdu, China
| | - Xiaohui Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chengdu Medical College, Sichuan, Chengdu, China
| | - Jingyi Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chengdu Medical College, Sichuan, Chengdu, China
| |
Collapse
|
10
|
Morphine in Combination with Ketamine Improves Cervical Cancer Pain and Suppresses Immune Function via the JAK3/STAT5 Pathway. Pain Res Manag 2022; 2022:9364365. [PMID: 35492074 PMCID: PMC9050326 DOI: 10.1155/2022/9364365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
Background The role of ketamine as an adjuvant for morphine in the treatment of cancer pain and immune functions has been confirmed. This study aimed to explore the role of morphine and ketamine on cancer pain and T cells of patients with cervical cancer (CC). Methods T cells were isolated from peripheral blood mononuclear cells (PBMC) of CC patients by positive selection using anti-CD3 beads. The isolated T cells were assigned into three groups: the control group, the morphine group, and the morphine + ketamine (Mor + Ket) group. The percentages of CD4+ and CD8+ were analyzed by flow cytometry. The levels of interferon (IFN)-γ, interleukin (IL)-2, and IL-17 and the corresponding mRNA expression in vitro were determined using ELISA and qRT-PCR, respectively. Western blotting was used for detection of JAK3/STAT5 pathway-related proteins after naltrexone treatment in vitro. Afterwards, all the patients were further divided into the morphine group and the Mor + Ket group in accordance with the principles of the randomized and double-blind method to assess pain intensity. Results Our in vivo results showed that drug combinations relieved cancer pain more effectively than morphine intervention. The in vitro results demonstrated that the combination of morphine and ketamine may decrease CD4+ percentage, CD4+/CD8+ ratio, and the levels of IFN-γ, IL-2, and IL-17 via the JAK3/STAT5 pathway. Conclusions Our finding indicated that morphine-ketamine combination could improve cancer pain and repress immune function via the JAK3/STAT5 pathway in the progression of CC.
Collapse
|
11
|
Signaling pathways of inflammation in myocardial ischemia/reperfusion injury. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Sun J, Wang R, Chao T, Wang C. Long Noncoding RNAs Involved in Cardiomyocyte Apoptosis Triggered by Different Stressors. J Cardiovasc Transl Res 2021; 15:588-603. [PMID: 34855148 DOI: 10.1007/s12265-021-10186-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022]
Abstract
Cardiomyocytes are essential to maintain the normal cardiac function. Ischemia, hypoxia, and drug stimulation can induce pathological apoptosis of cardiomyocytes which eventually leads to heart failure, arrhythmia, and other cardiovascular diseases. Understanding the molecular mechanisms that regulate cardiomyocyte apoptosis is of great significance for the prevention and treatment of cardiovascular diseases. In recent years, more and more evidences reveal that long noncoding RNAs (lncRNAs) play important regulatory roles in myocardial cell apoptosis. They can modulate the expression of apoptosis-related genes at post-transcriptional level by altering the translation efficacy of target mRNAs or functioning as a precursor for miRNAs or competing for miRNA-mediated inhibition. Moreover, reversing the abnormal expression of lncRNAs can attenuate and even reverse the pathological apoptosis of cardiomyocytes. Therefore, apoptosis-related lncRNAs may become a potential new field for studying cardiomyocyte apoptosis and provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ru Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Comità S, Femmino S, Thairi C, Alloatti G, Boengler K, Pagliaro P, Penna C. Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol 2021; 116:56. [PMID: 34642818 PMCID: PMC8510947 DOI: 10.1007/s00395-021-00898-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Ischemia–reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.
Collapse
Affiliation(s)
- Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | - Saveria Femmino
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | | | - Kerstin Boengler
- Institute of Physiology, University of Giessen, Giessen, Germany
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| |
Collapse
|
14
|
Pačesová D, Spišská V, Novotný J, Bendová Z. Maternal morphine intake during pregnancy and lactation affects the circadian clock of rat pups. Brain Res Bull 2021; 177:143-154. [PMID: 34560238 DOI: 10.1016/j.brainresbull.2021.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Early-life morphine exposure causes a variety of behavioural and physiological alterations observed later in life. In the present study, we investigated the effects of prenatal and early postnatal morphine on the maturation of the circadian clockwork in the suprachiasmatic nucleus and the liver, and the rhythm in aralkylamine N-acetyltransferase activity in the pineal gland. Our data suggest that the most affected animals were those born to control, untreated mothers and cross-fostered by morphine-exposed dams. These animals showed the highest mesor and amplitude in the rhythm of Per2, Nr1d1 but not Per1 gene expression in the suprachiasmatic nuclei (SCN) and arrhythmicity in AA-NAT activity in the pineal gland. In a similar pattern to the rhythm of Per2 expression in the SCN, they also expressed Per2 in a higher amplitude rhythm in the liver. Five of seven specific genes in the liver showed significant differences between groups in their expression. A comparison of mean relative mRNA levels suggests that this variability was caused mostly by cross-fostering, animals born to morphine-exposed dams that were cross-fostered by control mothers and vice versa differed from both groups of natural mothers raising offspring. Our data reveal that the circadian system responds to early-life morphine administration with significant changes in clock gene expression profiles both in the SCN and in the liver. The observed differences between the groups suggest that the dose, timing and accompanying stress events such as cross-fostering may play a role in the final magnitude of the physiological challenge that opioids bring to the developing circadian clock.
Collapse
Affiliation(s)
- Dominika Pačesová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
15
|
Xiao Y, Phelp P, Wang Q, Bakker D, Nederlof R, Hollmann MW, Zuurbier CJ. Cardioprotecive Properties of Known Agents in Rat Ischemia-Reperfusion Model Under Clinically Relevant Conditions: Only the NAD Precursor Nicotinamide Riboside Reduces Infarct Size in Presence of Fentanyl, Midazolam and Cangrelor, but Not Propofol. Front Cardiovasc Med 2021; 8:712478. [PMID: 34527711 PMCID: PMC8435675 DOI: 10.3389/fcvm.2021.712478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Cardioprotective strategies against ischemia-reperfusion injury (IRI) that remain effective in the clinical arena need to be developed. Therefore, maintained efficacy of cardioprotective strategies in the presence of drugs routinely used clinically (e.g., opiates, benzodiazepines, P2Y12 antagonist, propofol) need to be identified in preclinical models. Methods: Here, we examined the efficacy of promising cardioprotective compounds [fingolimod (Fingo), empagliflozin (Empa), melatonin (Mela) and nicotinamide riboside (NR)] administered i.v. as bolus before start ischemia. Infarct size as percentage of the area of risk (IS%) was determined following 25 min of left ascending coronary (LAD) ischemia and 2 h of reperfusion in a fentanyl-midazolam anesthetized IRI rat model. Plasma lactate dehydrogenase (LDH) activity at 30 min reperfusion was determined as secondary outcome parameter. Following pilot dose-response experiments of each compound (3 dosages, n = 4-6 animals per dosage), potential cardioprotective drugs at the optimal observed dosage were subsequently tested alone or in combination (n = 6-8 animals per group). The effective treatment was subsequently tested in the presence of a P2Y12 antagonist (cangrelor; n = 6/7) or propofol aesthesia (n = 6 both groups). Results: Pilot studies suggested potential cardioprotective effects for 50 mg/kg NR (p = 0.005) and 500 μg/kg melatonin (p = 0.12), but not for Empa or Fingo. Protection was subsequently tested in a new series of experiments for solvents, NR, Mela and NR+Mela. Results demonstrated that only singular NR was able to reduce IS% (30 ± 14 vs. 60 ± 16%, P = 0.009 vs. control). Mela (63 ± 18%) and NR+Mela (47 ± 15%) were unable to significantly decrease IS%. NR still reduced IS in the presence of cangrelor (51 ± 18 vs. 71 ± 4%, P = 0.016 vs. control), but lost protection in the presence of propofol anesthesia (62 ± 16 vs. 60 ± 14%, P = 0.839 vs. control). LDH activity measurements supported all IS% results. Conclusion: This observational study suggests that NR is a promising cardioprotective agent to target cardiac ischemia-reperfusion injury in clinical conditions employing opioid agonists, benzodiazepines and platelet P2Y12 inhibitors, but not propofol.
