1
|
Poore CP, Yang J, Wei S, Fhu CK, Bichler Z, Wang J, Soong TW, Liao P. Enhanced isradipine sensitivity in vascular smooth muscle cells due to hypoxia-induced Ca v1.2 splicing and RbFox1/Fox2 downregulation. FEBS J 2024; 291:4265-4285. [PMID: 38794806 DOI: 10.1111/febs.17159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Calcium influx via the L-type voltage-gated Cav1.2 calcium channel in smooth muscle cells regulates vascular contraction. Calcium channel blockers (CCBs) are widely used to treat hypertension by inhibiting Cav1.2 channels. Using the vascular smooth muscle cell line, A7r5 and primary culture of cerebral vascular smooth muscle cells, we found that the expression and function of Cav1.2 channels are downregulated during hypoxia. Furthermore, hypoxia induces structural changes in Cav1.2 channels via alternative splicing. The expression of exon 9* is upregulated, whereas exon 33 is downregulated. Such structural alterations of Cav1.2 channels are caused by the decreased expression of RNA-binding proteins RNA-binding protein fox-1 homolog 1 and 2 (RbFox1 and RbFox2). Overexpression of RbFox1 and RbFox2 prevents hypoxia-induced exon 9* inclusion and exon 33 exclusion. Importantly, such structural alterations of the Cav1.2 channel partly contribute to the enhanced sensitivity of Cav1.2 to isradipine (a CCB) under hypoxia. Overexpression of RbFox1 and RbFox2 successfully reduces isradipine sensitivity in hypoxic smooth muscle cells. Our results suggest a new strategy to manage ischemic diseases such as stroke and myocardial infarction.
Collapse
MESH Headings
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Alternative Splicing
- Down-Regulation
- Rats
- Cell Hypoxia/genetics
- Exons/genetics
- Mice
- Calcium Channel Blockers/pharmacology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Shunhui Wei
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| | - Chee Kong Fhu
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| | - Zoë Bichler
- Neurobehavioural Phenotyping Core, Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| |
Collapse
|
2
|
Peixoto-Neves D, Jaggar JH. Physiological functions and pathological involvement of ion channel trafficking in the vasculature. J Physiol 2024; 602:3275-3296. [PMID: 37818949 PMCID: PMC11006830 DOI: 10.1113/jp285007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
A variety of ion channels regulate membrane potential and calcium influx in arterial smooth muscle and endothelial cells to modify vascular functions, including contractility. The current (I) generated by a population of ion channels is equally dependent upon their number (N), open probability (Po) and single channel current (i), such that I = N.PO.i. A conventional view had been that ion channels traffic to the plasma membrane in a passive manner, resulting in a static surface population. It was also considered that channels assemble with auxiliary subunits prior to anterograde trafficking of the multimeric complex to the plasma membrane. Recent studies have demonstrated that physiological stimuli can regulate the surface abundance (N) of several different ion channels in arterial smooth muscle and endothelial cells to control arterial contractility. Physiological stimuli can also regulate the number of auxiliary subunits present in the plasma membrane to modify the biophysical properties, regulatory mechanisms and physiological functions of some ion channels. Furthermore, ion channel trafficking becomes dysfunctional in the vasculature during hypertension, which negatively impacts the regulation of contractility. The temporal kinetics of ion channel and auxiliary subunit trafficking can also vary depending on the signalling mechanisms and proteins involved. This review will summarize recent work that has uncovered the mechanisms, functions and pathological modifications of ion channel trafficking in arterial smooth muscle and endothelial cells.
Collapse
Affiliation(s)
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38139
| |
Collapse
|
3
|
Davis MJ, Castorena-Gonzalez JA, Zawieja SD. Electric field stimulation unmasks a subtle role for T-type calcium channels in regulating lymphatic contraction. Sci Rep 2023; 13:15862. [PMID: 37739992 PMCID: PMC10516884 DOI: 10.1038/s41598-023-42877-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
We previously identified two isoforms of T-type, voltage-gated calcium (Cav3) channels (Cav3.1, Cav3.2) that are functionally expressed in murine lymphatic muscle cells; however, contractile tests of lymphatic vessels from single and double Cav3 knock-out (DKO) mice, exhibited nearly identical parameters of spontaneous twitch contractions as wild-type (WT) vessels, suggesting that Cav3 channels play no significant role. Here, we considered the possibility that the contribution of Cav3 channels might be too subtle to detect in standard contraction analyses. We compared the sensitivity of lymphatic vessels from WT and Cav3 DKO mice to the L-type calcium channel (Cav1.2) inhibitor nifedipine and found that the latter vessels were significantly more sensitive to inhibition, suggesting that the contribution of Cav3 channels might normally be masked by Cav1.2 channel activity. We hypothesized that shifting the resting membrane potential (Vm) of lymphatic muscle to a more negative voltage might enhance the contribution of Cav3 channels. Because even slight hyperpolarization is known to completely silence spontaneous contractions, we devised a method to evoke nerve-independent, twitch contractions from mouse lymphatic vessels using single, short pulses of electric field stimulation (EFS). TTX was present throughout to block the potential contributions of voltage-gated Na+ channels in perivascular nerves and lymphatic muscle. In WT vessels, EFS evoked single contractions that were comparable in amplitude and degree of entrainment to those occurring spontaneously. When Cav1.2 channels were blocked or deleted, only small residual EFS-evoked contractions (~ 5% of normal amplitude) were present. These residual, EFS-evoked contractions were enhanced (to 10-15%) by the KATP channel activator pinacidil (PIN) but were absent in Cav3 DKO vessels. Our results point to a subtle contribution of Cav3 channels to lymphatic contractions that can be unmasked in the absence of Cav1.2 channel activity and when the resting Vm is more hyperpolarized than normal.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA.
| | | | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA
| |
Collapse
|
4
|
Davis MJ, Castorena-Gonzalez JA, Zawieja SD. Electric field stimulation unmasks a subtle role for T-type calcium channels in regulating lymphatic contraction. RESEARCH SQUARE 2023:rs.3.rs-2938440. [PMID: 37333279 PMCID: PMC10275045 DOI: 10.21203/rs.3.rs-2938440/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We previously identified two isoforms of T-type, voltage-gated calcium (Ca v 3) channels (Ca v 3.1, Ca v 3.2) that are functionally expressed in murine lymphatic muscle cells; however, contractile tests of lymphatic vessels from single and double Ca v 3 knock-out (DKO) mice, exhibited nearly identical parameters of spontaneous twitch contractions as wild-type (WT) vessels, suggesting that Ca v 3 channels play no significant role. Here, we considered the possibility that the contribution of Ca v 3 channels might be too subtle to detect in standard contraction analyses. We compared the sensitivity of lymphatic vessels from WT and Ca v 3 DKO mice to the L-type calcium channel (Ca v 1.2) inhibitor nifedipine and found that the latter vessels were significantly more sensitive to inhibition, suggesting that the contribution of Ca v 3 channels might normally be masked by Ca v 1.2 channel activity. We hypothesized that shifting the resting membrane potential (Vm) of lymphatic muscle to a more negative voltage might enhance the contribution of Ca v 3 channels. Because even slight hyperpolarization is known to completely silence spontaneous contractions, we devised a method to evoke nerve-independent, twitch contractions from mouse lymphatic vessels using single, short pulses of electric field stimulation (EFS). TTX was present throughout to block the potential contributions of voltage-gated Na + channels in perivascular nerves and lymphatic muscle. In WT vessels, EFS evoked single contractions that were comparable in amplitude and degree of entrainment to those occurring spontaneously. When Ca v 1.2 channels were blocked or deleted, only small residual EFS-evoked contractions (~ 5% of normal amplitude) were present. These residual, EFS-evoked contractions were enhanced (to 10-15%) by the K ATP channel activator pinacidil (PIN) but were absent in Ca v 3 DKO vessels. Our results point to a subtle contribution of Ca v 3 channels to lymphatic contractions that can be unmasked in the absence of Ca v 1.2 channel activity and when the resting Vm is more hyperpolarized than normal.
