1
|
Eaton DC, Romero MJ, Matthay MA, Hamacher J, Advani A, Wolf A, Abu Mraheil M, Chakraborty T, Stepp DW, Belin de Chantemèle EJ, Kutlar A, Kraft F, Zeitlinger M, Kranke P, Frank S, Su Y, Verin AD, Fulton DJR, Ushio-Fukai M, Fukai T, Lucas R. Endothelial ENaC as a repressor of oxidative stress and a guardian of lung capillary barrier function in bacterial and viral pneumonia. Front Physiol 2025; 16:1562626. [PMID: 40260205 PMCID: PMC12009727 DOI: 10.3389/fphys.2025.1562626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Abstract
The endothelium represents a crucial regulator of vascular homeostasis. Since endothelial cells mainly rely on glycolysis rather than on oxidative phosphorylation for their ATP generation, this allows capillaries to transport the maximum amount of oxygen to oxygen-starved tissues, where it can be used for energy generation. However, the occasionally high levels of oxygen and of reactive oxygen species (ROS) in the blood vessels requires a balancing act between pro- and anti-oxidative mechanisms in the endothelium. When this balance is disturbed by excessive oxidative stress, as can occur in bacterial and viral pneumonia, endothelial barrier function can be compromised. This review will discuss some of the recently discovered barrier-protective mechanisms during bacterial and viral pneumonia, mediated through the reduction of oxidative stress in lung capillaries by the epithelial sodium channel (ENaC).
Collapse
Affiliation(s)
- D. C. Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, GA, United States
| | - M. J. Romero
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - M. A. Matthay
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, United States
| | - J. Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | - A. Advani
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - A. Wolf
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - M. Abu Mraheil
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - T. Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - D. W. Stepp
- Vascular Biology Center, Augusta, GA, United States
| | | | - A. Kutlar
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - F. Kraft
- Medical University of Vienna, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Clinical Division of General Anaesthesia and Intensive Care Medicine, Vienna, Austria
| | - M. Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - P. Kranke
- Department of Anesthesiology, Critical Care, Emergency and Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - S. Frank
- Department of Anaesthesiology, LMU University Hospital, LMU, Munich, Germany
| | - Y. Su
- Department of Pharmacology and Toxicology, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - A. D. Verin
- Vascular Biology Center, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - D. J. R. Fulton
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - M. Ushio-Fukai
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - T. Fukai
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - R. Lucas
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Yang J, Xu J, Xu S, Fan Z, Zhu C, Wan J, Yang J, Xing X. Oxidative stress in acute pulmonary embolism: emerging roles and therapeutic implications. Thromb J 2024; 22:9. [PMID: 38216919 PMCID: PMC10785361 DOI: 10.1186/s12959-023-00577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/25/2023] [Indexed: 01/14/2024] Open
Abstract
Oxidative stress is an imbalance between the body's reactive oxygen species and antioxidant defense mechanisms. Oxidative stress is involved in the development of several cardiovascular diseases, such as pulmonary hypertension, atherosclerosis, and diabetes mellitus. A growing number of studies have suggested the potential role of oxidative stress in the pathogenesis of pulmonary embolism. Biomarkers of oxidative stress in pulmonary embolism have also been explored, such as matrix metalloproteinases, asymmetric dimethylarginine, and neutrophil/lymphocyte ratio. Here, we comprehensively summarize some oxidative stress mechanisms and biomarkers in the development of acute pulmonary embolism and summarize related treatments based on antioxidant stress to explore effective treatment strategies for acute pulmonary embolism.
Collapse
Affiliation(s)
- Jingchao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jinzhu Xu
- Department of Pulmonary and Critical Care Medicine, Yuxi Municipal Hospital of T.C. M, 653100, Yuxi, China
| | - Shuanglan Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China
| | - Zeqin Fan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China
| | - Chenshao Zhu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jianyuan Wan
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China.
| |
Collapse
|
3
|
Cao Q, Liu L, Hu Y, Cao S, Tan T, Huang X, Deng Q, Chen J, Guo R, Zhou Q. Low-intensity pulsed ultrasound of different intensities differently affects myocardial ischemia/reperfusion injury by modulating cardiac oxidative stress and inflammatory reaction. Front Immunol 2023; 14:1248056. [PMID: 37744362 PMCID: PMC10513435 DOI: 10.3389/fimmu.2023.1248056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The prevalence of ischemic heart disease has reached pandemic levels worldwide. Early revascularization is currently the most effective therapy for ischemic heart diseases but paradoxically induces myocardial ischemia/reperfusion (MI/R) injury. Cardiac inflammatory reaction and oxidative stress are primarily involved in the pathology of MI/R injury. Low-intensity pulsed ultrasound (LIPUS) has been demonstrated to reduce cell injury by protecting against inflammatory reaction and oxidative stress in many diseases, including cardiovascular diseases, but rarely on MI/R injury. Methods This study was designed to clarify whether LIPUS alleviates MI/R injury by alleviating inflammatory reaction and oxidative stress. Simultaneously, we have also tried to confirm which intensity of the LIPUS might be more suitable to ameliorate the MI/R injury, as well as to clarify the signaling mechanisms. MI/R and simulated ischemia/reperfusion (SI/R) were respectively induced in Sprague Dawley rats and human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). LIPUS treatment, biochemical measurements, cell death assay, estimation of cardiac oxidative stress and inflammatory reaction, and protein detections by western blotting were performed according to the protocol. Results In our study, both in vivo and in vitro, LIPUS of 0.1 W/cm2 (LIPUS0.1) and 0.5 W/cm2 (LIPUS0.5) make no significant difference in the cardiomyocytes under normoxic condition. Under the hypoxic condition, MI/R injury, inflammatory reaction, and oxidative stress were partially ameliorated by LIPUS0.5 but were significantly aggravated by LIPUS of 2.5 W/cm2 (LIPUS2.5) both in vivo and in vitro. The activation of the apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway in cardiomyocytes with MI/R injury was partly rectified LIPUS0.5 both in vivo and in vitro. Conclusion Our study firstly demonstrated that LIPUS of different intensities differently affects MI/R injury by regulating cardiac inflammatory reaction and oxidative stress. Modulations on the ASK1/JNK pathway are the signaling mechanism by which LIPUS0.5 exerts cardioprotective effects. LIPUS0.5 is promising for clinical translation in protecting against MI/R injury. This will be great welfare for patients suffering from MI/R injury.