Collapse
Affiliation(s)
- Yang Xiao
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Philippa Phelp
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Qian Wang
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Diane Bakker
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Rianne Nederlof
- Institut für Herz- und Kreislaufphysiologie, Heinrich- Heine- Universität Düsseldorf, Düsseldorf, Germany
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Sharif S, Chen B, Brewster P, Chen T, Dworkin L, Gong R. Rationale and Design of Assessing the Effectiveness of Short-Term Low-Dose Lithium Therapy in Averting Cardiac Surgery-Associated Acute Kidney Injury: A Randomized, Double Blinded, Placebo Controlled Pilot Trial. Front Med (Lausanne) 2021; 8:639402. [PMID: 34195206 PMCID: PMC8236527 DOI: 10.3389/fmed.2021.639402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Burgeoning pre-clinical evidence suggests that therapeutic targeting of glycogen synthase kinase 3β (GSK3β), a convergence point of multiple cellular protective signaling pathways, confers a beneficial effect on acute kidney injury (AKI) in experimental models. However, it remains unknown if GSK3β inhibition likewise mitigates AKI in humans. Cardiac surgery associated acute kidney injury (CSA-AKI) poses a significant challenge for clinicians and currently the only treatment available is general supportive measures. Lithium, an FDA approved mood stabilizer, is the best-known GSK3β inhibitor and has been safely used for over half a century as the first line regimen to treat bipolar affective disorders. This study attempts to examine the effectiveness of short term low dose lithium on CSA-AKI in human patients. Methods/Design: This is a single center, prospective, randomized, double blinded, placebo controlled pilot study on patients undergoing cardiac surgery with cardiopulmonary bypass. Patients will be randomized to receive a small dose of lithium or placebo treatment for three consecutive days. Renal function will be measured via creatinine as well as novel AKI biomarkers. The primary outcome is incidence of AKI according to Acute Kidney Injury Network (AKIN) criteria, and secondary outcomes include receipt of new dialysis, days on dialysis, days on mechanical ventilation, infections within 1 month of surgery, and death within 90 days of surgery. Discussion: As a standard selective inhibitor of GSK3β, lithium has been shown to exert a beneficial effect on tissue repair and regeneration upon acute injury in multiple organ systems, including the central nervous system and hematopoietic system. In experimental AKI, lithium at small doses is able to ameliorate AKI and promote kidney repair. Successful completion of this study will help to assess the effectiveness of lithium in CSA-AKI and could potentially pave the way for large-scale randomized trials to thoroughly evaluate the efficacy of this novel regimen for preventing AKI after cardiac surgery. Trial Registration: This study was registered prospectively on the 17th February 2017 at ClinicalTrials.gov (NCT03056248, https://clinicaltrials.gov/ct2/show/NCT03056248?term=NCT03056248&draw=2&rank=1).
Collapse
Affiliation(s)
- Sairah Sharif
- Division of Critical Care Medicine, St Francis Hospital, New York, NY, United States.,Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, United States
| | - Bohan Chen
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, United States.,Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
| | - Pamela Brewster
- Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
| | - Tian Chen
- Department of Mathematics and Statistics, The University of Toledo, Toledo, OH, United States
| | - Lance Dworkin
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, United States.,Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, United States.,Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
| |
Collapse
|
17
|
Cirillo F, Piccoli M, Ghiroldi A, Monasky MM, Rota P, La Rocca P, Tarantino A, D'Imperio S, Signorelli P, Pappone C, Anastasia L. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. J Cell Physiol 2021; 236:4857-4873. [PMID: 33432663 DOI: 10.1002/jcp.30235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo La Rocca
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Sara D'Imperio
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Signorelli
- Department of Health Sciences, Biochemistry and Molecular Biology Laboratory, University of Milan, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
18
|
He Z, Davidson SM, Yellon DM. The importance of clinically relevant background therapy in cardioprotective studies. Basic Res Cardiol 2020; 115:69. [PMID: 33188438 PMCID: PMC7666584 DOI: 10.1007/s00395-020-00830-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
Treatment of acute myocardial infarct patients (AMI) includes rapid restoration of coronary blood flow and pharmacological therapy aimed to prevent pain and maintain vessel patency. Many interventions have been investigated to offer additional protection. One such intervention is remote ischaemic conditioning (RIC) involving short-episodes of ischaemia of the arm with a blood pressure cuff, followed by reperfusion to protect the heart organs from subsequent severe ischaemia. However, the recent CONDI2-ERIC-PPCI multicentre study of RIC in STEMI showed no benefit in clinical outcome in low risk patients. It could also be argued that these patients were already in a partially protected state, highlighting the disconnect between animal- and clinical-based outcome studies. To improve potential translatability, we developed an animal model using pharmacological agents similar to those given to patients presenting with an AMI, prior to PPCI. Rats underwent MI on a combined background of an opioid agonist, heparin and a platelet-inhibitor thereby allowing us to assess whether additional cardioprotective strategies had any effect over and above this “cocktail”. We demonstrated that the “background drugs” were protective in their own right, reducing MI from 57.5 ± 3.7% to 37.3 ± 2.9% (n = 11, p < 0.001). On this background of drugs, RIC did not add any further protection (38.0 ± 3.4%). However, using a caspase inhibitor, which acts via a different mechanistic pathway to RIC, we were able to demonstrate additional protection (20.6 ± 3.3%). This concept provides initial evidence to develop models which can be used to evaluate future animal-to-clinical translation in cardioprotective studies.
Collapse
Affiliation(s)
- Zhenhe He
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
19
|
Samidurai A, Roh SK, Prakash M, Durrant D, Salloum FN, Kukreja RC, Das A. STAT3-miR-17/20 signalling axis plays a critical role in attenuating myocardial infarction following rapamycin treatment in diabetic mice. Cardiovasc Res 2020; 116:2103-2115. [PMID: 31738412 PMCID: PMC8463091 DOI: 10.1093/cvr/cvz315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Deregulation of mTOR (mammalian target of rapamycin) signalling occurs in diabetes, which exacerbates injury following myocardial infarction (MI). We therefore investigated the infarct-limiting effect of chronic treatment with rapamycin (RAPA, mTOR inhibitor) in diabetic mice following myocardial ischaemia/reperfusion (I/R) injury and delineated the potential protective mechanism. METHODS AND RESULTS Adult male diabetic (db/db) or wild-type (WT) (C57) mice were treated with RAPA (0.25 mg/kg/day, intraperitoneal) or vehicle (5% DMSO) for 28 days. The hearts from treated mice were subjected to global I/R in Langendorff mode. Cardiomyocytes, isolated from treated mice, were subjected to simulated ischaemia/reoxygenation (SI/RO) to assess necrosis and apoptosis. Myocardial infarct size was increased in diabetic heart following I/R as compared to WT. Likewise, enhanced necrosis and apoptosis were observed in isolated cardiomyocytes of diabetic mice following SI/RO. Treatment with RAPA reduced infarct size as well as cardiomyocyte necrosis and apoptosis of diabetes and WT mice. RAPA increased STAT3 phosphorylation and miRNA-17/20a expression in diabetic hearts. In addition, RAPA restored AKT phosphorylation (target of mTORC2) but suppressed S6 phosphorylation (target of mTORC1) following I/R injury. RAPA-induced cardioprotection against I/R injury as well as the induction of miR-17/20a and AKT phosphorylation were abolished in cardiac-specific STAT3-deficient diabetic mice, without alteration of S6 phosphorylation. The infarct-limiting effect of RAPA was obliterated in cardiac-specific miRNA-17-92-deficient diabetic mice. The post-I/R restoration of phosphorylation of STAT3 and AKT with RAPA were also abolished in miRNA-17-92-deficient diabetic mice. Additionally, RAPA suppressed the pro-apoptotic prolyl hydroxylase (Egln3/PHD3), a target of miRNA-17/20a in diabetic hearts, which was abrogated in miRNA-17-92-deficient diabetic mice. CONCLUSION Induction of STAT3-miRNA-17-92 signalling axis plays a critical role in attenuating MI in RAPA-treated diabetic mice. Our study indicates that chronic treatment with RAPA might be a promising pharmacological intervention for attenuating MI and improving prognosis in diabetic patients.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Sean K Roh
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Meeta Prakash
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - David Durrant
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Fadi N Salloum
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| |
Collapse
|
20
|
Wu LN, Hu R, Yu JM. Morphine and myocardial ischaemia-reperfusion. Eur J Pharmacol 2020; 891:173683. [PMID: 33121952 DOI: 10.1016/j.ejphar.2020.173683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Coronary heart disease (CHD) is a cardiovascular disease with high mortality and disability worldwide. The main pathological manifestation of CHD is myocardial injury due to ischaemia-reperfusion, resulting in the death of cardiomyocytes (apoptosis and necrosis) and the occurrence of cardiac failure. Morphine is a nonselective opioid receptor agonist that has been commonly used for analgesia and to treat ischaemic heart disease. The present review focused on morphine-induced protection in an animal model of myocardial ischaemia-reperfusion and chronic heart failure and the effects of morphine on ST segment elevation myocardial infarction (STEMI) patients who underwent pre-primary percutaneous coronary intervention (pre-PPCI) or PPCI. The signalling pathways involved are also briefly described.