Collapse
|
5
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
6
|
Vascular Ca V1.2 channels in diabetes. CURRENT TOPICS IN MEMBRANES 2022; 90:65-93. [PMID: 36368875 DOI: 10.1016/bs.ctm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetic vasculopathy is a significant cause of morbidity and mortality in the diabetic population. Hyperglycemia, one of the central metabolic abnormalities in diabetes, has been associated with vascular dysfunction due to endothelial cell damage. However, studies also point toward vascular smooth muscle as a locus for hyperglycemia-induced vascular dysfunction. Emerging evidence implicates hyperglycemia-induced regulation of vascular L-type Ca2+ channels CaV1.2 as a potential mechanism for vascular dysfunction during diabetes. This chapter summarizes our current understanding of vascular CaV1.2 channels and their regulation during physiological and hyperglycemia/diabetes conditions. We will emphasize the role of CaV1.2 in vascular smooth muscle, the effects of elevated glucose on CaV1.2 function, and the mechanisms underlying its dysregulation in hyperglycemia and diabetes. We conclude by examining future directions and gaps in knowledge regarding CaV1.2 regulation in health and during diabetes.
Collapse
|
7
|
Progressive aortic stiffness in aging C57Bl/6 mice displays altered contractile behaviour and extracellular matrix changes. Commun Biol 2022; 5:605. [PMID: 35710942 PMCID: PMC9203497 DOI: 10.1038/s42003-022-03563-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/02/2022] [Indexed: 12/26/2022] Open
Abstract
Aortic stiffness is a hallmark of cardiovascular disease, but its pathophysiology remains incompletely understood. This study presents an in-dept characterization of aortic aging in male C57Bl/6 mice (2–24 months). Cardiovascular measurements include echocardiography, blood pressure measurement, and ex vivo organ chamber experiments. In vivo and ex vivo aortic stiffness increases with age, and precede the development of cardiac hypertrophy and peripheral blood pressure alterations. Contraction-independent stiffening (due to extracellular matrix changes) is pressure-dependent. Contraction-dependent aortic stiffening develops through heightened α1-adrenergic contractility, aberrant voltage-gated calcium channel function, and altered vascular smooth muscle cell calcium handling. Endothelial dysfunction is limited to a modest decrease in sensitivity to acetylcholine-induced relaxation with age. Our findings demonstrate that progressive arterial stiffening in C57Bl/6 mice precedes associated cardiovascular disease. Aortic aging is due to changes in extracellular matrix and vascular smooth muscle cell signalling, and not to altered endothelial function. A 24-month aging study in male C57Bl/6 mice reveals that aortic aging precedes cardiovascular disease and is due to changes in the extracellular matrix and vascular smooth muscle cell signaling.
Collapse
|
8
|
Li Y, Yang H, He T, Zhang L, Liu C. Post-Translational Modification of Cav1.2 and its Role in Neurodegenerative Diseases. Front Pharmacol 2022; 12:775087. [PMID: 35111050 PMCID: PMC8802068 DOI: 10.3389/fphar.2021.775087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Cav1.2 plays an essential role in learning and memory, drug addiction, and neuronal development. Intracellular calcium homeostasis is disrupted in neurodegenerative diseases because of abnormal Cav1.2 channel activity and modification of downstream Ca2+ signaling pathways. Multiple post-translational modifications of Cav1.2 have been observed and seem to be closely related to the pathogenesis of neurodegenerative diseases. The specific molecular mechanisms by which Cav1.2 channel activity is regulated remain incompletely understood. Dihydropyridines (DHPs), which are commonly used for hypertension and myocardial ischemia, have been repurposed to treat PD and AD and show protective effects. However, further studies are needed to improve delivery strategies and drug selectivity. Better knowledge of channel modulation and more specific methods for altering Cav1.2 channel function may lead to better therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Tianhan He
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Liang Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Wang J, Li G, Yu D, Wong YP, Yong TF, Liang MC, Liao P, Foo R, Hoppe UC, Soong TW. Characterization of Ca V1.2 exon 33 heterozygous knockout mice and negative correlation between Rbfox1 and Ca V1.2 exon 33 expressions in human heart failure. Channels (Austin) 2019; 12:51-57. [PMID: 28949795 PMCID: PMC5774182 DOI: 10.1080/19336950.2017.1381805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, we reported that homozygous deletion of alternative exon 33 of CaV1.2 calcium channel in the mouse resulted in ventricular arrhythmias arising from increased CaV1.2Δ33ICaL current density in the cardiomyocytes. We wondered whether heterozygous deletion of exon 33 might produce cardiac phenotype in a dose-dependent manner, and whether the expression levels of RNA splicing factors known to regulate alternative splicing of exon 33 might change in human heart failure. Unexpectedly, we found that exon 33+/− cardiomyocytes showed similar CaV1.2 channel properties as wild-type cardiomyocyte, even though CaV1.2Δ33 channels exhibit a gain-in-function. In human hearts, we found that the mRNA level of splicing factor Rbfox1, but not Rbfox2, was downregulated in dilated cardiomyopathy, and CACNA1C mRNA level was dramatically decreased in the both of dilated and ischemic cardiomyopathy. These data imply Rbfox1 may be involved in the development of cardiomyopathies via regulating the alternative splicing of CaV1.2 exon 33. (149 words)
Collapse
Affiliation(s)
- Juejin Wang
- a Department of Physiology , National University of Singapore , Singapore.,b Department of Physiology , Nanjing Medical University , Nanjing , P.R. China
| | - Guang Li
- a Department of Physiology , National University of Singapore , Singapore.,c Key Laboratory of Medical Electrophysiology , Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University , Luzhou , P.R. China
| | - Dejie Yu
- a Department of Physiology , National University of Singapore , Singapore
| | - Yuk Peng Wong
- a Department of Physiology , National University of Singapore , Singapore
| | - Tan Fong Yong
- a Department of Physiology , National University of Singapore , Singapore
| | - Mui Cheng Liang
- a Department of Physiology , National University of Singapore , Singapore
| | - Ping Liao
- d National Neuroscience Institute , Singapore
| | - Roger Foo
- e Genome Institute of Singapore , Singapore
| | - Uta C Hoppe
- f Department of Internal Medicine II , Paracelsus Medical University , Salzburg , Austria
| | - Tuck Wah Soong
- a Department of Physiology , National University of Singapore , Singapore.,d National Neuroscience Institute , Singapore.,g Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore.,h Neurobiology/Ageing Programme, National University of Singapore , Singapore
| |
Collapse
|
10
|
Bartels P, Yu D, Huang H, Hu Z, Herzig S, Soong TW. Alternative Splicing at N Terminus and Domain I Modulates Ca V1.2 Inactivation and Surface Expression. Biophys J 2019; 114:2095-2106. [PMID: 29742403 DOI: 10.1016/j.bpj.2018.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022] Open
Abstract
The CaV1.2 L-type calcium channel is a key conduit for Ca2+ influx to initiate excitation-contraction coupling for contraction of the heart and vasoconstriction of the arteries and for altering membrane excitability in neurons. Its α1C pore-forming subunit is known to undergo extensive alternative splicing to produce many CaV1.2 isoforms that differ in their electrophysiological and pharmacological properties. Here, we examined the structure-function relationship of human CaV1.2 with respect to the inclusion or exclusion of mutually exclusive exons of the N-terminus exons 1/1a and IS6 segment exons 8/8a. These exons showed tissue selectivity in their expression patterns: heart variant 1a/8a, one smooth-muscle variant 1/8, and a brain isoform 1/8a. Overall, the 1/8a, when coexpressed with CaVβ2a, displayed a significant and distinct shift in voltage-dependent activation and inactivation and inactivation kinetics as compared to the other three splice variants. Further analysis showed a clear additive effect of the hyperpolarization shift in V1/2inact of CaV1.2 channels containing exon 1 in combination with 8a. However, this additive effect was less distinct for V1/2act. However, the measured effects were β-subunit-dependent when comparing CaVβ2a with CaVβ3 coexpression. Notably, calcium-dependent inactivation mediated by local Ca2+-sensing via the N-lobe of calmodulin was significantly enhanced in exon-1-containing CaV1.2 as compared to exon-1a-containing CaV1.2 channels. At the cellular level, the current densities of the 1/8a or 1/8 variants were significantly larger than the 1a/8a and 1a/8 variants when coexpressed either with CaVβ2a or CaVβ3 subunit. This finding correlated well with a higher channel surface expression for the exon 1-CaV1.2 isoform that we quantified by protein surface-expression levels or by gating currents. Our data also provided a deeper molecular understanding of the altered biophysical properties of alternatively spliced human CaV1.2 channels by directly comparing unitary single-channel events with macroscopic whole-cell currents.