Collapse
Affiliation(s)
- Quan Cao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yugang Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Cao
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tuantuan Tan
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Huang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Deng
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinling Chen
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiqiang Guo
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. The neurovascular unit in healthy and injured spinal cord. J Cereb Blood Flow Metab 2023; 43:1437-1455. [PMID: 37190756 PMCID: PMC10414016 DOI: 10.1177/0271678x231172008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
The neurovascular unit (NVU) reflects the close temporal and spatial link between neurons and blood vessels. However, the understanding of the NVU in the spinal cord is far from clear and largely based on generalized knowledge obtained from the brain. Herein, we review the present knowledge of the NVU and highlight candidate approaches to investigate the NVU, particularly focusing on the spinal cord. Several unique features maintain the highly regulated microenvironment in the NVU. Autoregulation and neurovascular coupling ensure regional blood flow meets the metabolic demand according to the blood supply or local neural activation. The blood-central nervous system barrier partitions the circulating blood from neural parenchyma and facilitates the selective exchange of substances. Furthermore, we discuss spinal cord injury (SCI) as a common injury from the perspective of NVU dysfunction. Hopefully, this review will help expand the understanding of the NVU in the spinal cord and inspire new insights into SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Kapnisis K, Stylianou A, Kokkinidou D, Martin A, Wang D, Anderson PG, Prokopi M, Papastefanou C, Brott BC, Lemons JE, Anayiotos A. Multilevel Assessment of Stent-Induced Inflammation in the Adjacent Vascular Tissue. ACS Biomater Sci Eng 2023; 9:4747-4760. [PMID: 37480152 PMCID: PMC10428095 DOI: 10.1021/acsbiomaterials.3c00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
A recent U.S. Food and Drug Administration report presented the currently available scientific information related to biological response to metal implants. In this work, a multilevel approach was employed to assess the implant-induced and biocorrosion-related inflammation in the adjacent vascular tissue using a mouse stent implantation model. The implications of biocorrosion on peri-implant tissue were assessed at the macroscopic level via in vivo imaging and histomorphology. Elevated matrix metalloproteinase activity, colocalized with the site of implantation, and histological staining indicated that stent surface condition and implantation time affect the inflammatory response and subsequent formation and extent of neointima. Hematological measurements also demonstrated that accumulated metal particle contamination in blood samples from corroded-stetted mice causes a stronger immune response. At the cellular level, the stent-induced alterations in the nanostructure, cytoskeleton, and mechanical properties of circulating lymphocytes were investigated. It was found that cells from corroded-stented samples exhibited higher stiffness, in terms of Young's modulus values, compared to noncorroded and sham-stented samples. Nanomechanical modifications were also accompanied by cellular remodeling, through alterations in cell morphology and stress (F-actin) fiber characteristics. Our analysis indicates that surface wear and elevated metal particle contamination, prompted by corroded stents, may contribute to the inflammatory response and the multifactorial process of in-stent restenosis. The results also suggest that circulating lymphocytes could be a novel nanomechanical biomarker for peri-implant tissue inflammation and possibly the early stage of in-stent restenosis. Large-scale studies are warranted to further investigate these findings.
Collapse
Affiliation(s)
- Konstantinos Kapnisis
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Andreas Stylianou
- School
of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Department
of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Despoina Kokkinidou
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Adam Martin
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Dezhi Wang
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Peter G. Anderson
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Marianna Prokopi
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Brigitta C. Brott
- Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Jack E. Lemons
- Department
of Biomedical Engineering, University of
Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Andreas Anayiotos
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
6
|
Motlana MK, Ngoepe MN. Computational Fluid Dynamics (CFD) Model for Analysing the Role of Shear Stress in Angiogenesis in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7886. [PMID: 37175591 PMCID: PMC10178063 DOI: 10.3390/ijms24097886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterised by an attack on healthy cells in the joints. Blood flow and wall shear stress are crucial in angiogenesis, contributing to RA's pathogenesis. Vascular endothelial growth factor (VEGF) regulates angiogenesis, and shear stress is a surrogate for VEGF in this study. Our objective was to determine how shear stress correlates with the location of new blood vessels and RA progression. To this end, two models were developed using computational fluid dynamics (CFD). The first model added new blood vessels based on shear stress thresholds, while the second model examined the entire blood vessel network. All the geometries were based on a micrograph of RA blood vessels. New blood vessel branches formed in low shear regions (0.840-1.260 Pa). This wall-shear-stress overlap region at the junctions was evident in all the models. The results were verified quantitatively and qualitatively. Our findings point to a relationship between the development of new blood vessels in RA, the magnitude of wall shear stress and the expression of VEGF.
Collapse
Affiliation(s)
- Malaika K. Motlana
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malebogo N. Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
7
|
Hamrangsekachaee M, Wen K, Bencherif SA, Ebong EE. Atherosclerosis and endothelial mechanotransduction: current knowledge and models for future research. Am J Physiol Cell Physiol 2023; 324:C488-C504. [PMID: 36440856 PMCID: PMC10069965 DOI: 10.1152/ajpcell.00449.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Laboratoire de BioMécanique et BioIngénierie, UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne, Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eno E Ebong
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Neuroscience Department, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
8
|
Tanaka S, Kawasaki M, Noda T, Segawa T, Iwama M, Yagasaki H, Ueno T, Yoshizane T, Kato T, Fuseya T, Watanabe S, Minagawa T, Minatoguchi S, Okura H. Relationship between tissue characteristics and mechanical properties of coronary plaques: a comparison between integrated backscatter intravascular ultrasound (IVUS) and speckle-tracking IVUS. Heart Vessels 2023; 38:18-31. [PMID: 35819488 DOI: 10.1007/s00380-022-02129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 01/06/2023]
Abstract
High-risk coronary plaques have certain morphological characteristics. Thus, comprehensive assessment is needed for the risk stratification of plaques in patients with coronary artery disease. Integrated backscatter intravascular ultrasound (IB-IVUS) has been used successfully used to evaluate the tissue characteristics of coronary plaques; however, the mechanical properties of plaques have been rarely assessed. Therefore, we developed Speckle-tracking IVUS (ST-IVUS) to evaluate the mechanical properties of coronary plaque. This study aimed to evaluate the relation between the tissue characteristics of coronary plaques using IB-IVUS and their mechanical properties using ST-IVUS. We evaluated 95 non-targeted plaques in 95 patients undergoing elective percutaneous coronary intervention to the left anterior descending artery. We set regions of interest (ROIs) in the cross-sectional images of coronary plaques where we divided 120 degree plaques into four quadrants (every 30 degrees), with the center at the area of maximum atheroma thickness. We measured relative calcification area (%CA, relative fibrous area (%FI) and relative lipid pool area (%LP) in a total of 380 ROIs. In ST-IVUS analysis, we measured strain in the circumferential direction of the lumen area (LA strain: %), the external elastic membrane area strain (EEM strain: %), and strain in the radial direction (radial strain: %). On global cross-sectional area IB-IVUS analysis, the %CA was 1.2 ± 1.2%; the %FI was 49.0 ± 15.9%, and the %LP was 49.7 ± 16.5%. In ST-IVUS analysis, the LA strain was 0.67 ± 0.43%; the EEM strain was 0.49 ± 0.33%, and the radial strain was 2.02 ± 1.66%. On regional analysis, the %LP was not associated with the LA strain (r = - 0.002 p = 0.97), the EEM strain (r = - 0.05 p = 0.35), or with the radial strain (r = - 0.04 p = 0.45). These trends were seen between the %FI and the LA strain (r = 0.02 p = 0.74), the %FI and the EEM strain (r = 0.05 p = 0.35), and the %FI and the radial strain (r = 0.04 p = 0.50). A significant correlation was only observed between the %CA and the LA strain (r = - 0.15 p = 0.0038). Our findings indicate that the associations between mechanical properties and tissue characteristics lacked statistical significance, more often than not, and that it is necessary to evaluate the mechanical properties as well as plaque characteristics for risk stratification of coronary plaques.