Collapse
Affiliation(s)
- Li-Ning Wu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Rui Hu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Jun-Ma Yu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China.
| |
Collapse
|
21
|
NK6 Homeobox 2 Regulated Gastrokin-2 Suppresses Gastric Cancer Cell Proliferation and Invasion via Akt Signaling Pathway. Cell Biochem Biophys 2020; 79:123-131. [PMID: 33009998 DOI: 10.1007/s12013-020-00948-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 01/23/2023]
Abstract
This study aims to explore the role of Gastrokin-2 (GKN2) in gastric cancer and its function in the progression and metastasis of gastric cancer. The expression of GKN2 in the patient samples was examined by qRT-PCR and western blot. The transcription factor NK6 Homeobox 2 (NKX6-2), which binds to the GKN2 promoter, was predicted by cBioportal and JSPAR. Binding between NKX6-2 and the GKN2 promoter was analyzed by dual-luciferase assay. MTT assay and transwell assay were used to detect changes in gastric cancer cell viability and migration after GKN2 overexpression, which was achieved by transfection of GKN2 overexpression vector. Akt signaling pathway markers were assessed by western blot. GKN2 is downregulated in gastric cancer and low GKN2 expression is correlated to poor survival, metastasis, and higher clinical stages. NKX6-2 binds the promoter region of GKN2 and regulate its expression. GKN2 overexpression inhibits the proliferation, migration, and invasion of gastric cancer cells, which was mediated by Akt signaling pathway. NKX6-2 regulated GKN2 inhibits the proliferation and invasion of gastric cancer cells by inhibiting Akt signaling pathway. GKN2 can be used as a potential diagnostic and therapeutic target for patients with clinical gastric cancer.
Collapse
|
22
|
Sawashita Y, Hirata N, Yoshikawa Y, Terada H, Tokinaga Y, Yamakage M. Remote ischemic preconditioning reduces myocardial ischemia-reperfusion injury through unacylated ghrelin-induced activation of the JAK/STAT pathway. Basic Res Cardiol 2020; 115:50. [PMID: 32607622 DOI: 10.1007/s00395-020-0809-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023]
Abstract
Remote ischemic preconditioning (RIPC) offers cardioprotection against myocardial ischemia-reperfusion injury. The humoral factors involved in RIPC that are released from parasympathetically innervated organs have not been identified. Previous studies showed that ghrelin, a hormone released from the stomach, is associated with cardioprotection. However, it is unknown whether or not ghrelin is involved in the mechanism of RIPC. This study aimed to determine whether ghrelin serves as one of the humoral factors in RIPC. RIPC group rats were subjected to three cycles of ischemia and reperfusion for 5 min in two limbs before left anterior descending (LAD) coronary artery ligation. Unacylated ghrelin (UAG) group rats were given 0.5 mcg/kg UAG intravenously 30 min before LAD ligation. Plasma levels of UAG in all groups were measured before and after RIPC procedures and UAG administration. Additionally, JAK2/STAT3 pathway inhibitor (AG490) was injected in RIPC and UAG groups to investigate abolishment of the cardioprotection of RIPC and UAG. Plasma levels of UAG, infarct size and phosphorylation of STAT3 were compared in all groups. Infarct size was significantly reduced in RIPC and UAG groups, compared to the other groups. Plasma levels of UAG in RIPC and UAG groups were significantly increased after RIPC and UAG administration, respectively. The cardioprotective effects of RIPC and UAG were accompanied by an increase in phosphorylation of STAT3 and abolished by AG490. This study indicated that RIPC reduces myocardial ischemia and reperfusion injury through UAG-induced activation of JAK/STAT pathway. UAG may be one of the humoral factors involved in the cardioprotective effects of RIPC.
Collapse
Affiliation(s)
- Yasuaki Sawashita
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Naoyuki Hirata
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yusuke Yoshikawa
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Hirofumi Terada
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yasuyuki Tokinaga
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
23
|
Cai LL, Xu HT, Wang QL, Zhang YQ, Chen W, Zheng DY, Liu F, Yuan HB, Li YH, Fu HL. EP4 activation ameliorates liver ischemia/reperfusion injury via ERK1/2‑GSK3β‑dependent MPTP inhibition. Int J Mol Med 2020; 45:1825-1837. [PMID: 32186754 PMCID: PMC7169940 DOI: 10.3892/ijmm.2020.4544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin E receptor subtype 4 (EP4) is widely distributed in the heart, but its role in hepatic ischemia/reperfusion (I/R), particularly in mitochondrial permeability transition pore (MPTP) modulation, is yet to be elucidated. In the present study, an EP4 agonist (CAY10598) was used in a rat model to evaluate the effects of EP4 activation on liver I/R and the mechanisms underlying this. I/R insult upregulated hepatic EP4 expression during early reperfusion. In addition, subcutaneous CAY10598 injection prior to the onset of reperfusion significantly increased hepatocyte cAMP concentrations and decreased serum ALT and AST levels and necrotic and apoptotic cell percentages, after 6 h of reperfusion. Moreover, CAY10598 protected mitochondrial morphology, markedly inhibited mitochondrial permeability transition pore (MPTP) opening and decreased liver reactive oxygen species levels. This occurred via activation of the ERK1/2-GSK3β pathway rather than the janus kinase (JAK)2-signal transducers and activators of transcription (STAT)3 pathway, and resulted in prevention of mitochondria-associated cell injury. The MPTP opener carboxyatractyloside (CATR) and the ERK1/2 inhibitor PD98059 also partially reversed the protective effects of CAY10598 on the liver and mitochondria. The current findings indicate that EP4 activation induces ERK1/2-GSK3β signaling and subsequent MPTP inhibition to provide hepatoprotection, and these observations are informative for developing new molecular targets and preventative therapies for I/R in a clinical setting.
Collapse
Affiliation(s)
- Lin-Lin Cai
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai-Tao Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Qi-Long Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Ya-Qing Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Dong-Yu Zheng
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Fang Liu
- National Key Laboratory of Medical Immunology and Department of Immunology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hong-Bin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai-Long Fu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
24
|
Girotti M, Silva JD, George CM, Morilak DA. Ciliary neurotrophic factor signaling in the rat orbitofrontal cortex ameliorates stress-induced deficits in reversal learning. Neuropharmacology 2019; 160:107791. [PMID: 31553898 DOI: 10.1016/j.neuropharm.2019.107791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 11/17/2022]
Abstract
Deficits in cognitive flexibility, i.e. the ability to modify behavior in response to changes in the environment, are present in several psychiatric disorders and are often refractory to treatment. However, improving treatment response has been hindered by a lack of understanding of the neurobiology of cognitive flexibility. Using a rat model of chronic stress (chronic intermittent cold stress, CIC) that produces selective deficits in reversal learning, a form of cognitive flexibility dependent on orbitofrontal cortex (OFC) function, we have previously shown that JAK2 signaling is required for optimal reversal learning. In this study we explore the molecular basis of those effects. We show that, within the OFC, CIC stress reduces the levels of phosphorylated JAK2 and of ciliary neurotrophic factor (CNTF), a promoter of neuronal survival and an activator of JAK2 signaling, and that neutralizing endogenous CNTF with an intra-OFC microinjection of a specific antibody is sufficient to produce reversal-learning deficits similar to stress. Intra-OFC delivery of recombinant CNTF to CIC-stressed rats, at a dose that induces JAK2 and Akt but not STAT3 or ERK, ameliorates reversal-learning deficits, and Akt blockade prevents the positive effects of CNTF. Further analysis revealed that CNTF may exert its beneficial effects by inhibiting GSK3β, a substrate of Akt and a regulator of protein degradation. We also revealed a novel mechanism of CNTF action through modulation of p38/Mnk1/eIF4E signaling. This cascade controls translation of select mRNAs, including those encoding several plasticity-related proteins. Thus, we suggest that CNTF-driven JAK2 signaling corrects stress-induced reversal learning deficits by modulating the steady-state levels of plasticity-related proteins in the OFC.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Jeri D Silva
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Christina M George
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| |
Collapse
|
25
|
Hyperglycemia-Induced Oxidative Stress Abrogates Remifentanil Preconditioning-Mediated Cardioprotection in Diabetic Rats by Impairing Caveolin-3-Modulated PI3K/Akt and JAK2/STAT3 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9836302. [PMID: 31583053 PMCID: PMC6748204 DOI: 10.1155/2019/9836302] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/09/2019] [Accepted: 07/22/2019] [Indexed: 12/30/2022]
Abstract
Diabetic hearts are more vulnerable to ischemia/reperfusion (I/R) injury and less responsive to remifentanil preconditioning (RPC), but the underlying mechanisms are incompletely understood. Caveolin-3 (Cav-3), the dominant isoform of cardiomyocyte caveolae, is reduced in diabetic hearts in which oxidative stress is increased. This study determined whether the compromised RPC in diabetes was an independent manifestation of hyperglycemia-induced oxidative stress or linked to impaired Cav-3 expression with associated signaling abnormality. RPC significantly attenuated postischemic infarction, cardiac dysfunction, myocardial apoptosis, and 15-F2t-isoprostane production (a specific marker of oxidative stress), accompanied with increased Cav-3 expression and enhanced Akt and STAT3 activation in control but not in diabetic rats. Pretreatment with the antioxidant N-acetylcysteine (NAC) attenuated hyperglycemia-induced reduction of Cav-3 expression and Akt and STAT3 activation and restored RPC-mediated cardioprotection in diabetes, which was abolished by cardiac-specific knockdown of Cav-3 by AAV9-shRNA-Cav-3, PI3K/Akt inhibitor wortmannin, or JAK2/STAT3 inhibitor AG490, respectively. Similarly, NAC could restore RPC protection from high glucose and hypoxia/reoxygenation-induced injury evidenced by decreased levels of LDH release, 15-F2t-isoprostane, O2 -, and JC-1 monomeric cells, which were reversed by caveolae disrupter methyl-β-cyclodextrin, wortmannin, or AG490 in isolated primary cardiomyocytes or siRNAs of Cav-3, Akt, or STAT3 in H9C2 cells. Either methyl-β-cyclodextrin or Cav-3 knockdown reduced Akt and STAT3 activation. Further, the inhibition of Akt activation by a selective inhibitor or siRNA reduced STAT3 activation and vice versa, but they had no effects on Cav-3 expression. Thus, hyperglycemia-induced oxidative stress abrogates RPC cardioprotection by impairing Cav-3-modulated PI3K/Akt and JAK2/STAT3 signaling. Antioxidant treatment with NAC could restore RPC-induced cardioprotection in diabetes by improving Cav-3-dependent Akt and STAT3 activation and by facilitating the cross talk between PI3K/Akt and JAK2/STAT3 signaling pathways.