Collapse
Affiliation(s)
- Peter Bartels
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Dejie Yu
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Hua Huang
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Zhenyu Hu
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Stefan Herzig
- Department of Pharmacology, University of Cologne, Cologne, Germany
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore; Neurobiology/Ageing Programme, National University of Singapore, Singapore, Singapore; National Neuroscience Institute, Singapore, Singapore.
| |
Collapse
|
11
|
Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of CaV1.2 calcium channel. Biochim Biophys Acta Mol Basis Dis 2019; 1865:218-229. [DOI: 10.1016/j.bbadis.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/17/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022]
|
12
|
Zhou Y, Fan J, Zhu H, Ji L, Fan W, Kapoor I, Wang Y, Wang Y, Zhu G, Wang J. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of Ca V1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension. Hypertension 2017; 70:1183-1192. [PMID: 28993448 DOI: 10.1161/hypertensionaha.117.09301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
Abstract
Calcium influx from activated voltage-gated calcium channel CaV1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of CaV1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the CaV1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular CaV1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of CaV1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of CaV1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular CaV1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular CaV1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies.
Collapse
Affiliation(s)
- Yingying Zhou
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Jia Fan
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Huayuan Zhu
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Li Ji
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Wenyong Fan
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Isha Kapoor
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Yue Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Yuan Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Guoqing Zhu
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Juejin Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.).
| |
Collapse
|
13
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Smooth Muscle Phenotypic Diversity: Effect on Vascular Function and Drug Responses. ADVANCES IN PHARMACOLOGY 2017. [PMID: 28212802 DOI: 10.1016/bs.apha.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
At its simplest resistance to blood flow is regulated by changes in the state of contraction of the vascular smooth muscle (VSM), a function of the competing activities of the myosin kinase and phosphatase determining the phosphorylation and activity of the myosin ATPase motor protein. In contrast, the vascular system of humans and other mammals is incredibly complex and highly regulated. Much of this complexity derives from phenotypic diversity within the smooth muscle, reflected in very differing power outputs and responses to signaling pathways that regulate vessel tone, presumably having evolved over the millennia to optimize vascular function and its control. The highly regulated nature of VSM tone, described as pharmacomechanical coupling, likely underlies the many classes of drugs in clinical use to alter vascular tone through activation or inhibition of these signaling pathways. This review will first describe the phenotypic diversity within VSM, followed by presentation of specific examples of how molecular diversity in signaling, myofilament, and calcium cycling proteins impacts arterial smooth muscle function and drug responses.
Collapse
|
15
|
Measuring T-Type Calcium Channel Currents in Isolated Vascular Smooth Muscle Cells. Methods Mol Biol 2017. [PMID: 28116717 DOI: 10.1007/978-1-4939-6625-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Patch clamp electrophysiology is a powerful tool that has been important in isolating and characterizing the ion channels that govern cellular excitability under physiological and pathophysiological conditions. The ability to enzymatically dissociate blood vessels and acutely isolate vascular smooth muscle cells has enabled the application of patch clamp electrophysiology to the identification of diverse voltage dependent ion channels that ultimately control vasoconstriction and vasodilation. Since intraluminal pressure results in depolarization of vascular smooth muscle, the channels that control the voltage dependent influx of extracellular calcium are of particular interest. This chapter describes methods for isolating smooth muscle cells from resistance vessels, and for recording, isolating, and characterizing voltage dependent calcium channel currents, using patch clamp electrophysiological and pharmacological protocols.
Collapse
|
16
|
Hu Z, Wang JW, Yu D, Soon JL, de Kleijn DPV, Foo R, Liao P, Colecraft HM, Soong TW. Aberrant Splicing Promotes Proteasomal Degradation of L-type Ca V1.2 Calcium Channels by Competitive Binding for Ca Vβ Subunits in Cardiac Hypertrophy. Sci Rep 2016; 6:35247. [PMID: 27731386 PMCID: PMC5059693 DOI: 10.1038/srep35247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
Decreased expression and activity of CaV1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of CaV1.2 channel, named CaV1.2e21+22, that contained the pair of mutually exclusive exons 21 and 22. This variant was highly expressed in neonatal hearts. The abundance of this variant was gradually increased by 12.5-folds within 14 days of transverse aortic banding that induced cardiac hypertrophy in adult mouse hearts and was also elevated in left ventricles from patients with dilated cardiomyopathy. Although this variant did not conduct Ca2+ ions, it reduced the cell-surface expression of wild-type CaV1.2 channels and consequently decreased the whole-cell Ca2+ influx via the CaV1.2 channels. In addition, the CaV1.2e21+22 variant interacted with CaVβ subunits significantly more than wild-type CaV1.2 channels, and competition of CaVβ subunits by CaV1.2e21+22 consequently enhanced ubiquitination and subsequent proteasomal degradation of the wild-type CaV1.2 channels. Our findings show that the resurgence of a specific neonatal splice variant of CaV1.2 channels in adult heart under stress may contribute to heart failure.
Collapse
Affiliation(s)
- Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore
| | - Dejie Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Jia Lin Soon
- National Heart Centre Singapore, 5 hospital drive, 169609, Singapore
| | - Dominique P V de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore.,Dept of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Roger Foo
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433, Singapore
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore.,Neurobiology/Ageing Programme, National University of Singapore, 117456, Singapore
| |
Collapse
|
17
|
Melanaphy D, Johnson CD, Kustov MV, Watson CA, Borysova L, Burdyga TV, Zholos AV. Ion channel mechanisms of rat tail artery contraction-relaxation by menthol involving, respectively, TRPM8 activation and L-type Ca2+ channel inhibition. Am J Physiol Heart Circ Physiol 2016; 311:H1416-H1430. [PMID: 27765744 DOI: 10.1152/ajpheart.00222.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/13/2016] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is the principal cold and menthol receptor channel. Characterized primarily for its cold-sensing role in sensory neurons, it is expressed and functional in several nonneuronal tissues, including vasculature. We previously demonstrated that menthol causes variable mechanical responses (vasoconstriction, vasodilatation, or biphasic reactions) in isolated arteries, depending on vascular tone. Here we aimed to dissect the specific ion channel mechanisms and corresponding Ca2+ signaling pathways underlying such complex responses to menthol and other TRPM8 ligands in rat tail artery myocytes using patch-clamp electrophysiology, confocal Ca2+ imaging, and ratiometric Ca2+ recording. Menthol (300 μM, a concentration typically used to induce TRPM8 currents) strongly inhibited L-type Ca2+ channel current (L-ICa) in isolated myocytes, especially its sustained component, most relevant for depolarization-induced vasoconstriction. In contraction studies, with nifedipine present (10 μM) to abolish L-ICa contribution to phenylephrine (PE)-induced vasoconstrictions of vascular rings, a marked increase in tone was observed with menthol, similar to resting (i.e., without α-adrenoceptor stimulation by PE) conditions, when L-type channels were mostly deactivated. Menthol-induced increases in PE-induced vasoconstrictions could be inhibited both by the TRPM8 antagonist AMTB (thus confirming the specific role of TRPM8) and by cyclopiazonic acid treatment to deplete Ca2+ stores, pointing to a major contribution of Ca2+ release from the sarcoplasmic reticulum in these contractile responses. Immunocytochemical analysis has indeed revealed colocalization of TRPM8 and InsP3 receptors. Moreover, menthol Ca2+ responses, which were somewhat reduced under Ca2+-free conditions, were strongly reduced by cyclopiazonic acid treatment to deplete Ca2+ store, whereas caffeine-induced Ca2+ responses were blunted in the presence of menthol. Finally, two other common TRPM8 agonists, WS-12 and icilin, also inhibited L-ICa With respect to L-ICa inhibition, WS-12 is the most selective agonist. It augmented PE-induced contractions, whereas any secondary phase of vasorelaxation (as with menthol) was completely lacking. Thus TRPM8 channels are functionally active in rat tail artery myocytes and play a distinct direct stimulatory role in control of vascular tone. However, indirect effects of TRPM8 agonists, which are unrelated to TRPM8, are mediated by inhibition of L-type Ca2+ channels and largely obscure TRPM8-mediated vasoconstriction. These findings will promote our understanding of the vascular TRPM8 role, especially the well-known hypotensive effect of menthol, and may also have certain translational implications (e.g., in cardiovascular surgery, organ storage, transplantation, and Raynaud's phenomenon).