Collapse
Affiliation(s)
- Shinichiro Tanaka
- The Department of Cardiology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu, 500-8523, Japan.
| | | | | | - Tomonori Segawa
- The Department of Cardiology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu, 500-8523, Japan
| | - Makoto Iwama
- Gifu Prefectural General Medical Center, Gifu, Japan
| | | | - Takahiro Ueno
- Gifu Prefectural General Medical Center, Gifu, Japan
| | | | - Takashi Kato
- Gifu Prefectural General Medical Center, Gifu, Japan
| | - Takahiro Fuseya
- The Department of Cardiology, Asahi University Hospital, 3-23 Hashimoto-cho, Gifu, 500-8523, Japan
| | | | | | | | - Hiroyuki Okura
- Second Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
9
|
Macionis V. Negative Pressure Wound Therapy: Supra-Physiological or Just Physical Effects of Positive Pressure? INT J LOW EXTR WOUND 2022:15347346221144145. [PMID: 36476187 DOI: 10.1177/15347346221144145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
This communication provides a new insight into the unexplained physiology of beneficial effects of negative pressure wound therapy (NPWT). Possible mechanisms of beneficial effects of NPWT in failing replantation and free tissue transfer are discussed. Positive pressure generated by NPWT as well as its draining action creates exudate-free tight tissue-to-tissue interface, which may enhance neovascularization.
Collapse
|
10
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
11
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
12
|
Özyildiz A, Ergül E, Emlek N, Özyildiz A, Duman H, Çetin M. Effect of coronavirus disease-2019 infection on left atrial functions. J Cardiovasc Echogr 2022; 32:89-94. [PMID: 36249439 PMCID: PMC9558639 DOI: 10.4103/jcecho.jcecho_83_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/16/2022] [Accepted: 03/27/2022] [Indexed: 12/03/2022] Open
Abstract
Objective: Left atrial (LA) dysfunction is a crucial risk factor for cardiovascular events, and various pathologies may affect LA function. Coronavirus disease-2019 (COVID-19) is an ongoing global pandemic causing morbidity and mortality. In the present study, we aimed to evaluate LA functions in patients who recovered from COVID-19. Methods: Sixty consecutive patients recovered from COVID-19 and 60 healthy individuals as a control group were included in the study. Blood samples and echocardiography measurements were obtained from each subject. The two groups were compared in terms of demographic and echocardiographic characteristics. Results: In the COVİD-19 group, LA maximum volume (LAVmax) (P = 0.040), LA pre-A volume (LAVpre-A) (P = 0.014), and LA active emptying fraction (P = 0.027) were higher, while LA passive emptying fraction (P = 0.035) was lower. In addition, left ventricular ejection fraction (P = 0.006) and isovolumetric relaxation time (P = 0.008) were decreased in this group. Although LA volume index was higher in the COVID-19 group, it does not reach statistical significance. Conclusion: LA functions may be impaired in patients recovered from COVID-19 infection.
Collapse
|
13
|
Mechanical Aspects of Angiogenesis. Cancers (Basel) 2021; 13:cancers13194987. [PMID: 34638470 PMCID: PMC8508205 DOI: 10.3390/cancers13194987] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of new blood vessels from already existing ones is a process of high clinical relevance, since it is of great importance for both physiological and pathological processes. In regard to tumors, the process is crucial, since it ensures the supply with nutrients and the growth of the tumor. The influence of mechanical factors on this biological process is an emerging field. Until now, the shear force of the blood flow has been considered the main mechanical parameter during angiogenesis. This review article provides an overview of further mechanical cues, with particular focus on the surrounding extracellular matrix impacting the cell behavior and, thus, regulating angiogenesis. This underlines the enormous importance of the mechanical properties of the extracellular matrix on cell biological processes and shows how changing the mechanics of the extracellular matrix could be used as a possible therapeutic approach in cancer therapy. Abstract Angiogenesis is of high clinical relevance as it plays a crucial role in physiological (e.g., tissue regeneration) and pathological processes (e.g., tumor growth). Besides chemical signals, such as VEGF, the relationship between cells and the extracellular matrix (ECM) can influence endothelial cell behavior during angiogenesis. Previously, in terms of the connection between angiogenesis and mechanical factors, researchers have focused on shear forces due to blood flow. However, it is becoming increasingly important to include the direct influence of the ECM on biological processes, such as angiogenesis. In this context, we focus on the stiffness of the surrounding ECM and the adhesion of cells to the ECM. Furthermore, we highlight the mechanical cues during the main stages of angiogenesis: cell migration, tip and stalk cells, and vessel stabilization. It becomes clear that the different stages of angiogenesis require various chemical and mechanical cues to be modulated by/modulate the stiffness of the ECM. Thus, changes of the ECM during tumor growth represent additional potential dysregulations of angiogenesis in addition to erroneous biochemical signals. This awareness could be the basis of therapeutic approaches to counteract specific processes in tumor angiogenesis.