Collapse
|
26
|
Gupta K, Chen C, Lutty GA, Hebbel RP. Morphine promotes neovascularizing retinopathy in sickle transgeneic mice. Blood Adv 2019; 3:1073-1083. [PMID: 30944099 PMCID: PMC6457224 DOI: 10.1182/bloodadvances.2018026898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Neovascularizing retinopathy is a significant complication of sickle cell disease (SCD), occurring more frequently in HbSC than HbSS disease. This risk difference is concordant with a divergence of angiogenesis risk, as identified by levels of pro- vs anti-angiogenic factors in the sickle patient's blood. Because our prior studies documented that morphine promotes angiogenesis in both malignancy and wound healing, we tested whether chronic opioid treatment would promote retinopathy in NY1DD sickle transgenic mice. After 10 to 15 months of treatment, sickle mice treated with morphine developed neovascularizing retinopathy to a far greater extent than either of the controls (sickle mice treated with saline and wild-type mice treated identically with morphine). Our dissection of the mechanistic linkage between morphine and retinopathy revealed a complex interplay among morphine engagement with its μ opioid receptor (MOR) on retinal endothelial cells (RECs); morphine-induced production of tumor necrosis factor α and interleukin-6 (IL-6), causing increased expression of both MOR and vascular endothelial growth factor receptor 2 (VEGFR2) on RECs; morphine/MOR engagement transactivating VEGFR2; and convergence of MOR, VEGFR2, and IL-6 activation on JAK/STAT3-dependent REC proliferation and angiogenesis. In the NY1DD mice, the result was increased angiogenesis, seen as neovascularizing retinopathy, similar to the retinal pathology occurring in humans with SCD. Therefore, we conclude that chronic opioid exposure, superimposed on the already angiogenic sickle milieu, might enhance risk for retinopathy. These results provide an additional reason for development and application of opioid alternatives for pain control in SCD.
Collapse
Affiliation(s)
- Kalpna Gupta
- Vascular Biology Center, and
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN; and
| | - Chunsheng Chen
- Vascular Biology Center, and
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN; and
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, John Hopkins School of Medicine, Baltimore, MD
| | - Robert P Hebbel
- Vascular Biology Center, and
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN; and
| |
Collapse
|
27
|
Skrabalova J, Karlovska I, Hejnova L, Novotny J. Protective Effect of Morphine Against the Oxidant-Induced Injury in H9c2 Cells. Cardiovasc Toxicol 2019; 18:374-385. [PMID: 29380194 DOI: 10.1007/s12012-018-9448-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There are some indications that morphine may exert myocardial protective effects under certain conditions. The aim of the present study was to investigate the effect of morphine on viability and oxidative state of H9c2 cells (rat cardiomyoblasts) influenced by oxidative stress that was elicited by exposure to tert-butyl hydroperoxide (t-BHP). Our experiments showed that pretreatment with morphine before the addition of t-BHP markedly improved cell viability. Morphine was able to increase total antioxidant capacity of H9c2 cells and to reduce the production of reactive oxygen species, protein carbonylation, and lipid peroxidation. Cellular damage caused by t-BHP was associated with low levels of p38 MAPK and GSK-3β phosphorylation. Pretreatment with morphine augmented p38 phosphorylation, and the increased phospho-p38/p38 ratio was preserved even in the presence of t-BHP. Morphine did not change the level of GSK-3β phosphorylation, but interestingly, the phospho-GSK-3β/GSK-3β ratio significantly increased after subsequent incubation with t-BHP. Furthermore, morphine exposure resulted in upregulation of the antioxidant enzyme catalase. The protective effect of morphine was abrogated by the addition of the PI3K inhibitor wortmannin and/or p38 MAPK inhibitor SB203580. It can be concluded that morphine may protect H9c2 cells against oxidative stress and that this protection is at least partially mediated through activation of the p38 MAPK and PI3K/GSK-3β pathways.
Collapse
Affiliation(s)
- Jitka Skrabalova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivana Karlovska
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
28
|
Chen P, Long B, Xu Y, Wu W, Zhang S. Identification of Crucial Genes and Pathways in Human Arrhythmogenic Right Ventricular Cardiomyopathy by Coexpression Analysis. Front Physiol 2018; 9:1778. [PMID: 30574098 PMCID: PMC6291487 DOI: 10.3389/fphys.2018.01778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
As one common disease causing young people to die suddenly due to cardiac arrest, arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disorder of heart muscle whose progression covers one complicated gene interaction network that influence the diagnosis and prognosis of it. In our research, differentially expressed genes (DEGs) were screened, and we established a weighted gene coexpression network analysis (WGCNA) and gene set net correlations analysis (GSNCA) for identifying crucial genes as well as pathways related to ARVC pathogenic mechanism (n = 12). In the research, the results demonstrated that there were 619 DEGs in total between non-failing donor myocardial samples and ARVC tissues (FDR < 0.05). WGCNA analysis identified the two gene modules (brown and turquoise) as being most significantly associated with ARVC state. Then the ARVC-related four key biological pathways (cytokine–cytokine receptor interaction, chemokine signaling pathway, neuroactive ligand receptor interaction, and JAK-STAT signaling pathway) and four hub genes (CXCL2, TNFRSF11B, LIFR, and C5AR1) in ARVC samples were further identified by GSNCA method. Finally, we used t-test and receiver operating characteristic (ROC) curves for validating hub genes, results showed significant differences in t-test and their AUC areas all greater than 0.8. Together, these results revealed that the new four hub genes as well as key pathways that might be involved into ARVC diagnosis. Even though further experimental validation is required for the implication by association, our findings demonstrate that the computational methods based on systems biology might complement the traditional gene-wide approaches, as such, might offer a new insight in therapeutic intervention within rare diseases of people like ARVC.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Li C, Zhang Y, Wang Q, Meng H, Zhang Q, Wu Y, Xiao W, Wang Y, Tu P. Dragon's Blood exerts cardio-protection against myocardial injury through PI3K-AKT-mTOR signaling pathway in acute myocardial infarction mice model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:279-289. [PMID: 30195568 DOI: 10.1016/j.jep.2018.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dragon's Blood (DB), the red resin of Dracaena cochinchinensis (Lour.) S. C., has been used in traditional Chinese medicine to treat acute myocardial infarction (AMI) for centuries. Evidence indicated that DB may exert cardio-protective effect by inhibiting inflammatory response during myocardial infarction. However, its pharmaceutical mechanism is still to be elucidated. AIM OF THE STUDY Due to its potential anti-inflammatory effect, Dragon's Blood extract (DBE) was applied on AMI mice model in this study and its mechanism on inflammation via PI3K-AKT-mTOR signaling pathway was to be validated. MATERIALS AND METHODS AMI mice model was established by ligation of left anterior descending (LAD) arteries. DBE was administered for 7 days before the surgery. Heart function was evaluated by 2D echocardiography. Levels of CK-MB and LDH1 in serum as well as TXB2, 6-keto-PGF1α and ET-1 in plasma were detected. Level of IL-6 in cardiac tissues was quantified by ELISA. Expressions of key proteins in PI3K-AKT-mTOR signaling pathway were detected by Western blot. RESULTS The result demonstrated that DBE could improve heart function in AMI mice model. Meanwhile, it could also regulate levels of CK-MB and LDH1, and restore balance between TXB2 and 6-keto-PGF1α. Further study suggested that DBE could inhibit inflammation and regulate expressions of key proteins in IL-6-JAK2/STAT3 pathway in cardiac tissue. Western blot results validated that DBE could activate PI3K-AKT-mTOR signaling pathway, thereby regulating the expressions of its downstream targets, including VEGF, COX2 and PPARγ. CONCLUSION DBE exerts cardio-protective efficacy by activating JAK2-STAT3 and PI3K-AKT-mTOR pathways in cardiac tissue. These findings provide insight into the pharmacological mechanism of DBE and validate the beneficial effects of DBE in the clinical application for AMI.