Collapse
Affiliation(s)
- Donal Melanaphy
- Center for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher D Johnson
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom;
| | - Maxim V Kustov
- A. A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Conall A Watson
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom
| | - Lyudmyla Borysova
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Theodor V Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Alexander V Zholos
- Center for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom.,A. A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine.,Department of Biophysics, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
18
|
High affinity complexes of pannexin channels and L-type calcium channel splice-variants in human lung: Possible role in clevidipine-induced dyspnea relief in acute heart failure. EBioMedicine 2016; 10:291-7. [PMID: 27349457 PMCID: PMC5006577 DOI: 10.1016/j.ebiom.2016.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 12/02/2022] Open
Abstract
Clevidipine, a dihydropyridine (DHP) analogue, lowers blood pressure (BP) by inhibiting l-type calcium channels (CaV1.2; gene CACNA1C) predominantly located in vascular smooth muscle (VSM). However, clinical observations suggest that clevidipine acts by a more complex mechanism. Clevidipine more potently reduces pulmonary vascular resistance (PVR) than systemic vascular resistance and its spectrum of effects on PVR are not shared by other DHPs. Clevidipine has potent spasmolytic effects in peripheral arteries at doses that are sub-clinical for BP lowering and, in hypertensive acute heart failure, clevidipine, but not other DHPs, provides dyspnea relief, partially independent of BP reduction. These observations suggest that a molecular variation in CaV1.2 may exist which confers unique pharmacology to different DHPs. We sequenced CACNA1C transcripts from human lungs and measured their affinity for clevidipine. Human lung tissue contains CACNA1C mRNA with many different splice variations. CaV1.2 channels with a specific combination of variable exons showed higher affinity for clevidipine, well below the concentration associated with BP reduction. Co-expression with pannexin 1 further increased the clevidipine affinity for this CaV1.2 splice variant. A high-affinity splice variant of CaV1.2 in combination with pannexin 1 could underlie the selective effects of clevidipine on pulmonary arterial pressure and on dyspnea. Research in Context Clevidipine lowers blood pressure by inhibiting calcium channels in vascular smooth muscle. In patients with acute heart failure, clevidipine was shown to relieve breathing problems. This was only partially related to the blood pressure lowering actions of clevidipine and not conferred by another calcium channel inhibitor. We here found calcium channel variants in human lung that are more selectively inhibited by clevidipine, especially when associated with pannexin channels. This study gives a possible mechanism for clevidipine's relief of breathing problems and supports future clinical trials testing the role of clevidipine in the treatment of acute heart failure. CaV1.2 splice variants are found in human lung that have increased affinity for clevidipine. Co-expression of CaV1.2 splice variant with Pannexin 1 further increases affinity for clevidipine but not for nicardipine. Study supports future clinical trials testing the role of clevidipine in the treatment of acute hypertensive heart failure.
Collapse
|
19
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 786] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
20
|
Eugenol dilates rat cerebral arteries by inhibiting smooth muscle cell voltage-dependent calcium channels. J Cardiovasc Pharmacol 2015; 64:401-6. [PMID: 24921632 DOI: 10.1097/fjc.0000000000000131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plants high in eugenol, a phenylpropanoid compound, are used as folk medicines to alleviate diseases including hypertension. Eugenol has been demonstrated to relax conduit and ear arteries and reduce systemic blood pressure, but mechanisms involved are unclear. Here, we studied eugenol regulation of resistance-size cerebral arteries that control regional brain blood pressure and flow and investigated mechanisms involved. We demonstrate that eugenol dilates arteries constricted by either pressure or membrane depolarization (60 mM K) in a concentration-dependent manner. Experiments performed using patch-clamp electrophysiology demonstrated that eugenol inhibited voltage-dependent calcium (Ca) currents, when using Ba as a charge carrier, in isolated cerebral artery smooth muscle cells. Eugenol inhibition of voltage-dependent Ca currents involved pore block, a hyperpolarizing shift (∼-10 mV) in voltage-dependent inactivation, an increase in the proportion of steady-state inactivating current, and acceleration of inactivation rate. In summary, our data indicate that eugenol dilates cerebral arteries by means of multimodal inhibition of voltage-dependent Ca channels.
Collapse
|
21
|
Bonner TI. Should pharmacologists care about alternative splicing? IUPHAR Review 4. Br J Pharmacol 2014; 171:1231-40. [PMID: 24670145 DOI: 10.1111/bph.12526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/27/2013] [Accepted: 11/13/2013] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing of mRNAs occurs in the majority of human genes, and most differential splicing results in different protein isoforms with possibly different functional properties. However, there are many reported splicing variations that may be quite rare, and not all combinatorially possible variants of a given gene are expressed at significant levels. Genes of interest to pharmacologists are frequently expressed at such low levels that they are not adequately represented in genome-wide studies of transcription. In single-gene studies, data are commonly available on the relative abundance and functional significance of individual alternatively spliced exons, but there are rarely data that quantitate the relative abundance of full-length transcripts and define which combinations of exons are significant. A number of criteria for judging the significance of splice variants and suggestions for their nomenclature are discussed.
Collapse
Affiliation(s)
- T I Bonner
- National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 2014; 115:650-61. [PMID: 25085940 DOI: 10.1161/circresaha.114.304056] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE T-type (CaV3.1/CaV3.2) Ca(2+) channels are expressed in rat cerebral arterial smooth muscle. Although present, their functional significance remains uncertain with findings pointing to a variety of roles. OBJECTIVE This study tested whether CaV3.2 channels mediate a negative feedback response by triggering Ca(2+) sparks, discrete events that initiate arterial hyperpolarization by activating large-conductance Ca(2+)-activated K(+) channels. METHODS AND RESULTS Micromolar Ni(2+), an agent that selectively blocks CaV3.2 but not CaV1.2/CaV3.1, was first shown to depolarize/constrict pressurized rat cerebral arteries; no effect was observed in CaV3.2(-/-) arteries. Structural analysis using 3-dimensional tomography, immunolabeling, and a proximity ligation assay next revealed the existence of microdomains in cerebral arterial smooth muscle which comprised sarcoplasmic reticulum and caveolae. Within these discrete structures, CaV3.2 and ryanodine receptor resided in close apposition to one another. Computational modeling revealed that Ca(2+) influx through CaV3.2 could repetitively activate ryanodine receptor, inducing discrete Ca(2+)-induced Ca(2+) release events in a voltage-dependent manner. In keeping with theoretical observations, rapid Ca(2+) imaging and perforated patch clamp electrophysiology demonstrated that Ni(2+) suppressed Ca(2+) sparks and consequently spontaneous transient outward K(+) currents, large-conductance Ca(2+)-activated K(+) channel mediated events. Additional functional work on pressurized arteries noted that paxilline, a large-conductance Ca(2+)-activated K(+) channel inhibitor, elicited arterial constriction equivalent, and not additive, to Ni(2+). Key experiments on human cerebral arteries indicate that CaV3.2 is present and drives a comparable response to moderate constriction. CONCLUSIONS These findings indicate for the first time that CaV3.2 channels localize to discrete microdomains and drive ryanodine receptor-mediated Ca(2+) sparks, enabling large-conductance Ca(2+)-activated K(+) channel activation, hyperpolarization, and attenuation of cerebral arterial constriction.