Collapse
|
14
|
Arni S, Maeyashiki T, Latshang T, Opitz I, Inci I. Ex Vivo Lung Perfusion with K(ATP) Channel Modulators Antagonize Ischemia Reperfusion Injury. Cells 2021; 10:cells10092296. [PMID: 34571948 PMCID: PMC8472464 DOI: 10.3390/cells10092296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Ex vivo lung perfusion (EVLP) has been implemented to increase the number of donor lungs available for transplantation. The use of K(ATP) channel modulators during EVLP experiments may protect against lung ischemia-reperfusion injury and may inhibit the formation of reactive oxygen species. In a rat model of donation after circulatory death with 2 h warm ischemic time, we evaluated rat lungs for a 4-hour time in EVLP containing either mitochondrial-specific or plasma membrane and/or sarcolemmal-specific forms of K(ATP) channel modulators. Lung physiological data were recorded, and metabolic parameters were assessed. When compared to the control group, in the EVLP performed with diazoxide or 5-hydroxydecanoic acid (5-HD) we recorded significantly lower pulmonary vascular resistance and only in the diazoxide group recorded significant lung weight loss. In the perfusate of the 5-HD group, interleukin-1β and interleukin-1α were significantly lower when compared to the control group. Perfusate levels of calcium ions were significantly higher in both 5-HD and cromakalim groups, whereas the levels of calcium, potassium, chlorine and lactate were reduced in the diazoxide group, although not significantly when compared to the control. The use of a diazoxide mitochondrial-specific K(ATP) channel opener during EVLP improved lung physiological and metabolic parameters and reduced edema.
Collapse
Affiliation(s)
- Stephan Arni
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Tatsuo Maeyashiki
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Tsogyal Latshang
- Department of Pneumology, Kantonsspital Graubünden, 7000 Chur, Switzerland;
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
- Correspondence: ; Tel.: +41-(0)-44-255-85-43
| |
Collapse
|
15
|
Schreurs AS, Torres S, Truong T, Moyer EL, Kumar A, Tahimic CGT, Alwood JS, Globus RK. Skeletal tissue regulation by catalase overexpression in mitochondria. Am J Physiol Cell Physiol 2020; 319:C734-C745. [PMID: 32783660 DOI: 10.1152/ajpcell.00068.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulation of oxidative damage from excess reactive oxygen species (ROS) may contribute to skeletal aging and mediate adverse responses to physiological challenges. Wild-type (WT) mice and transgenic mice (male, 16 wk of age) with human catalase targeted to the mitochondria (mCAT) were analyzed for skeletal responses to the remodeling stimuli of combined hind-limb unloading and exposure to ionizing radiation (137Cs, 2 Gy). Treatment for 2 wk caused lipid peroxidation in the bones WT but not mCAT mice, showing that transgene expression mitigated oxidative stress. Ex vivo osteoblast colony growth rate was 95% greater in mCAT than WT mice and correlated with catalase activity levels (P < 0.005, r = 0.67), although terminal osteoblast and osteoclast differentiation were unaffected. mCAT mice had lower cancellous bone volume and cortical size than WT mice. Ambulatory control mCAT animals also displayed reduced cancellous and cortical structural properties compared with control WT mice. In mCAT but not WT mice, treatment caused an unexpectedly rapid radial expansion (+8% cortical area, +22% moment of inertia), reminiscent of compensatory bone growth during advancing age. In contrast, treatment caused similar structural deficits in cancellous tissue of mCAT and WT mice. In sum, mitochondrial ROS signaling via H2O2 was important for the acquisition of adult bone structure and catalase overexpression failed to protect cancellous tissue from treatment. In contrast, catabolic stimuli caused radial expansion in mCAT not WT mice, suggesting that mitochondrial ROS in skeletal cells act to suppress tissue turnover in response to remodeling challenges.
Collapse
Affiliation(s)
- Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Universities Space Research Association, Moffett Field, California
| | - Samantha Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Blue Marble Space Institute of Science, Seattle, Washington
| | - Tiffany Truong
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Blue Marble Space Institute of Science, Seattle, Washington
| | - Eric L Moyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Blue Marble Space Institute of Science, Seattle, Washington
| | - Akhhilesh Kumar
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Universities Space Research Association, Moffett Field, California
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,KBR, Moffett Field, California
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| |
Collapse
|
16
|
Stone E, Kiat H, McLachlan CS. Atrial fibrillation in COVID-19: A review of possible mechanisms. FASEB J 2020; 34:11347-11354. [PMID: 33078484 DOI: 10.1096/fj.202001613] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
A relationship between COVID-19 infection and an increasing incidence of atrial fibrillation has been observed. However, the underlying pathophysiology as a precipitant to AF has not been reviewed. This paper will consider the possible pathological and immunological AF mechanisms as a result, of COVID-19 infection. We discuss the role myocardial microvascular pericytes expressing the ACE-2 receptor and their potential for an organ-specific cardiac involvement with COVID-19. Dysfunctional microvascular support by pericytes or endothelial cells may increase the propensity for AF via increased myocardial inflammation, fibrosis, increased tissue edema, and interstitial hydrostatic pressure. All of these factors can lead to electrical perturbances at the tissue and cellular level. We also consider the contribution of Angiotensin, pulmonary hypertension, and regulatory T cells as additional contributors to AF during COVID-19 infection. Finally, reference is given to two common drugs, corticosteroids and metformin, in COVID-19 and how they might influence AF incidence.