Collapse
Affiliation(s)
- Chun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yi Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Meng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wu
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Xiao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
30
|
Melo Z, Ishida C, Goldaraz MDLP, Rojo R, Echavarria R. Novel Roles of Non-Coding RNAs in Opioid Signaling and Cardioprotection. Noncoding RNA 2018; 4:ncrna4030022. [PMID: 30227648 PMCID: PMC6162605 DOI: 10.3390/ncrna4030022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is a significant cause of morbidity and mortality across the world. A large proportion of CVD deaths are secondary to coronary artery disease (CAD) and myocardial infarction (MI). Even though prevention is the best strategy to reduce risk factors associated with MI, the use of cardioprotective interventions aimed at improving patient outcomes is of great interest. Opioid conditioning has been shown to be effective in reducing myocardial ischemia-reperfusion injury (IRI) and cardiomyocyte death. However, the molecular mechanisms behind these effects are under investigation and could provide the basis for the development of novel therapeutic approaches in the treatment of CVD. Non-coding RNAs (ncRNAs), which are functional RNA molecules that do not translate into proteins, are critical modulators of cardiac gene expression during heart development and disease. Moreover, ncRNAs such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are known to be induced by opioid receptor activation and regulate opioid signaling pathways. Recent advances in experimental and computational tools have accelerated the discovery and functional characterization of ncRNAs. In this study, we review the current understanding of the role of ncRNAs in opioid signaling and opioid-induced cardioprotection.
Collapse
Affiliation(s)
- Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Jalisco, Mexico.
| | - Cecilia Ishida
- Programa de Genomica Computacional, Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca 62210, Morelos, Mexico.
| | - Maria de la Paz Goldaraz
- Departamento de Anestesiologia, Hospital de Especialidades UMAE CMNO, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico.
| | - Rocio Rojo
- Departamento de Anestesiologia, Hospital de Especialidades UMAE CMNO, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico.
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Jalisco, Mexico.
| |
Collapse
|
31
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
32
|
Song NY, Lee YH, Na HK, Baek JH, Surh YJ. Leptin induces SIRT1 expression through activation of NF-E2-related factor 2: Implications for obesity-associated colon carcinogenesis. Biochem Pharmacol 2018; 153:282-291. [PMID: 29427626 DOI: 10.1016/j.bcp.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/02/2018] [Indexed: 12/26/2022]
Abstract
Leptin, a representative adipokine secreted from the white adipose tissue, is considered as a potential linker between obesity and cancer. SIRT1 is an NAD+-dependent histone/protein deacetylase speculated to function as an oncogene. In the present study, we found that leptin signaling-defective ob/ob and db/db mice had lower colonic expression of SIRT1 compared with leptin signaling-intact C57BL/6J mice, implying that leptin signaling is crucial for SIRT1 expression in vivo. Moreover, leptin induced up-regulation of SIRT1 in human colon cancer (HCT-116) cells. Leptin stimulated migration and invasion of cultured HCT-116 cells and tumor growth in the xenograft assay, and these effects were abrogated by a SIRT1 inhibitor sirtinol, suggesting that SIRT1 plays a role in leptin-induced colon carcinogenesis. Leptin-induced SIRT1 expression was regulated by the redox-sensitive transcription factor NF-E2-related factor 2 (Nrf2). Leptin stimulated nuclear accumulation of Nrf2 as well as its binding to the antioxidant response elements located in the SIRT1 promoter. Moreover, siRNA knockdown of Nrf2 abrogated the leptin-induced SIRT1 expression. Notably, SIRT1 was significantly reduced in colon tissues of Nrf2-null mice, lending further support to Nrf2-dependent SIRT1 expression. Expression of leptin, Nrf2 and SIRT1 was coordinately increased in human colon tumor tissues. In conclusion, leptin might play a role in colon carcinogenesis by inducing Nrf2-dependent SIRT1 overexpression.
Collapse
Affiliation(s)
- Na-Young Song
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, South Korea
| | - Yeon-Hwa Lee
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, South Korea
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gachon University Gil Medical Center, Incheon 21565, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences and Technology, Seoul National University, Seoul 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
33
|
Hypertrophied myocardium is vulnerable to ischemia/reperfusion injury and refractory to rapamycin-induced protection due to increased oxidative/nitrative stress. Clin Sci (Lond) 2018; 132:93-110. [PMID: 29175946 DOI: 10.1042/cs20171471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022]
Abstract
Left ventricular hypertrophy (LVH) is causally related to increased morbidity and mortality following acute myocardial infarction (AMI) via still unknown mechanisms. Although rapamycin exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) injury in normal animals, whether rapamycin-elicited cardioprotection is altered in the presence of LVH has yet to be determined. Pressure overload induced cardiac hypertrophied mice and sham-operated controls were exposed to AMI by coronary artery ligation, and treated with vehicle or rapamycin 10 min before reperfusion. Rapamycin produced marked cardioprotection in normal control mice, whereas pressure overload induced cardiac hypertrophied mice manifested enhanced myocardial injury, and was refractory to rapamycin-elicited cardioprotection evidenced by augmented infarct size, aggravated cardiomyocyte apoptosis, and worsening cardiac function. Rapamycin alleviated MI/R injury via ERK-dependent antioxidative pathways in normal mice, whereas cardiac hypertrophied mice manifested markedly exacerbated oxidative/nitrative stress after MI/R evidenced by the increased iNOS/gp91phox expression, superoxide production, total NO metabolites, and nitrotyrosine content. Moreover, scavenging superoxide or peroxynitrite by selective gp91phox assembly inhibitor gp91ds-tat or ONOO- scavenger EUK134 markedly ameliorated MI/R injury, as shown by reduced myocardial oxidative/nitrative stress, alleviated myocardial infarction, hindered cardiomyocyte apoptosis, and improved cardiac function in aortic-banded mice. However, no additional cardioprotective effects were achieved when we combined rapamycin and gp91ds-tat or EUK134 in ischemic/reperfused hearts with or without LVH. These results suggest that cardiac hypertrophy attenuated rapamycin-induced cardioprotection by increasing oxidative/nitrative stress and scavenging superoxide/peroxynitrite protects the hypertrophied heart from MI/R.
Collapse
|
34
|
Abstract
The opioid receptor family, with associated endogenous ligands, has numerous roles throughout the body. Moreover, the delta opioid receptor (DORs) has various integrated roles within the physiological systems, including the cardiovascular system. While DORs are important modulators of cardiovascular autonomic balance, they are well-established contributors to cardioprotective mechanisms. Both endogenous and exogenous opioids acting upon DORs have roles in myocardial hibernation and protection against ischaemia-reperfusion (I-R) injury. Downstream signalling mechanisms governing protective responses alternate, depending on the timing and duration of DOR activation. The following review describes models and mechanisms of DOR-mediated cardioprotection, the impact of co-morbidities and challenges for clinical translation.