Collapse
Affiliation(s)
- Osama F Harraz
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Rasha R Abd El-Rahman
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Kamran Bigdely-Shamloo
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Sean M Wilson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Suzanne E Brett
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Monica Romero
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Albert L Gonzales
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Scott Earley
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Edward J Vigmond
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Anders Nygren
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Bijoy K Menon
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Rania E Mufti
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Tim Watson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Yves Starreveld
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Tobias Furstenhaupt
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Philip R Muellerleile
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - David T Kurjiaka
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Barry D Kyle
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Andrew P Braun
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Donald G Welsh
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.). dwelsh@ucalgary
| |
Collapse
|
23
|
Mugnai P, Durante M, Sgaragli G, Saponara S, Paliuri G, Bova S, Fusi F. L-type Ca(2+) channel current characteristics are preserved in rat tail artery myocytes after one-day storage. Acta Physiol (Oxf) 2014; 211:334-45. [PMID: 24666564 DOI: 10.1111/apha.12282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/04/2013] [Accepted: 03/21/2014] [Indexed: 12/14/2022]
Abstract
AIM To develop a cheap and simple method of storing for 24-h vascular tissue and single myocytes while preserving therein the biophysical and pharmacological characteristics of L-type Ca(2+) channels and contractile activity. METHODS Rings or vascular smooth muscle cells obtained from the rat tail main artery were used either freshly (R0h and VSMC0h) or stored for 24 h (R24h and VSMC24h) at 4 °C, to record whole-cell L-type Ca(2+) currents (IC a(L) ) or measure contractile responses. RESULTS R0h/VSMC0h and R24h/VSMC24h comparably contracted when stimulated with phenylephrine, high KCl or ATP. In both VSMC0h and VSMC24h, IC a(L) was identified and characterized as a stable inward current for at least 35 min; IC a(L) was comparably inhibited by the Ca(2+) antagonists nifedipine, verapamil and diltiazem and increased by the Ca(2+) channel agonist (S)-(-)-Bay K 8644; current density and current-voltage relationships were similar; at more hyperpolarized holding potentials, IC a(L) intensity increased comparably; nifedipine shifted the steady-state inactivation curve towards more negative potentials, while verapamil blocked IC a(L) in a frequency-dependent manner and slowed down the rate of recovery from inactivation in a comparable way. CONCLUSION Findings show that smooth muscle contractile activity and the biophysical and pharmacological features of L-type Ca(2+) channels are similar in VSMC24h and VSMC0h. The fact that reproducible results were obtained in vascular myocytes up to 24 h after dissociation may facilitate vascular smooth muscle cell investigation by increasing throughput and reducing the number of animals required.
Collapse
Affiliation(s)
- P. Mugnai
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| | - M. Durante
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| | - G. Sgaragli
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| | - S. Saponara
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| | - G. Paliuri
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Padova Italy
| | - S. Bova
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Padova Italy
| | - F. Fusi
- Dipartimento di Scienze della Vita; Università di Siena; Siena Italy
| |
Collapse
|
24
|
Li Q, Winston JH, Sarna SK. Developmental origins of colon smooth muscle dysfunction in IBS-like rats. Am J Physiol Gastrointest Liver Physiol 2013; 305:G503-12. [PMID: 23886858 PMCID: PMC3798719 DOI: 10.1152/ajpgi.00160.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidemiological studies show that subsets of adult and pediatric patients with irritable bowel syndrome (IBS) have prior exposures to psychological or inflammatory stress. We investigated the cellular mechanisms of colonic smooth muscle dysfunction in adult rats subjected to neonatal inflammation. Ten-day-old male rat pups received 2,4,6-trinitrobenzene sulfonic acid to induce colonic inflammation. Colonic circular smooth muscle strips were obtained 6 to 8 wk later. We found that about half of the neonate pups subjected to inflammatory insult showed a significant increase in expression of the pore-forming α1C-subunit of Cav1.2b channels in adult life. These were the same rats in whom Vip mRNA increased in the colon muscularis externae. Additional experiments showed reduced interaction of histone deacetylase (HDAC) 3 with α1C1b promoter that increased the acetylation of histone H3 lysine 9 (H3K9) in the core promoter region. Vasoactive intestinal peptide (VIP) treatment of naïve muscularis externae swiftly recruited CREB-binding protein (CBP) to the α1C1b promoter and dissociated HDAC3 from this region to initiate transcription. The CBP interaction with the α1C1b promoter was transient, but the dissociation of HDAC3 persisted to sustain H3K9 hyperacetylation and increase in transcription. Intraperitoneal treatment of adult naïve rats with butyrate mimicked the effects of neonatal colon inflammation. We concluded that neonatal inflammation upregulates VIP in the colon muscularis externae, which modulates epigenetic events at the α1C1b promoter to activate α1C1b gene transcription. Inflammatory insult in early life may be one of the etiologies of smooth muscle dysfunction in adult life, which contributes to the altered motility function in patients with diarrhea-predominant IBS.
Collapse
Affiliation(s)
- Qingjie Li
- Div. of Gastroenterology, The Univ. of Texas Medical Branch at Galveston, 8.102 Medical Research Bldg., Galveston, TX 77555-1083.
| | - John H. Winston
- 1Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, and
| | - Sushil K. Sarna
- 1Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, and ,2Department of Neuroscience and Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
25
|
Cox RH, Fromme SJ. A naturally occurring truncated Cav1.2 α1-subunit inhibits Ca2+ current in A7r5 cells. Am J Physiol Cell Physiol 2013; 305:C896-905. [PMID: 23926129 DOI: 10.1152/ajpcell.00217.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alternative splicing of the voltage-gated Ca(2+) (CaV) α1-subunit adds to the functional diversity of Ca(2+) channels. A variant with a 73-nt deletion in exon 15 of the Cav1.2 α1-subunit (Cav1.2Δ73) produced by alternative splicing that predicts a truncated protein has been described, but its function, if any, is unknown. We sought to determine if, by analogy to other truncated CaV α1-subunits, Cav1.2Δ73 acts as an inhibitor of wild-type Cav1.2 currents. HEK-293 cells were transfected with Cav1.2Δ73 in a pIRES vector with CD8 or in pcDNA3.1 with a V5/his COOH-terminal tag plus β2 and α2δ1 accessory subunits and pEGFP. Production of Cav1.2Δ73 protein was confirmed by Western blotting and immunofluorescence. Voltage-clamp studies revealed the absence of functional channels in transfected cells. In contrast, cells transfected with full-length Cav1.2 plus accessory subunits and pEGFP exhibited robust Ca(2+) currents. A7r5 cells exhibited endogenous Cav1.2-based currents that were greatly reduced (>80%) without a change in voltage-dependent activation when transfected with Cav1.2Δ73-IRES-CD8 compared with empty vector or pIRES-CD8 controls. Transfection of A7r5 cells with an analogous Cav2.3Δ73-IRES-CD8 had no effect on Ca(2+) currents. Immunofluorescence showed intracellular, but not plasma membrane, localization of Cav1.2Δ73-V5/his, as well as colocalization with an endoplasmic reticulum marker, ER Organelle Lights. Expression of Cav1.2Δ73 α1-subunits in A7r5 cells inhibits endogenous Cav1.2 currents. The fact that this variant arises naturally by alternative splicing raises the possibility that it may represent a physiological mechanism to modulate Cav1.2 functional activity.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Studies, Lankenau Institute for Medical Research, Main Line Health System, Wynnewood, Pennsylvania
| | | |
Collapse
|
26
|
Taiakina V, Boone AN, Fux J, Senatore A, Weber-Adrian D, Guillemette JG, Spafford JD. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels. PLoS One 2013; 8:e61765. [PMID: 23626724 PMCID: PMC3634016 DOI: 10.1371/journal.pone.0061765] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023] Open
Abstract
NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.