Collapse
Affiliation(s)
- Elijah Stone
- Health Vertical, Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Hosen Kiat
- Health Vertical, Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia.,Cardiac Health Institute, Eastwood, NSW, Australia.,The Australian School of Advanced Medicine, 2 Technology Place, Macquarie University, Sydney, NSW, Australia
| | - Craig S McLachlan
- Health Vertical, Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| |
Collapse
|
17
|
Dorrello NV, Vunjak-Novakovic G. Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Front Bioeng Biotechnol 2020; 8:269. [PMID: 32351946 PMCID: PMC7174601 DOI: 10.3389/fbioe.2020.00269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The shortage of transplantable donor organs directly affects patients with end-stage lung disease, for which transplantation remains the only definitive treatment. With the current acceptance rate of donor lungs of only 20%, rescuing even one half of the rejected donor lungs would increase the number of transplantable lungs threefold, to 60%. We review recent advances in lung bioengineering that have potential to repair the epithelial and vascular compartments of the lung. Our focus is on the long-term support and recovery of the lung ex vivo, and the replacement of defective epithelium with healthy therapeutic cells. To this end, we first review the roles of the lung epithelium and vasculature, with focus on the alveolar-capillary membrane, and then discuss the available and emerging technologies for ex vivo bioengineering of the lung by decellularization and recellularization. While there have been many meritorious advances in these technologies for recovering marginal quality lungs to the levels needed to meet the standards for transplantation – many challenges remain, motivating further studies of the extended ex vivo support and interventions in the lung. We propose that the repair of injured epithelium with preservation of quiescent vasculature will be critical for the immediate blood supply to the lung and the lung survival and function following transplantation.
Collapse
Affiliation(s)
- N Valerio Dorrello
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
Black SM, Nozik-Grayck E. Compartmentalization of Redox-Regulated Signaling in the Pulmonary Circulation. Antioxid Redox Signal 2019; 31:801-803. [PMID: 31169025 PMCID: PMC6751389 DOI: 10.1089/ars.2019.7809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidative stress is well recognized to contribute to the pathogenesis of diverse diseases, including the devastating disease of the lung's blood vessels, pulmonary arterial hypertension (PAH), however, antioxidant-based therapies have been overall disappointing. With the evolution of the field of redox biology, it is now becoming clear that redox reactions are highly selective and targeted, allowing for precise control of redox-regulated signaling in health and disease. This special Forum of the journal describes the current state of knowledge on the regulation of redox-regulated signaling during the development of pulmonary vascular disease, focusing on distinct compartmentalized mechanisms outside and within the cell, including regulation of extracellular and intracellular membrane receptors and channels; responses to changes in biomechanical forces; intracellular thiol redox control; regulation of the nuclear transcription factor, peroxisome proliferator-activated receptor-γ; and regulation of mitochondrial metabolism. Collectively, they exemplify the complex, precise, and localized signaling pathways that drive PAH pathogenesis. This group of authors suggests ways that our increased understanding of these events may pave the way to improved therapeutic approaches for the treatment of this lethal disease.
Collapse
Affiliation(s)
- Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Eva Nozik-Grayck
- Department of Pediatrics, Cardiovascular Pulmonary Research Labs and Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
19
|
Meza D, Musmacker B, Steadman E, Stransky T, Rubenstein DA, Yin W. Endothelial Cell Biomechanical Responses are Dependent on Both Fluid Shear Stress and Tensile Strain. Cell Mol Bioeng 2019; 12:311-325. [PMID: 31719917 DOI: 10.1007/s12195-019-00585-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction The goal of this study was to investigate how concurrent shear stress and tensile strain affect endothelial cell biomechanical responses. Methods Human coronary artery endothelial cells were exposed to concurrent pulsatile shear stress and cyclic tensile strain in a programmable shearing and stretching device. Three shear stress-tensile strain conditions were used: (1) pulsatile shear stress at 1 Pa and cyclic tensile strain at 7%, simulating normal stress/strain conditions in a healthy coronary artery; (2) shear stress at 3.7 Pa and tensile strain at 3%, simulating pathological stress/strain conditions near a stenosis; (3) shear stress at 0.7 Pa and tensile strain at 5%, simulating pathological stress/strain conditions in a recirculation zone. Cell morphology was quantified using immunofluorescence microscopy. Cell surface PECAM-1 phosphorylation, ICAM-1 expression, ERK1/2 and NF-κB activation were measured using ELISA or Western blot. Results Simultaneous stimulation from pulsatile shear stress and cyclic tensile strain induced a significant increase in cell area, compared to that induced by shear stress or tensile strain alone. The combined stimulation caused significant increases in PECAM-1 phosphorylation. The combined stimulation also significantly enhanced EC surface ICAM-1 expression (compared to that under shear stress alone) and transcriptional factor NF-κB activation (compared to that under control conditions). Conclusion Pulsatile shear stress and cyclic tensile strain could induce increased but not synergistic effect on endothelial cell morphology or activation. The combined mechanical stimulation can be relayed from cell membrane to nucleus. Therefore, to better understand how mechanical conditions affect endothelial cell mechanotransduction and cardiovascular disease development, both shear stress and tensile strain need to be considered.
Collapse
Affiliation(s)
- Daphne Meza
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Bryan Musmacker
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Elisabeth Steadman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Thomas Stransky
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
- Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA
| |
Collapse
|
20
|
The redox physiology of red blood cells and platelets: implications for their interactions and potential use as systemic biomarkers. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Choi D, Park E, Jung E, Cha B, Lee S, Yu J, Kim PM, Lee S, Hong YJ, Koh CJ, Cho CW, Wu Y, Li Jeon N, Wong AK, Shin L, Kumar SR, Bermejo-Moreno I, Srinivasan RS, Cho IT, Hong YK. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI Insight 2019; 4:125068. [PMID: 30676326 DOI: 10.1172/jci.insight.125068] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Eunkyung Park
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Eunson Jung
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Somin Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - James Yu
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Paul M Kim
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Sunju Lee
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Yeo Jin Hong
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Chester J Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor Collexge of Medicine, Houston, Texas, USA
| | - Chang-Won Cho
- Department of Surgery, and.,Traditional Food Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
| | - Yifan Wu
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | | | | | | | - Ivan Bermejo-Moreno
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Young-Kwon Hong
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
22
|
Muschter D, Beiderbeck AS, Späth T, Kirschneck C, Schröder A, Grässel S. Sensory Neuropeptides and their Receptors Participate in Mechano-Regulation of Murine Macrophages. Int J Mol Sci 2019; 20:ijms20030503. [PMID: 30682804 PMCID: PMC6386869 DOI: 10.3390/ijms20030503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
This study aimed to analyze if the sensory neuropeptide SP (SP) and the neurokinin receptor 1 (NK1R) are involved in macrophage mechano-transduction, similar to chondrocytes, and if alpha-calcitonin gene-related peptide (αCGRP) and the CGRP receptor (CRLR/Ramp1) show comparable activity. Murine RAW264.7 macrophages were subjected to a cyclic stretch for 1–3 days and 4 h/day. Loading and neuropeptide effects were analyzed for gene and protein expression of neuropeptides and their receptors, adhesion, apoptosis, proliferation and ROS activity. Murine bone marrow-derived macrophages (BMM) were isolated after surgical osteoarthritis (OA) induction and proliferation, apoptosis and osteoclastogenesis were analyzed in response to loading. Loading induced NK1R and CRLR/Ramp1 gene expression and altered protein expression in RAW264.7 macrophages. SP protein and mRNA level decreased after loading whereas αCGRP mRNA expression was stabilized. SP reduced adhesion in loaded RAW264.7 macrophages and both neuropeptides initially increased the ROS activity followed by a time-dependent suppression. OA induction sensitized BMM to caspase 3/7 mediated apoptosis after loading. Both sensory neuropeptides, SP and αCGRP, and their receptors are involved in murine macrophage mechano-transduction affecting neuropeptide impact on adhesion and ROS activity. OA induction altered BMM apoptosis in response to loading indicate that OA-associated biomechanical alterations might affect the macrophage population.