Collapse
Affiliation(s)
- Louise See Hoe
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
35
|
Chiu YH, Ku PM, Cheng YZ, Li Y, Cheng JT, Niu HS. Phosphorylation of signal transducer and activator of transcription 3 induced by hyperglycemia is different with that induced by lipopolysaccharide or erythropoietin via receptor‑coupled signaling in cardiac cells. Mol Med Rep 2017; 17:1311-1320. [PMID: 29115516 DOI: 10.3892/mmr.2017.7973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 11/06/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) is known to be involved in hypertrophy and fibrosis in cardiac dysfunction. The activation of STAT3 via the phosphorylation of STAT3 is required for the production of functional activity. It has been established that lipopolysaccharide (LPS)‑induced phosphorylation of STAT3 in cardiomyocytes primarily occurs through a direct receptor‑mediated action. This effect is demonstrated to be produced rapidly. STAT3 in cardiac fibrosis of diabetes is induced by high glucose through promotion of the STAT3‑associated signaling pathway. However, the time schedule for STAT3 activation between LPS and high glucose appears to be different. Therefore, the difference in STAT3 activation between LPS and hyperglycemia in cardiomyocytes requires elucidation. The present study investigated the phosphorylation of STAT3 induced by LPS and hyperglycemia in the rat cardiac cell line H9c2. Additionally, phosphorylation of STAT3 induced by erythropoietin (EPO) via receptor activation was compared. Then, the downstream signals for fibrosis, including the connective tissue growth factor (CTGF) and matrix metalloproteinase (MMP)‑9, were determined using western blotting, while the mRNA levels were quantified. LPS induced a rapid elevation of STAT3 phosphorylation in H9c2 cells within 30 min, similar to that produced by EPO. However, LPS or EPO failed to modify the mRNA level of STAT3, and/or the downstream signals for fibrosis. High glucose increased STAT3 phosphorylation to be stable after a long period of incubation. Glucose incubation for 24 h may augment the STAT3 expression in a dose‑dependent manner. Consequently, fibrosis‑associated signals, including CTGF and MMP‑9 protein, were raised in parallel. In the presence of tiron, an antioxidant, these changes by hyperglycemia were markedly reduced, demonstrating the mediation of oxidative stress. Therefore, LPS‑ or EPO‑induced STAT3 phosphorylation is different compared with that caused by high glucose in H9c2 cells. Sustained activation of STAT3 by hyperglycemia may promote the expression of fibrosis‑associated signals, including CTGF and MMP‑9, in H9c2 cells. Therefore, regarding the cardiac dysfunctions associated with diabetes and/or hyperglycemia, the identification of nuclear STAT3 may be more reliable compared with the assay of phosphorylated STAT3 in cardiac cells.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Division of Infectious Diseases, Chi‑Mei Medical Center‑Liouying, Tainan 73601, Taiwan, R.O.C
| | - Po-Ming Ku
- Cardiovascular Center, Department of Internal Medicine, Chi‑Mei Medical Center‑Liouying, Tainan 73601, Taiwan, R.O.C
| | - Yung-Ze Cheng
- Department of Emergency Medicine, Chi‑Mei Medical Center, Tainan 71003, Taiwan, R.O.C
| | - Yingxiao Li
- Department of Medical Research, Chi‑Mei Medical Center, Tainan 71003, Taiwan, R.O.C
| | - Juei-Tang Cheng
- Department of Medical Research, Chi‑Mei Medical Center, Tainan 71003, Taiwan, R.O.C
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan, R.O.C
| |
Collapse
|
36
|
Li J, Xiang X, Gong X, Shi Y, Yang J, Xu Z. Cilostazol protects mice against myocardium ischemic/reperfusion injury by activating a PPARγ/JAK2/STAT3 pathway. Biomed Pharmacother 2017; 94:995-1001. [PMID: 28810537 DOI: 10.1016/j.biopha.2017.07.143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischemia/reperfusion (MIR) injury causes severe arrhythmias and a high lethality. The present study is designed to investigate the effect of cilostazol on MIR injury and the underlying mechaism. We measured the effects of cilostazol on heart function parameters in a mouse model of MIR. Proinflammatory cytokines and apoptosis proteins in the myocardium were examined to investigate the anti-inflammatory and anti-apoptosis ability of cilostazol. The participation of PPARγ/JAK2/STAT3 pathway was investigated. Results showed that the impairment of hemodynamic parameters caused by MIR was attenuated by cilostazol. The IL-6, IL-1β and TNF-a levels were all decreased by cilostazol. Cilostazol also significantly inhibited Bax and cleaved caspase-3 levels and restored the Bcl-2 levels. PPARγ, JAK2 and STAT3 were all activated by cilostazol. Treatment of inhibitors of them abolished the protective effects of cilostazol on cardiac function, myocardial inflammation and apoptosis. In summary, cilostazol alleviated the cardiac function impairment, myocardial inflammation and apoptosis induced by MIR. The results present a novel signaling mechanism that cilostazol protects MIR injury by activating a PPARγ/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Jiangjin Li
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China.
| | - Xiaoli Xiang
- Department of Nephrology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Xiaoxuan Gong
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Yafei Shi
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Jing Yang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Zuo Xu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| |
Collapse
|
37
|
Zarrinkalam E, Heidarianpour A. Effect of 8-Week Aerobic, Strength and Concurrent Training on Circulating Apelin in Morphine-Dependent Rats. MEDICAL LABORATORY JOURNAL 2017. [DOI: 10.29252/mlj.11.5.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
38
|
Salidroside protects rat liver against ischemia/reperfusion injury by regulating the GSK-3β/Nrf2-dependent antioxidant response and mitochondrial permeability transition. Eur J Pharmacol 2017; 806:32-42. [DOI: 10.1016/j.ejphar.2017.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
|
39
|
Wu D, Wang J, Wang H, Ji A, Li Y. Protective roles of bioactive peptides during ischemia-reperfusion injury: From bench to bedside. Life Sci 2017; 180:83-92. [PMID: 28527782 DOI: 10.1016/j.lfs.2017.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion (I/R) is a well-known pathological condition which may lead to disability and mortality. I/R injury remains an unresolved and complicated situation in a number of clinical conditions, such as cardiac arrest with successful reanimation, as well as ischemic events in brain and heart. Peptides have many attractive advantages which make them suitable candidate drugs in treating I/R injury, such as low toxicity and immunogenicity, good solubility property, distinct tissue distribution pattern, and favorable pharmacokinetic profile. An increasing number of studies indicate that peptides could protect against I/R injury in many different organs and tissues. Peptides also face several therapeutic challenges that limit their clinical application. In this review, we present the mechanisms of action of peptides in reducing I/R injury, as well as further discuss modification strategies to improve the functional properties of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Jun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Honggang Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
40
|
Wu J, Yu J, Xie P, Maimaitili Y, Wang J, Yang L, Ma H, Zhang X, Yang Y, Zheng H. Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2-STAT3 pathway. PeerJ 2017; 5:e3196. [PMID: 28392989 PMCID: PMC5382923 DOI: 10.7717/peerj.3196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sevoflurane postconditioning (S-post) has similar cardioprotective effects as ischemic preconditioning. However, the underlying mechanism of S-post has not been fully elucidated. Janus kinase signaling transduction/transcription activator (JAK2-STAT3) plays an important role in cardioprotection. The purpose of this study was to determine whether the cardioprotective effects of S-post are associated with activation of the JAK2-STAT3 signal pathway. METHODS An adult male Sprague-Dawley (SD) rat model of myocardial ischemia/reperfusion (I/R) injury was established using the Langendorff isolated heart perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning treatment. The cardiac function indicators, myocardial infarct size, lactic dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK, p-STAT3, Bcl-2 and Bax were measured. RESULTS Compared with the I/R group, S-post significantly increased the expression of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the myocardial infarction areas, improved the cardiac function indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS and increased the ATP content. However, the cardioprotective effects of S-post were abolished by treatment with a JAK2 selective inhibitor (p < 0.05). CONCLUSION This study demonstrates that the cardioprotective effects of S-post are associated with the activation of JAK2-STAT3. The mechanism may be related to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced mitochondrial ROS generation and increased mitochondrial ATP content, thereby reducing apoptosis and myocardial infarct size.
Collapse
Affiliation(s)
- Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Jin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Peng Xie
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Yiliyaer Maimaitili
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Long Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Haiping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Xing Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an, Shanxi , China
| | - Yining Yang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| |
Collapse
|
41
|
Zhao ZH, Hao W, Meng QT, Du XB, Lei SQ, Xia ZY. Long non-coding RNA MALAT1 functions as a mediator in cardioprotective effects of fentanyl in myocardial ischemia-reperfusion injury. Cell Biol Int 2017; 41:62-70. [PMID: 27862640 DOI: 10.1002/cbin.10701] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/05/2016] [Indexed: 12/18/2022]
Abstract
Long non-coding (lncRNA) MALAT1 can be increased by hypoxia or ischemic limbs. Also, downregulation of MALAT1 contributes to reduction of cardiomyocyte apoptosis. However, the functional involvement of MALAT1 in myocardial ischemia-reperfusion (I/R) injury has not been defined. This study investigated the functional involvement of lncRNA-MALAT1 in cardioprotective effects of fentanyl. HL-1, a cardiac muscle cell line from the AT-1 mouse atrial cardiomyocyte tumor lineage was pre-treated with fentanyl and generated cell model of hypoxia-reoxygenation (H/R). Relative expression of MALAT1, miR-145, and Bnip3 mRNA in cells was determined by quantitative real-time PCR. Cardiomyocyte H/R injury was indicated by lactate dehydrogenase (LDH) release and cell apoptosis. The results showed that fentanyl abrogates expression of responsive gene for H/R and induces downregulation of MALAT1 and Bnip3 and upregulation of miR-145. We found that miR-145/Bnip3 pathway was negatively regulated by MALAT1 in H/R-HL-1 cell with or without fentanyl treatment. Moreover, both MALAT1 overexpression and miR-145 knockdown reverse cardioprotective effects of fentanyl, as indicated by increase in LDH release and cell apoptosis. The reversal effect of MALAT1 for fentanyl is confirmed in cardiac ischemia/reperfusion (I/R) mice. In summary, lncRNA-MALAT1 is sensitive to H/R injury and abrogates cardioprotective effects of Fentanyl by negatively regulating miR-145/Bnip3 pathway.