Collapse
Affiliation(s)
| | | | - Julia Fux
- Department of Biology, University of Waterloo, Waterloo, Canada
| | | | | | | | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, Canada
- * E-mail:
| |
Collapse
|
27
|
Bannister JP, Leo MD, Narayanan D, Jangsangthong W, Nair A, Evanson KW, Pachuau J, Gabrick KS, Boop FA, Jaggar JH. The voltage-dependent L-type Ca2+ (CaV1.2) channel C-terminus fragment is a bi-modal vasodilator. J Physiol 2013; 591:2987-98. [PMID: 23568894 DOI: 10.1113/jphysiol.2013.251926] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Voltage-dependent L-type Ca(2+) channels (CaV1.2) are the primary Ca(2+) entry pathway in vascular smooth muscle cells (myocytes). CaV1.2 channels control systemic blood pressure and organ blood flow and are pathologically altered in vascular diseases, which modifies vessel contractility. The CaV1.2 distal C-terminus is susceptible to proteolytic cleavage, which yields a truncated CaV1.2 subunit and a cleaved C-terminal fragment (CCt). Previous studies in cardiac myocytes and neurons have identified CCt as both a transcription factor and CaV1.2 channel inhibitor, with different signalling mechanisms proposed to underlie some of these effects. CCt existence and physiological functions in arterial myocytes are unclear, but important to study given the functional significance of CaV1.2 channels. Here, we show that CCt exists in myocytes of both rat and human resistance-size cerebral arteries, where it locates to both the nucleus and plasma membrane. Recombinant CCt expression in arterial myocytes inhibited CaV1.2 transcription and reduced CaV1.2 protein. CCt induced a depolarizing shift in the voltage dependence of both CaV1.2 current activation and inactivation, and reduced non-inactivating current in myocytes. Recombinant truncated CCt lacking a putative nuclear localization sequence (92CCt) did not locate to the nucleus and had no effect on arterial CaV1.2 transcription or protein. However, 92CCt shifted the voltage dependence of CaV1.2 activation and inactivation similarly to CCt. CCt and 92CCt both inhibited pressure- and depolarization-induced vasoconstriction, although CCt was a far more effective vasodilator. These data demonstrate that endogenous CCt exists and reduces both CaV1.2 channel expression and voltage sensitivity in arterial myocytes. Thus, CCt is a bi-modal vasodilator.
Collapse
Affiliation(s)
- John P Bannister
- Department of Physiology, University of Tennessee Health Science Centre, 894 Union Avenue, Suite 426, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abd El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol 2012; 304:H58-71. [PMID: 23103495 DOI: 10.1152/ajpheart.00476.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
L-type Ca(2+) channels are broadly expressed in arterial smooth muscle cells, and their voltage-dependent properties are important in tone development. Recent studies have noted that these Ca(2+) channels are not singularly expressed in vascular tissue and that other subtypes are likely present. In this study, we ascertained which voltage-gated Ca(2+) channels are expressed in rat cerebral arterial smooth muscle and determined their contribution to the myogenic response. mRNA analysis revealed that the α(1)-subunit of L-type (Ca(v)1.2) and T-type (Ca(v)3.1 and Ca(v)3.2) Ca(2+) channels are present in isolated smooth muscle cells. Western blot analysis subsequently confirmed protein expression in whole arteries. With the use of patch clamp electrophysiology, nifedipine-sensitive and -insensitive Ba(2+) currents were isolated and each were shown to retain electrical characteristics consistent with L- and T-type Ca(2+) channels. The nifedipine-insensitive Ba(2+) current was blocked by mibefradil, kurtoxin, and efonidpine, T-type Ca(2+) channel inhibitors. Pressure myography revealed that L-type Ca(2+) channel inhibition reduced tone at 20 and 80 mmHg, with the greatest effect at high pressure when the vessel is depolarized. In comparison, the effect of T-type Ca(2+) channel blockade on myogenic tone was more limited, with their greatest effect at low pressure where vessels are hyperpolarized. Blood flow modeling revealed that the vasomotor responses induced by T-type Ca(2+) blockade could alter arterial flow by ∼20-50%. Overall, our findings indicate that L- and T-type Ca(2+) channels are expressed in cerebral arterial smooth muscle and can be electrically isolated from one another. Both conductances contribute to myogenic tone, although their overall contribution is unequal.
Collapse
Affiliation(s)
- Rasha R Abd El-Rahman
- Hotchkiss Brain and Libin Cardiovascular Research Institute and Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Fransen P, Van Hove CE, van Langen J, Schrijvers DM, Martinet W, De Meyer GRY, Bult H. Contribution of transient and sustained calcium influx, and sensitization to depolarization-induced contractions of the intact mouse aorta. BMC PHYSIOLOGY 2012; 12:9. [PMID: 22943445 PMCID: PMC3499395 DOI: 10.1186/1472-6793-12-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/28/2012] [Indexed: 01/31/2023]
Abstract
Background Electrophysiological studies of L-type Ca2+ channels in isolated vascular smooth muscle cells revealed that depolarization of these cells evoked a transient and a time-independent Ca2+ current. The sustained, non-inactivating current occurred at voltages where voltage-dependent activation and inactivation overlapped (voltage window) and its contribution to basal tone or active tension in larger multicellular blood vessel preparations is unknown at present. This study investigated whether window Ca2+ influx affects isometric contraction of multicellular C57Bl6 mouse aortic segments. Results Intracellular Ca2+ (Cai2+, Fura-2), membrane potential and isometric force were measured in aortic segments, which were clamped at fixed membrane potentials by increasing extracellular K+ concentrations. K+ above 20 mM evoked biphasic contractions, which were not affected by inhibition of IP3- or Ca2+ induced Ca2+ release with 2-aminoethoxydiphenyl borate or ryanodine, respectively, ruling out the contribution of intracellular Ca2+ release. The fast force component paralleled Cai2+ increase, but the slow contraction coincided with Cai2+ decrease. In the absence of extracellular Ca2+, basal tension and Cai2+ declined, and depolarization failed to evoke Cai2+ signals or contraction. Subsequent re-introduction of external Ca2+ elicited only slow contractions, which were now matched by Cai2+ increase. After Cai2+ attained steady-state, isometric force kept increasing due to Ca2+- sensitization of the contractile elements. The slow force responses displayed a bell-shaped voltage-dependence, were suppressed by hyperpolarization with levcromakalim, and enhanced by an agonist of L-type Ca2+ channels (BAY K8644). Conclusion The isometric response of mouse aortic segments to depolarization consists of a fast, transient contraction paralleled by a transient Ca2+ influx via Ca2+ channels which completely inactivate. Ca2+ channels, which did not completely inactivate during the depolarization, initiated a second, sustained phase of contraction, which was matched by a sustained non-inactivating window Ca2+ influx. Together with sensitization, this window L-type Ca2+ influx is a major determinant of basal and active tension of mouse aortic smooth muscle.