Collapse
Affiliation(s)
- Dominique Muschter
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, 93053 Regensburg, Germany.
| | - Anna-Sophie Beiderbeck
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, 93053 Regensburg, Germany.
| | - Tanja Späth
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, 93053 Regensburg, Germany.
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
23
|
Tran CHT, Peringod G, Gordon GR. Astrocytes Integrate Behavioral State and Vascular Signals during Functional Hyperemia. Neuron 2018; 100:1133-1148.e3. [PMID: 30482689 DOI: 10.1016/j.neuron.2018.09.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023]
Abstract
Dynamic changes in astrocyte free Ca2+ regulate synaptic signaling and local blood flow. Although astrocytes are poised to integrate signals from synapses and the vasculature to perform their functional roles, it remains unclear what dictates astrocyte responses during neurovascular coupling under realistic conditions. We examined peri-arteriole and peri-capillary astrocytes in the barrel cortex of active mice in response to sensory stimulation or volitional behaviors. We observed an AMPA and NMDA receptor-dependent elevation in astrocyte endfoot Ca2+ that followed functional hyperemia onset. This delayed astrocyte Ca2+ signal was dependent on the animal's action at the time of measurement as well as a neurovascular pathway that linked to endothelial-derived nitric oxide. A similar elevation in endfoot Ca2+ was evoked using vascular chemogenetics or optogenetics, and opto-stimulated dilation recruited the same nitric oxide pathway as functional hyperemia. These data show that behavioral state and microvasculature influence astrocyte Ca2+ in active mice. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Cam Ha T Tran
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Govind Peringod
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
24
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
25
|
Wang M, Monticone RE, McGraw KR. Proinflammatory Arterial Stiffness Syndrome: A Signature of Large Arterial Aging. J Vasc Res 2018; 55:210-223. [PMID: 30071538 PMCID: PMC6174095 DOI: 10.1159/000490244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Age-associated structural and functional remodeling of the arterial wall produces a productive environment for the initiation and progression of hypertension and atherosclerosis. Chronic aging stress induces low-grade proinflammatory signaling and causes cellular proinflammation in arterial walls, which triggers the structural phenotypic shifts characterized by endothelial dysfunction, diffuse intimal-medial thickening, and arterial stiffening. Microscopically, aged arteries exhibit an increase in arterial cell senescence, proliferation, invasion, matrix deposition, elastin fragmentation, calcification, and amyloidosis. These characteristic cellular and matrix alterations not only develop with aging but can also be induced in young animals under experimental proinflammatory stimulation. Interestingly, these changes can also be attenuated in old animals by reducing low-grade inflammatory signaling. Thus, mitigating age-associated proinflammation and arterial phenotype shifts is a potential approach to retard arterial aging and prevent the epidemic of hypertension and atherosclerosis in the elderly.
Collapse
|
26
|
Guenat OT, Berthiaume F. Incorporating mechanical strain in organs-on-a-chip: Lung and skin. BIOMICROFLUIDICS 2018; 12:042207. [PMID: 29861818 PMCID: PMC5962443 DOI: 10.1063/1.5024895] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/17/2018] [Indexed: 05/08/2023]
Abstract
In the last decade, the advent of microfabrication and microfluidics and an increased interest in cellular mechanobiology have triggered the development of novel microfluidic-based platforms. They aim to incorporate the mechanical strain environment that acts upon tissues and in-vivo barriers of the human body. This article reviews those platforms, highlighting the different strains applied, and the actuation mechanisms and provides representative applications. A focus is placed on the skin and the lung barriers as examples, with a section that discusses the signaling pathways involved in the epithelium and the connective tissues.
Collapse
Affiliation(s)
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
27
|
Gegenfurtner FA, Jahn B, Wagner H, Ziegenhain C, Enard W, Geistlinger L, Rädler JO, Vollmar AM, Zahler S. Micropatterning as a tool to identify regulatory triggers and kinetics of actin-mediated endothelial mechanosensing. J Cell Sci 2018; 131:jcs.212886. [PMID: 29724912 DOI: 10.1242/jcs.212886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Developmental processes, such as angiogenesis, are associated with a constant remodeling of the actin cytoskeleton in response to different mechanical stimuli. The mechanosensitive transcription factors MRTF-A (MKL1) and YAP (also known as YAP1) are important mediators of this challenging adaptation process. However, it is as yet unknown whether both pathways respond in an identical or in a divergent manner to a given microenvironmental guidance cue. Here, we use a micropatterning approach to dissect single aspects of cellular behavior in a spatiotemporally controllable setting. Using the exemplary process of angiogenesis, we show that cell-cell contacts and adhesive surface area are shared regulatory parameters of MRTF and YAP on rigid 2D surfaces. By analyzing MRTF and YAP under laminar flow conditions and during cell migration on dumbbell-shaped microstructures, we demonstrate that they exhibit different translocation kinetics. In conclusion, our work promotes the application of micropatterning techniques as a cell biological tool to study mechanosensitive signaling in the context of angiogenesis.