Collapse
Affiliation(s)
- Zhi-Hui Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Zhang Road, Wu chang District No. 99 Jie fang Road 238, 430060, Wuhan, China
| | - Wei Hao
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Zhao Wu Da Road, No.20, Sai Han District, 010017, Huhhot, Inner Mongolia Autonomous Region, China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Zhang Road, Wu chang District No. 99 Jie fang Road 238, 430060, Wuhan, China
| | - Xiao-Bing Du
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Zhao Wu Da Road, No.20, Sai Han District, 010017, Huhhot, Inner Mongolia Autonomous Region, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Zhang Road, Wu chang District No. 99 Jie fang Road 238, 430060, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Zhang Road, Wu chang District No. 99 Jie fang Road 238, 430060, Wuhan, China
| |
Collapse
|
42
|
Sevoflurane Postconditioning Reduces Apoptosis by Activating the JAK-STAT Pathway After Transient Global Cerebral Ischemia in Rats. J Neurosurg Anesthesiol 2017; 29:37-45. [DOI: 10.1097/ana.0000000000000331] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
44
|
Gu YJ, Sun WY, Zhang S, Li XR, Wei W. Targeted blockade of JAK/STAT3 signaling inhibits proliferation, migration and collagen production as well as inducing the apoptosis of hepatic stellate cells. Int J Mol Med 2016; 38:903-11. [PMID: 27460897 DOI: 10.3892/ijmm.2016.2692] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/08/2016] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine kinases belonging to the Janus kinase (JAK) family are associated with many cytokine receptors, which, on ligand binding, regulate important cellular functions such as proliferation, apoptosis and differentiation. The protective effects of JAK inhibitors on fibrotic diseases such as myelofibrosis and bone marrow fibrosis have been demonstrated in previous studies. The JAK inhibitor SHR0302 is a synthetic molecule that potently inhibits all members of the JAK family, particularly JAK1. However, its effect on hepatic fibrosis has not been investigated to date, to the best of our knowledge. In the present study, the effects of SHR0302 on the activation, proliferation, migration and apoptosis of hepatic stellate cells (HSCs) as well as HSC collagen production were investigated. Our data demonstrated that treatment with SHR0302 (10-9-10-5 mol/l) exerted an inhibitory effect on the activation, proliferation and migration of HSCs. In addition, the expression of collagen I and collagen III were significantly decreased following treatment with SHR0302. Furthermore, SHR0302 induced the apoptosis of HSCs, which was demonstrated by Annexin V/PI staining. SHR0302 significantly increased the activation of caspase-3 and Bax in HSCs whereas it decreased the expression of Bcl-2. SHR0302 also inhibited the activation of Akt signaling pathway. The pharmacological inhibition of the JAK1/signal transducer and activator of transcription (STAT)3 pathway led to the disruption of functions essential for HSC growth. Taken together, these findings provide evidence that SHR0302 may have the potential to alleviate hepatic fibrosis by targeting HSC functions.
Collapse
Affiliation(s)
- Yuan-Jing Gu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Sen Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Xin-Ran Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
45
|
Remifentanil Preconditioning Reduces Postischemic Myocardial Infarction and Improves Left Ventricular Performance via Activation of the Janus Activated Kinase-2/Signal Transducers and Activators of Transcription-3 Signal Pathway and Subsequent Inhibition of Glycogen Synthase Kinase-3β in Rats. Crit Care Med 2016; 44:e131-45. [PMID: 26468894 DOI: 10.1097/ccm.0000000000001350] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Remifentanil preconditioning attenuates myocardial ischemia reperfusion injury, but the underlying mechanism is incompletely understood. The Janus activated kinase-2 (JAK2)/signal transducers and activators of transcription-3 (STAT3) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways are critical in both ischemic and pharmacologic preconditioning cardioprotection, which involve the inactivation of glycogen synthase kinase-3β. We hypothesized that remifentanil preconditioning confers cardioprotection via the JAK2/STAT3 and/or PI3K/Akt activation-mediated glycogen synthase kinase-3β inhibition. DESIGN Pharmacologic intervention. SETTING Research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS In vivo and in vitro treatments. MEASUREMENTS AND MAIN RESULTS Male Sprague-Dawley rats (n = 6 per group) were sham operated or subjected to myocardial ischemia reperfusion injury. The JAK2 inhibitor AG490 (3 mg/kg), the PI3K inhibitor wortmannin (15 μg/kg), or the glycogen synthase kinase-3β inhibitor SB216763 (600 μg/kg) were given before inducing in vivo myocardial ischemia reperfusion injury achieved by occluding coronary artery for 30 minutes followed by 120 minutes of reperfusion in the absence or presence of remifentanil preconditioning (6 μg/kg/min). Also, isolated rat hearts were Langendorff perfused and subjected to 30 minutes of global ischemia and 120 minutes of reperfusion without or with remifentanil preconditioning (100 ng/mL) in the presence or absence of AG490 and/or SB216763. Isolated rat cardiomyocytes and H9C2 cells were subjected to hypoxia/reoxygenation alone or in combination with AG490 (100 μM), wortmannin (100 nM), or SB216763 (3 μM) without or with remifentanil preconditioning (2.5 μM). Remifentanil preconditioning reduced postischemic myocardial infarction and hemodynamic dysfunction induced by myocardial ischemia reperfusion injury concomitant with increased phosphorylation of STAT3 at tyr-705 (p-STAT3) and glycogen synthase kinase-3β but not Akt. AG490 but not wortmannin cancelled remifentanil preconditioning cardioprotection, and SB216763 restored it despite the presence of AG490. In Langendorff-perfused hearts, AG490-mediated cancellation of remifentanil preconditioning cardioprotection in attenuating postischemic myocardial infarction and creatinine kinase-MB release was reverted by concomitant administration of SB216763. Remifentanil preconditioning also attenuated posthypoxic cardiomyocyte injury and increased p-STAT3 and glycogen synthase kinase-3β in isolated primary cardiomyocytes and H9C2 cells. STAT3 gene knockdown with specific synthetic RNA cancelled remifentanil preconditioning cardioprotection, whereas glycogen synthase kinase-3β gene knockdown, which per se did not affect STAT3 under hypoxia/reoxygenation condition, preserved remifentanil preconditioning cardioprotection regardless of STAT3 abrogation. CONCLUSIONS Remifentanil preconditioning confers cardioprotection primarily via activation of JAK2/STAT3 signaling that can function independent of PI3K/Akt activation. Glycogen synthase kinase-3β is a critical downstream effector of remifentanil preconditioning cardioprotection.
Collapse
|
46
|
Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning. Eur J Pharmacol 2016; 784:129-36. [PMID: 27215146 DOI: 10.1016/j.ejphar.2016.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023]
Abstract
This experiment was designed to explore the protection of sphingosine1-phosphate (S1P) postconditioning on rat myocardial cells injured by hypoxia/reoxygenation acting via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signal pathway. The data showed that S1P could significantly increase cell viability, lower the rate of apoptosis, decrease the content of lactate dehydrogenase (LDH) and caspase3 activity in the culture medium, increase the activity of total superoxide dismutase (T-SOD) and manganese superoxide dismutase (Mn-SOD), reduce the loss of mitochondrial membrane potential and the fluorescence intensity of intracellular calcium, as well as increase the phosphorylation of JAK2 and STAT3 in comparison with the H/R group. When the JAK inhibitor AG490 or the STAT inhibitor stattic were added, the effects of S1P were inhibited. Our date shows that S1P protects H9c2 cells from hypoxia/reoxygenation injury and that the protection by S1P was inhibited by AG490 and stattic. Therefore S1P protects H9c2 cells against hypoxia/reoxygenation injury via the JAK-STAT pathway.
Collapse
|
47
|
Gan XT, Rajapurohitam V, Xue J, Huang C, Bairwa S, Tang X, Chow JTY, Liu MFW, Chiu F, Sakamoto K, Wagner KU, Karmazyn M. Myocardial Hypertrophic Remodeling and Impaired Left Ventricular Function in Mice with a Cardiac-Specific Deletion of Janus Kinase 2. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:3202-10. [PMID: 26475415 DOI: 10.1016/j.ajpath.2015.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022]
Abstract
The Janus kinase (JAK) system is involved in numerous cell signaling processes and is highly expressed in cardiac tissue. The JAK isoform JAK2 is activated by numerous factors known to influence cardiac function and pathologic conditions. However, although abundant, the role of JAK2 in the regulation or maintenance of cardiac homeostasis remains poorly understood. Using the Cre-loxP system, we generated a cardiac-specific deletion of Jak2 in the mouse to assess the effect on cardiac function with animals followed up for a 4-month period after birth. These animals had marked mortality during this period, although at 4 months mortality in male mice (47%) was substantially higher compared with female mice (30%). Both male and female cardiac Jak2-deleted mice had hypertrophy, dilated cardiomyopathy, and severe left ventricular dysfunction, including a marked reduction in ejection fractions as assessed by serial echocardiography, although the responses in females were somewhat less severe. Defective cardiac function was associated with altered protein levels of sarcoplasmic reticulum calcium-regulatory proteins particularly in hearts from male mice that had depressed levels of SERCA2 and phosphorylated phospholamban. In contrast, SERCA2 was unchanged in hearts of female mice, whereas phosphorylated phospholamban was increased. Our findings suggest that cardiac JAK2 is critical for maintaining normal heart function, and its ablation produces a severe pathologic phenotype composed of myocardial remodeling, heart failure, and pronounced mortality.