Collapse
Affiliation(s)
- Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1 Building T, 2.18, Wilrijk B-2610, Belgium.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ryglewski S, Lance K, Levine RB, Duch C. Ca(v)2 channels mediate low and high voltage-activated calcium currents in Drosophila motoneurons. J Physiol 2011; 590:809-25. [PMID: 22183725 DOI: 10.1113/jphysiol.2011.222836] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Different blends of membrane currents underlie distinct functions of neurons in the brain. A major step towards understanding neuronal function, therefore, is to identify the genes that encode different ionic currents. This study combined in situ patch clamp recordings of somatodendritic calcium currents in an identified adult Drosophila motoneuron with targeted genetic manipulation. Voltage clamp recordings revealed transient low voltage-activated (LVA) currents with activation between –60 mV and –70 mV as well as high voltage-activated (HVA) current with an activation voltage around –30 mV. LVA could be fully inactivated by prepulses to –50 mV and was partially amiloride sensitive. Recordings from newly generated mutant flies demonstrated that DmαG (Ca(v)3 homolog) encoded the amiloride-sensitive portion of the transient LVA calcium current. We further demonstrated that the Ca(v)2 homolog, Dmca1A, mediated the amiloride-insensitive component of LVA current. This novel role of Ca(v)2 channels was substantiated by patch clamp recordings from conditional mutants, RNAi knock-downs, and following Dmca1A overexpression. In addition, we show that Dmca1A underlies the HVA somatodendritic calcium currents in vivo. Therefore, the Drosophila Ca(v)2 homolog, Dmca1A, underlies HVA and LVA somatodendritic calcium currents in the same neuron. Interestingly, DmαG is required for regulating LVA and HVA derived from Dmca1A in vivo. In summary, each vertebrate gene family for voltage-gated calcium channels is represented by a single gene in Drosophila, namely Dmca1D (Ca(v)1), Dmca1A (Ca(v)2) and DmαG (Ca(v)3), but the commonly held view that LVA calcium currents are usually mediated by Ca(v)3 rather than Ca(v)2 channels may require reconsideration.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
31
|
Wang J, Thio SS, Yang SS, Yu D, Yu CY, Wong YP, Liao P, Li S, Soong TW. Splice Variant Specific Modulation of Ca
V
1.2 Calcium Channel by Galectin-1 Regulates Arterial Constriction. Circ Res 2011; 109:1250-8. [DOI: 10.1161/circresaha.111.248849] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Ca
V
1.2 channels are essential for excitation–contraction coupling in the cardiovascular system, and alternative splicing optimizes its role. Galectin-1 (Gal-1) has been reported to regulate vascular smooth muscle cell (VSMC) function and play a role in pulmonary hypertension. We have identified Gal-1 multiple times in yeast 2-hybrid assays using the Ca
V
1.2 I–II loop as bait.
Objective:
Our hypothesis is that Gal-1 interacts directly with Ca
V
1.2 channel at the I–II loop to affect arterial constriction.
Methods and Results:
Unexpectedly, Gal-1 was found to selectively bind to the I–II loop only in the absence of alternatively spliced exon 9*. We found that the current densities of Ca
V
1.2
Δ9*
channels were significantly inhibited as a result of decreased functional surface expression due to the binding of Gal-1 at the export signal located on the C-terminus of exon 9. Moreover, the suppression of Gal-1 expression by siRNA in rat A7r5 and isolated VSMCs produced the opposite effect of increased
I
Ca,L
. The physiological significance of Gal-1 mediated splice variant-specific inhibition of Ca
V
1.2 channels was demonstrated in organ bath culture where rat MAs were reversibly permeabilized with Gal-1 siRNA and the arterial wall exhibited increased K
+
-induced constriction.
Conclusion:
The above data indicated that Gal-1 regulates
I
Ca,L
via decreasing the functional surface expression of Ca
V
1.2 channels in a splice variant selective manner and such a mechanism may play a role in modulating vascular constriction.
Collapse
Affiliation(s)
- Juejin Wang
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Sharon S.C. Thio
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Sophia S.H. Yang
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Dejie Yu
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Chye Yun Yu
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Yuk Peng Wong
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Ping Liao
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Shengnan Li
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| | - Tuck Wah Soong
- From the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (J.W., D.Y., Y.P.W., T.W.S.); National Neuroscience Institute, Singapore (J.W., S.S.C.T., S.H.Y., C.Y.Y., P.L., T.W.S.); and Department of Pharmacology, Nanjing Medical University, Nanjing, China (J.W., S.L.)
| |
Collapse
|
32
|
Lloyd EE, Crossland RF, Phillips SC, Marrelli SP, Reddy AK, Taffet GE, Hartley CJ, Bryan RM. Disruption of K(2P)6.1 produces vascular dysfunction and hypertension in mice. Hypertension 2011; 58:672-8. [PMID: 21876070 DOI: 10.1161/hypertensionaha.111.175349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
K(2P)6.1, a member of the 2-pore domain K channel family, is highly expressed in the vascular system; however, its function is unknown. We tested the following hypotheses. K(2P)6.1 regulates the following: (1) systemic blood pressure; (2) the contractile state of arteries; (3) vascular smooth muscle cell migration; (4) proliferation; and/or (5) volume regulation. Mice lacking K(2P)6.1 (KO) were generated by deleting exon 1 of Kcnk6. Mean arterial blood pressure in both anesthetized and awake KO mice was increased by 17±2 and 26±3 mm Hg, respectively (P<0.05). The resting membrane potential in freshly dispersed vascular smooth muscle cells was depolarized by 17±2 mV in the KO compared with wild-type littermates (P<0.05). The contractile responses to KCl (P<0.05) and BAY K 8644 (P<0.01), an activator of L-type calcium channels, were enhanced in isolated segments of aorta from KO mice. However, there was no difference in the current density of L-type calcium channels. Responses to U46619, an agent that activates rho kinase, showed an enhanced contraction in aorta from KO mice (P<0.001). The BAY K 8644-mediated increase in contraction was decreased to wild-type levels when treated with Y27632, a rho kinase inhibitor, (P<0.05). K(2P)6.1 does not appear to be involved with migration, proliferation, or volume regulation in cultured vascular smooth muscle cells. We conclude that K(2P)6.1 deficiency induces vascular dysfunction and hypertension through a mechanism that may involve smooth muscle cell depolarization and enhanced rho kinase activity.
Collapse
Affiliation(s)
- Eric E Lloyd
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bannister JP, Thomas-Gatewood CM, Neeb ZP, Adebiyi A, Cheng X, Jaggar JH. Ca(V)1.2 channel N-terminal splice variants modulate functional surface expression in resistance size artery smooth muscle cells. J Biol Chem 2011; 286:15058-66. [PMID: 21357696 DOI: 10.1074/jbc.m110.182816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Voltage-dependent Ca(2+) (Ca(V)1.2) channels are the primary Ca(2+) influx pathway in arterial smooth muscle cells and are essential for contractility regulation by a variety of stimuli, including intravascular pressure. Arterial smooth muscle cell Ca(V)1.2 mRNA is alternatively spliced at exon 1 (e1), generating e1b or e1c variants, with e1c exhibiting relatively smooth muscle-specific expression in the cardiovascular system. Here, we examined physiological functions of Ca(V)1.2e1 variants and tested the hypothesis that targeting Ca(V)1.2e1 modulates resistance size cerebral artery contractility. Custom antibodies that selectively recognize Ca(V)1.2 channel proteins containing sequences encoded by either e1b (Ca(V)1.2e1b) or e1c (Ca(V)1.2e1c) both detected Ca(V)1.2 in rat and human cerebral arteries. shRNA targeting e1b or e1c reduced expression of that Ca(V)1.2 variant, induced compensatory up-regulation of the other variant, decreased total Ca(V)1.2, and reduced intravascular pressure- and depolarization-induced vasoconstriction. Ca(V)1.2e1b and Ca(V)1.2e1c knockdown reduced whole cell Ca(V)1.2 currents, with Ca(V)1.2e1c knockdown most effectively reducing total Ca(V)1.2 and inducing the largest vasodilation. Knockdown of α(2)δ-1, a Ca(V)1.2 auxiliary subunit, reduced surface expression of both Ca(V)1.2e1 variants, inhibiting Ca(V)1.2e1c more than Ca(V)1.2e1b. e1b or e1c overexpression reduced Ca(V)1.2 surface expression and whole cell currents, leading to vasodilation, with e1c overexpression inducing the largest effect. In summary, data indicate that arterial smooth muscle cells express Ca(V)1.2 channels containing e1b or e1c-encoded N termini that contribute to Ca(V)1.2 surface expression, α(2)δ-1 preferentially traffics the Ca(V)1.2e1c variant to the plasma membrane, and targeting of Ca(V)1.2e1 message or the Ca(V)1.2 channel proximal N terminus induces vasodilation.