Collapse
Affiliation(s)
- Florian A Gegenfurtner
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Berenice Jahn
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Helga Wagner
- ibidi GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Christoph Ziegenhain
- Ludwig-Maximilians-University Munich, Department of Biology II, Anthropology and Human Genomics, 82152 Martinsried, Germany
| | - Wolfgang Enard
- Ludwig-Maximilians-University Munich, Department of Biology II, Anthropology and Human Genomics, 82152 Martinsried, Germany
| | - Ludwig Geistlinger
- Ludwig-Maximilians-University Munich, Institute for Informatics, Teaching and Research Unit Bioinformatics, 80333 Munich, Germany
| | - Joachim O Rädler
- Ludwig-Maximilians-University Munich, Faculty of Physics, Soft Condensed Matter Group, 80539 Munich, Germany
| | - Angelika M Vollmar
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Stefan Zahler
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| |
Collapse
|
28
|
Shen WB, Anastasiadis P, Nguyen B, Yarnell D, Yarowsky PJ, Frenkel V, Fishman PS. Magnetic Enhancement of Stem Cell-Targeted Delivery into the Brain Following MR-Guided Focused Ultrasound for Opening the Blood-Brain Barrier. Cell Transplant 2018; 26:1235-1246. [PMID: 28933214 PMCID: PMC5657739 DOI: 10.1177/0963689717715824] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focused ultrasound (FUS)-mediated blood–brain barrier disruption (BBBD) can enable even large therapeutics such as stem cells to enter the brain from the bloodstream. However, the efficiency is relatively low. Our previous study showed that human neural progenitor cells (hNPCs) loaded with superparamagnetic iron oxide nanoparticles (SPIONs) in culture were attracted by an external magnetic field. In vivo, enhanced brain retention was observed near a magnet mounted on the skull in a rat model of traumatic brain injury, where BBBD also occurs. The goal of the current study was to determine whether magnetic attraction of SPION-loaded hNPCs would also enhance their retention in the brain after FUS-mediated BBBD. A small animal magnetic resonance imaging (MRI)-guided FUS system operating at 1.5 MHz was used to treat rats (∼120 g) without tissue damage or hemorrhage. Evidence of successful BBBD was validated with both radiologic enhancement of gadolinium on postsonication TI MRI and whole brain section visualization of Evans blue dye. The procedure was then combined with the application of a powerful magnet to the head directly after intravenous injection of the hNPCs. Validation of cells within the brain was performed by staining with Perls’ Prussian blue for iron and by immunohistochemistry with a human-specific antigen. By injecting equal numbers of iron oxide (SPIONs) and noniron oxide nanoparticles–loaded hNPCs, each labeled with a different fluorophore, we found significantly greater numbers of SPIONs-loaded cells retained in the brain at the site of BBBD as compared to noniron loaded cells. This result was most pronounced in regions of the brain closest to the skull (dorsal cortex) in proximity to the magnet surface. A more powerful magnet and a Halbach magnetic array resulted in more effective retention of SPION-labeled cells in even deeper brain regions such as the striatum and ventral cortex. There, up to 90% of hNPCs observed contained SPIONs compared to 60% to 70% with the less powerful magnet. Fewer cells were observed at 24 h posttreatment compared to 2 h (primarily in the dorsal cortex). These results demonstrate that magnetic attraction can substantially enhance the retention of stem cells after FUS-mediated BBBD. This procedure could provide a safer and less invasive approach for delivering stem cells to the brain, compared to direct intracranial injections, substantially reducing the risk of bleeding and infection.
Collapse
Affiliation(s)
- Wei-Bin Shen
- 1 Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pavlos Anastasiadis
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ben Nguyen
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deborah Yarnell
- 3 Neurology Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Paul J Yarowsky
- 1 Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,4 Research Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Victor Frenkel
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,5 Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul S Fishman
- 3 Neurology Service, VA Maryland Healthcare System, Baltimore, MD, USA.,6 Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Wang J, Jin X, Huang Y, Ran X, Luo D, Yang D, Jia D, Zhang K, Tong J, Deng X, Wang G. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regen Biomater 2018; 5:177-187. [PMID: 29942650 PMCID: PMC6007795 DOI: 10.1093/rb/rby006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation. This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation, namely in stent restenosis and late thrombosis, meanwhile propose the deficiencies of current work for future reference.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xuepu Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Yuhua Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Desha Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongchuan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Kang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Jianhua Tong
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Leloup A, De Moudt S, Van Hove C, Fransen P. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments. Front Physiol 2017; 8:858. [PMID: 29163203 PMCID: PMC5674939 DOI: 10.3389/fphys.2017.00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 11/13/2022] Open
Abstract
Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10%) than muscular arteries (2%). As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC). The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor) and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels) were measured. As compared with static or cyclic stretch at low amplitude (<10 mN) or low frequency (0.1 Hz), cyclic stretch at physiological amplitude (>10 mN) and frequency (1–10 Hz) caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME), physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and vascular smooth muscle cells to maintain basal NO release and low intracellular Ca2+ in the smooth muscle cells in large arteries. Both phenomena may play a vital role in maintaining the high compliance of large arteries.
Collapse
Affiliation(s)
- Arthur Leloup
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sofie De Moudt
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Cor Van Hove
- Laboratory of Pharmacology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
Snyder JL, McBeath E, Thomas TN, Chiu YJ, Clark RL, Fujiwara K. Mechanotransduction properties of the cytoplasmic tail of PECAM-1. Biol Cell 2017. [DOI: 10.1111/boc.201600079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jessica L. Snyder
- Department of Biomedical Engineering; University of Rochester; Rochester NY 14611 USA
| | - Elena McBeath
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| | - Tamlyn N. Thomas
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| | - Yi Jen Chiu
- Research and Development Department; Chris Cam Mirror; Yungkang Tainan Hsien 71 Taiwan
| | - Robert L. Clark
- Department of Mechanical Engineering; University of Rochester; Rochester NY 14611 USA
| | - Keigi Fujiwara
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| |
Collapse
|
32
|
Fisher AB. Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch Biochem Biophys 2017; 617:68-83. [PMID: 27932289 PMCID: PMC5810417 DOI: 10.1016/j.abb.2016.12.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 6 represents a widely distributed group of peroxiredoxins that contain a single conserved cysteine in the protein monomer (1-cys Prdx). The cys when oxidized to the sulfenic form is reduced with glutathione (GSH) catalyzed by the π isoform of GSH-S-transferase. Three enzymatic activities of the protein have been described:1) peroxidase with H2O2, short chain hydroperoxides, and phospholipid hydroperoxides as substrates; 2) phospholipase A2 (PLA2); and 3) lysophosphatidylcholine acyl transferase (LPCAT). These activities have important physiological roles in antioxidant defense, turnover of cellular phospholipids, and the generation of superoxide anion via initiation of the signaling cascade for activation of NADPH oxidase (type 2). The ability of Prdx6 to reduce peroxidized cell membrane phospholipids (peroxidase activity) and also to replace the oxidized sn-2 fatty acyl group through hydrolysis/reacylation (PLA2 and LPCAT activities) provides a complete system for the repair of peroxidized cell membranes.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine of the Department of Physiology, University of Pennsylvania, 3620 Hamilton Walk, 1 John Morgan Building, Philadelphia, PA, United States.