Collapse
Affiliation(s)
- Xiaohong T Gan
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Venkatesh Rajapurohitam
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Jenny Xue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Cathy Huang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Suresh Bairwa
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Xilan Tang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Jeffrey T-Y Chow
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Melissa F W Liu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Felix Chiu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Kazuhito Sakamoto
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - Morris Karmazyn
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
48
|
Dorsch M, Behmenburg F, Raible M, Blase D, Grievink H, Hollmann MW, Heinen A, Huhn R. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore. PLoS One 2016; 11:e0151025. [PMID: 26968004 PMCID: PMC4788451 DOI: 10.1371/journal.pone.0151025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
Background Morphine induces myocardial preconditioning (M-PC) via activation of mitochondrial large conductance Ca2+-sensitive potassium (mKCa) channels. An upstream regulator of mKCa channels is protein kinase A (PKA). Furthermore, mKCa channel activation regulates mitochondrial bioenergetics and thereby prevents opening of the mitochondrial permeability transition pore (mPTP). Here, we investigated in the rat heart in vivo whether 1) M-PC is mediated by activation of PKA, and 2) pharmacological opening of the mPTP abolishes the cardioprotective effect of M-PC and 3) M-PC is critically dependent on STAT3 activation, which is located upstream of mPTP within the signalling pathway. Methods Male Wistar rats were randomised to six groups (each n = 6). All animals underwent 25 minutes of regional myocardial ischemia and 120 minutes of reperfusion. Control animals (Con) were not further treated. Morphine preconditioning was initiated by intravenous administration of 0.3 mg/kg morphine (M-PC). The PKA blocker H-89 (10 μg/kg) was investigated with and without morphine (H-89+M-PC, H-89). We determined the effect of mPTP opening with atractyloside (5 mg/kg) with and without morphine (Atr+M-PC, Atr). Furthermore, the effect of morphine on PKA activity was tested in isolated adult rat cardiomyocytes. In further experiments in isolated hearts we tested the protective properties of morphine in the presence of STAT3 inhibition, and whether pharmacological prevention of the mPTP-opening by cyclosporine A (CsA) is cardioprotective in the presence of STAT3 inhibition. Results Morphine reduced infarct size from 64±5% to 39±9% (P<0.05 vs. Con). H-89 completely blocked preconditioning by morphine (64±9%; P<0.05 vs. M-PC), but H-89 itself had not effect on infarct size (61±10%; P>0.05 vs. Con). Also, atractyloside abolished infarct size reduction of morphine completely (65±9%; P<0.05 vs. M-PC) but had no influence on infarct size itself (64±5%; P>0.05 vs. Con). In isolated hearts STAT3 inhibitor Stattic completely abolished morphine-induced preconditioning. Administration of Stattic and mPTP inhibitor cyclosporine A reduced infarct size to 31±6% (Stat+CsA, P<0.05 vs. Con). Cyclosporine A alone reduced infarct size to 26±7% (CsA P<0.05 vs. Con). In cardiomyocytes, PKA activity was increased by morphine. Conclusion Our data suggest that morphine-induced cardioprotection is mediated by STAT3-activation and inhibition of mPTP, with STA3 located upstream of mPTP. There is some evidence that protein kinase A is involved within the signalling pathway.
Collapse
Affiliation(s)
- Marianne Dorsch
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Friederike Behmenburg
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- * E-mail:
| | - Miriam Raible
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Dominic Blase
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Hilbert Grievink
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- Department of Anesthesiology and Critical Care Medicine, Hadassah University Hospital, Jerusalem, Israel
- Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Markus W. Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - André Heinen
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- Institute of Cardiovascular Physiology, Heinrich-Heine-University, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
49
|
δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) mediate intermittent hypoxia induced protection of canine myocardium. Basic Res Cardiol 2016; 111:17. [PMID: 26879900 DOI: 10.1007/s00395-016-0538-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023]
Abstract
Intermittent, normobaric hypoxia confers robust cardioprotection against ischemia-induced myocardial infarction and lethal ventricular arrhythmias. δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) have been implicated in cardioprotective phenomena, but their roles in intermittent hypoxia are unknown. This study examined the contributions of DOR and ROS in mediating intermittent hypoxia-induced cardioprotection. Mongrel dogs completed a 20 day program consisting of 5-8 daily, 5-10 min cycles of moderate, normobaric hypoxia (FIO2 0.095-0.10), with intervening 4 min room air exposures. Subsets of dogs received the DOR antagonist naltrindole (200 μg/kg, sc) or antioxidant N-acetylcysteine (250 mg/kg, po) before each hypoxia session. Twenty-four hours after the last session, the left anterior descending coronary artery was occluded for 60 min and then reperfused for 5 h. Arrhythmias detected by electrocardiography were scored according to the Lambeth II conventions. Left ventricles were sectioned and stained with 2,3,5-triphenyl-tetrazolium-chloride, and infarct sizes were expressed as percentages of the area at risk (IS/AAR). Intermittent hypoxia sharply decreased IS/AAR from 41 ± 5 % (n = 12) to 1.8 ± 0.9 % (n = 9; P < 0.001) and arrhythmia score from 4.1 ± 0.3 to 0.7 ± 0.2 (P < 0.001) vs. non-hypoxic controls. Naltrindole (n = 6) abrogated the cardioprotection with IS/AAR 35 ± 5 % and arrhythmia score 3.7 ± 0.7 (P < 0.001 vs. untreated intermittent hypoxia). N-acetylcysteine (n = 6) interfered to a similar degree, with IS/AAR 42 ± 3 % and arrhythmia score 4.7 ± 0.3 (P < 0.001 vs. untreated intermittent hypoxia). Without the intervening reoxygenations, hypoxia (n = 4) was not cardioprotective (IS/AAR 50 ± 8 %; arrhythmia score 4.5 ± 0.5; P < 0.001 vs. intermittent hypoxia). Thus DOR, ROS and cyclic reoxygenation were obligatory participants in the gradually evolving cardioprotection produced by intermittent hypoxia.
Collapse
|
50
|
Glycogen synthase kinase 3 inhibitor protects against microvascular hyperpermeability following hemorrhagic shock. J Trauma Acute Care Surg 2015; 79:609-16. [PMID: 26402535 DOI: 10.1097/ta.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hemorrhagic shock (HS)-induced microvascular hyperpermeability involves disruption of endothelial cell adherens junctions leading to increase in paracellular permeability. β-Catenin, an integral component of the adherens junctional complex and Wnt pathway, and caspase 3 via its apoptotic signaling regulate endothelial cell barrier integrity. We have hypothesized that inhibiting phosphorylation of β-catenin and caspase 3 activity using glycogen synthase kinase 3-specific inhibitor SB216763 would attenuate microvascular hyperpermeability following HS. METHODS In Sprague-Dawley rats, HS was induced by withdrawing blood to reduce mean arterial pressure to 40 mm Hg for 60 minutes followed by resuscitation. Rats were given SB216763 (600 μg/kg) intravenously 10 minutes before shock. To study microvascular permeability, the rats were intravenously injected with fluorescein isothiocyanate (FITC)-albumin (50 mg/kg), and its flux across the mesenteric postcapillary venules was determined using intravital microscopy. In cell culture studies, rat lung microvascular endothelial cell monolayers grown on Transwell plates were pretreated with SB216763 (5 μM) followed by BAK (5 μg/mL) and caspase 3 (5 μg/mL) protein transfection. FITC-albumin (5 mg/mL) flux across cell monolayers indicates change in monolayer permeability. Activity of canonical Wnt pathway was determined by luciferase assay. Caspase 3 enzyme activity was assayed fluorometrically. RESULTS The HS group showed significant increase in FITC-albumin extravasation (p < 0.05) compared with sham. SB216763 significantly decrease HS-induced FITC-albumin extravasation (p < 0.05). Pretreatment with SB216763 protected against a BAK-induced increase in rat lung microvascular endothelial cell monolayer permeability and caspase 3 activity but failed to show similar results with a caspase 3-induced increase in monolayer permeability. Wnt3a treatment showed an increase in β-catenin-dependent T-cell factor-mediated transcription. CONCLUSION Inhibiting phosphorylation of β-catenin and caspase 3 activity using glycogen synthase kinase 3-specific inhibitor SB216763 help regulates HS-induced microvascular hyperpermeability.
Collapse
|