Collapse
Affiliation(s)
- John P Bannister
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
34
|
Tang ZZ, Sharma S, Zheng S, Chawla G, Nikolic J, Black DL. Regulation of the mutually exclusive exons 8a and 8 in the CaV1.2 calcium channel transcript by polypyrimidine tract-binding protein. J Biol Chem 2011; 286:10007-16. [PMID: 21282112 PMCID: PMC3060452 DOI: 10.1074/jbc.m110.208116] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CaV1.2 calcium channels play roles in diverse cellular processes such as gene regulation, muscle contraction, and membrane excitation and are diversified in their activity through extensive alternative splicing of the CaV1.2 mRNA. The mutually exclusive exons 8a and 8 encode alternate forms of transmembrane segment 6 (IS6) in channel domain 1. The human genetic disorder Timothy syndrome is caused by mutations in either of these two CaV1.2 exons, resulting in disrupted Ca2+ homeostasis and severe pleiotropic disease phenotypes. The tissue-specific pattern of exon 8/8a splicing leads to differences in symptoms between patients with exon 8 or 8a mutations. Elucidating the mechanisms controlling the exon 8/8a splicing choice will be important in understanding the spectrum of defects associated with the disease. We found that the polypyrimidine tract-binding protein (PTB) mediates a switch from exon 8 to 8a splicing. PTB and its neuronal homolog, nPTB, are widely studied splicing regulators controlling large sets of alternative exons. During neuronal development, PTB expression is down-regulated with a concurrent increase in nPTB expression. Exon 8a is largely repressed in embryonic mouse brain but is progressively induced during neuronal differentiation as PTB is depleted. This splicing repression is mediated by the direct binding of PTB to sequence elements upstream of exon 8a. The nPTB protein is a weaker repressor of exon 8a, resulting in a shift in exon choice when nPTB replaces PTB in cells. These results provide mechanistic understanding of how these two exons, important for human disease, are controlled.
Collapse
Affiliation(s)
- Zhen Zhi Tang
- Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kuo IYT, Wölfle SE, Hill CE. T-type calcium channels and vascular function: the new kid on the block? J Physiol 2010; 589:783-95. [PMID: 21173074 DOI: 10.1113/jphysiol.2010.199497] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
While L-type voltage-dependent calcium channels have long been considered the predominant source of calcium for myogenic constriction, recent studies of both cerebral and systemic circulations have provided evidence for the prominent expression of other members of the voltage-dependent calcium channel family, in particular the low voltage activated T-type channels. Although physiological studies have not supported the involvement of a classical low voltage activated, T-type channel in vascular function, evidence is accumulating that points to the involvement of a non-L-type, high voltage activated channel with sensitivity to T-type channel antagonists. We propose that this may arise due to expression of a T-type channel splice variant with unique biophysical characteristics resulting in a more depolarised profile. Expression of these channels in smooth muscle cells would broaden the voltage range over which sustained calcium influx occurs, while expression of T-type channels in endothelial cells could provide a feedback mechanism to prevent excessive vasoconstriction. Perturbation of this balance during pathophysiological conditions by upregulation of channel expression and endothelial dysfunction could contribute to vasospastic conditions and therapy-refractory hypertension.
Collapse
Affiliation(s)
- Ivana Y-T Kuo
- Department of Neuroscience, John Curtin School of Medical Research, GPO Box 334, Canberra, ACT, Australia 0200
| | | | | |
Collapse
|
36
|
Kuo IY, Ellis A, Seymour VAL, Sandow SL, Hill CE. Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries. J Cereb Blood Flow Metab 2010; 30:1226-39. [PMID: 20125181 PMCID: PMC2949209 DOI: 10.1038/jcbfm.2010.11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although dihydropyridines are widely used for the treatment of vasospasm, their effectiveness is questionable, suggesting that other voltage-dependent calcium channels (VDCCs) contribute to control of cerebrovascular tone. This study therefore investigated the role of dihydropyridine-insensitive VDCCs in cerebrovascular function. Using quantitative PCR and immunohistochemistry, we found mRNA and protein for L-type (Ca(V)1.2) and T-type (Ca(V)3.1 and Ca(V)3.2) channels in adult rat basilar and middle cerebral arteries and their branches. Immunoelectron microscopy revealed both L- and T-type channels in smooth muscle cell (SMC) membranes. Using patch clamp electrophysiology, we found that a high-voltage-activated calcium current, showing T-type channel kinetics and insensitivity to nifedipine and nimodipine, comprised approximately 20% of current in SMCs of the main arteries and approximately 45% of current in SMCs from branches. Both components were abolished by the T-type antagonists mibefradil, NNC 55-0396, and efonidipine. Although nifedipine completely blocked vasoconstriction in pressurized basilar arteries, a nifedipine-insensitive constriction was found in branches and this increased in magnitude as vessel size decreased. We conclude that a heterogeneous population of VDCCs contributes to cerebrovascular function, with dihydropyridine-insensitive channels having a larger role in smaller vessels. Sensitivity of these currents to nonselective T-type channel antagonists suggests that these drugs may provide a more effective treatment for therapy-refractory cerebrovascular constriction.
Collapse
Affiliation(s)
- Ivana Y Kuo
- John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | |
Collapse
|
37
|
Nystoriak MA, Murakami K, Penar PL, Wellman GC. Ca(v)1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter. Am J Physiol Heart Circ Physiol 2009; 297:H1820-8. [PMID: 19717733 DOI: 10.1152/ajpheart.00326.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-type voltage-dependent Ca(2+) channels (VDCCs) are essential for numerous processes in the cardiovascular and nervous systems. Alternative splicing modulates proteomic composition of Ca(v)1.2 to generate functional variation between channel isoforms. Here, we describe expression and function of Ca(v)1.2 channels containing alternatively spliced exon 9* in cerebral artery myocytes. RT-PCR showed expression of Ca(v)1.2 splice variants both containing (alpha(1)C(9/9*/10)) and lacking (alpha(1)C(9/10)) exon 9* in intact rabbit and human cerebral arteries. With the use of laser capture microdissection and RT-PCR, expression of mRNA for both alpha(1)C(9/9*/10) and alpha(1)C(9/10) was demonstrated in isolated cerebral artery myocytes. Quantitative real-time PCR revealed significantly greater alpha(1)C(9/9*/10) expression relative to alpha(1)C(9/10) in intact rabbit cerebral arteries compared with cardiac tissue and cerebral cortex. To demonstrate a functional role for alpha(1)C(9/9*/10), smooth muscle of intact cerebral arteries was treated with antisense oligonucleotides targeting alpha(1)C(9/9*/10) (alpha(1)C(9/9*/10)-AS) or exon 9 (alpha(1)C-AS), expressed in all Ca(v)1.2 splice variants, by reversible permeabilization and organ cultured for 1-4 days. Treatment with alpha(1)C(9/9*/10)-AS reduced maximal constriction induced by elevated extracellular K(+) ([K(+)](o)) by approximately 75% compared with alpha(1)C(9/9*/10-)sense-treated arteries. Maximal constriction in response to the Ca(2+) ionophore ionomycin and [K(+)](o) EC(50) values were not altered by antisense treatment. Decreases in maximal [K(+)](o)-induced constriction were similar between alpha(1)C(9/9*/10)-AS and alpha(1)C-AS groups (22.7 + or - 9% and 25.6 + or - 4% constriction, respectively). We conclude that although cerebral artery myocytes express both alpha(1)C(9/9*/10) and alpha(1)C(9/10) VDCC splice variants, alpha(1)C(9/9*/10) is functionally dominant in the control of cerebral artery diameter.
Collapse
Affiliation(s)
- Matthew A Nystoriak
- Department of Pharmacology and Surgery, University of Vermont, College of Medicine, Burlington, VT 05405-0068, USA
| | | | | | | |
Collapse
|