| |
Collapse
|
33
|
Abstract
Purpose of review Extensive data indicate a role for reactive oxygen species (ROS) and redox signaling in vascular damage in hypertension. However, molecular mechanisms underlying these processes remain unclear, but oxidative post-translational modification of vascular proteins is critical. This review discusses how proteins are oxidatively modified and how redox signaling influences vascular smooth muscle cell growth and vascular remodeling in hypertension. We also highlight Nox5 as a novel vascular ROS-generating oxidase. Recent findings Oxidative stress in hypertension leads to oxidative imbalance that affects vascular cell function through redox signaling. Many Nox isoforms produce ROS in the vascular wall, and recent findings show that Nox5 may be important in humans. ROS regulate signaling by numerous processes including cysteine oxidative post-translational modification such as S-nitrosylation, S-glutathionylation and sulfydration. In vascular smooth muscle cells, this influences cellular responses to oxidative stimuli promoting changes from a contractile to a proliferative phenotype. Summary In hypertension, Nox-induced ROS production is increased, leading to perturbed redox signaling through oxidative modifications of vascular proteins. This influences mitogenic signaling and cell cycle regulation, leading to altered cell growth and vascular remodeling in hypertension.
Collapse
|
34
|
Zhuang S, Cheng TH, Shih NL, Liu JC, Chen JJ, Hong HJ, Chan P. Tanshinone IIA Induces Heme Oxygenase 1 Expression and Inhibits Cyclic Strain-Induced Interleukin 8 Expression in Vascular Endothelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:377-388. [PMID: 27080946 DOI: 10.1142/s0192415x1650021x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tanshinone IIA is the main effective component of Salvia miltiorrhiza, known as "Danshen," which has been used in many therapeutic remedies in traditional Chinese medicine. However, the direct effects of tanshinone IIA on vascular endothelial cells have not yet been fully described. In the present study, we demonstrated that tanshinone IIA increased heme oxygenase-1 (HO-1) expression in human umbilical vein endothelial cells. Western blot analyses and experiments with specific inhibitors indicated tanshinone IIA enhanced HO-1 expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt and the subsequent induction of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation. In addition, tanshinone IIA inhibited cyclic strain induced interleukin-8 (IL-8) expression. HO-1 silencing significantly abrogated the repressive effects of tanshinone IIA on strain-induced IL-8 expression, which suggests HO-1 has a role in mediating the effects of tanshinone IIA. This study reports for the first time that tanshinone IIA inhibits cyclic strain-induced IL-8 expression via the induction of HO-1 in endothelial cells, providing valuable new insight into the molecular pathways that may contribute to the effects of tanshinone IIA.
Collapse
Affiliation(s)
| | - Tzu-Hurng Cheng
- ‡ Department of Biochemistry, School of Medicine, College of Medicine
| | - Nang-Lang Shih
- ¶ Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan, R.O.C
| | - Ju-Chi Liu
- ∥ Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital Taipei Medical University, New Taipei City, Taiwan, R.O.C
| | - Jin-Jer Chen
- ** Graduate Institute of Clinical Medicine, College of Medicine, China Medical University Hospital, Taiwan, R.O.C
- †† Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hong-Jye Hong
- § School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Paul Chan
- † Shanghai East Taiwanese Hospital, Tongji University, Shanghai, P.R. China
- ‡‡ Deparment of Cardiology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
35
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Front Physiol 2015; 6:365. [PMID: 26696899 PMCID: PMC4673665 DOI: 10.3389/fphys.2015.00365] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/16/2015] [Indexed: 01/15/2023] Open
Abstract
Endothelial cells (ECs) form a unique barrier between the vascular lumen and the vascular wall. In addition, the endothelium is highly metabolically active. In cardiovascular disease such as atherosclerosis and hypertension, normal endothelial function could be severely disturbed leading to endothelial dysfunction that then could progress to complete and irreversible loss of EC functionality and contribute to entire vascular dysfunction. Proatherogenic stimuli such as diabetes, dyslipidemia, and oxidative stress could initiate endothelial dysfunction and in turn vascular dysfunction and lead to the development of atherosclerotic arterial disease, a background for multiple cardiovascular disorders including coronary artery disease, acute coronary syndrome, stroke, and thrombosis. Intercellular junctions between ECs mediate the barrier function. Proinflammatory stimuli destabilize the junctions causing the disruption of the endothelial barrier and increased junctional permeability. This facilitates transendothelial migration of immune cells to the arterial intima and induction of vascular inflammation. Proatherogenic stimuli attack endothelial microtubule function that is regulated by acetylation of tubulin, an essential microtubular constituent. Chemical modification of tubulin caused by cardiometabolic risk factors and oxidative stress leads to reorganization of endothelial microtubules. These changes destabilize vascular integrity and increase permeability, which finally results in increasing cardiovascular risk.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Division of Laboratory Medicine, Department of Molecular Genetic Diagnostics and Cell Biology, Research Center for Children's Health, Institute of Pediatrics Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences Moscow, Russia ; Department of Biophysics, Biological Faculty, Moscow State University Moscow, Russia ; Institute for Atherosclerosis Research, Skolkovo Innovation Center Moscow, Russia
| | - Yuri V Bobryshev
- Faculty of Medicine, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia ; School of Medicine, University of Western Sydney Campbelltown, NSW, Australia
| |
Collapse
|
36
|
Patel BV, Tatham KC, Wilson MR, O'Dea KP, Takata M. In vivo compartmental analysis of leukocytes in mouse lungs. Am J Physiol Lung Cell Mol Physiol 2015; 309:L639-52. [PMID: 26254421 PMCID: PMC4593833 DOI: 10.1152/ajplung.00140.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6Clo monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6Clo monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined “interstitial” leukocyte populations during models of inflammatory lung diseases.
Collapse
Affiliation(s)
- Brijesh V Patel
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kate C Tatham
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|