1
|
Saleh DO, Elbaset MA, Ahmed KA, Sedik AA. Chrysin mitigates cyclophosphamide-triggered cardiotoxicity in rats: Insights into cardioprotection via Treg expression modulation and iNOS downregulation. Toxicol Rep 2025; 14:102007. [PMID: 40226808 PMCID: PMC11986481 DOI: 10.1016/j.toxrep.2025.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cyclophosphamide (CP) is a potent chemotherapeutic agent widely used in cancer treatment; however, its clinical efficacy is limited by severe cardiotoxic side effects. This study aimed to evaluate the cardioprotective effects of chrysin, a natural flavonoid, against CP-induced cardiotoxicity in rats. To achieve this aim, forty male Wistar rats were randomly divided into five groups (n = 8 per group). Chrysin was administered orally at doses of 25, 50, or 100 mg/kg for 7 days before and 7 days after a single intraperitoneal injection of CP (200 mg/kg). Electrocardiography (ECG) was performed in vivo using the ECG PowerLab module to assess cardiac function, measuring the RR interval, heart rate, and corrected QT (QTc) interval. Serum levels of cardiac injury markers-creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH)-were also determined. Flow cytometry was utilized to evaluate the expression of regulatory T cell markers (CD4, CD25, and Foxp3) and apoptotic marker Annexin V. Histopathological assessment of myocardial tissues was conducted using hematoxylin and eosin (H&E) staining. Immunohistochemical analysis of inducible nitric oxide synthase (iNOS) expression was also performed. CP administration significantly elevated serum levels of cardiac injury markers compared with normal controls. ECG revealed that CP significantly altered cardiac function, as evidenced by a reduced RR interval, an increased heart rate, and an elevated QTc interval. In contrast, chrysin coadministration produced dose-dependent improvements; the highest dose (100 mg/kg) most effectively reduced serum CK-MB and LDH levels, improved the RR interval, decreased the heart rate, and partially restored QTc values. Moreover, CP significantly decreased the cardiac expression of regulatory T cell markers (CD4, CD25, and Foxp3) while markedly increasing Annexin V expression. Chrysin treatment reversed these changes in a dose-dependent manner, with the 100 mg/kg dose eliciting the greatest improvement in Treg expression and reducing Annexin V expression toward normal levels. Histopathological examination confirmed that CP induced myocardial congestion, edema, necrosis, and inflammatory cell infiltration, which were progressively ameliorated by chrysin, with the highest dose restoring near-normal myocardial architecture. Additionally, immunohistochemical analysis demonstrated that CP markedly upregulated iNOS expression in cardiac tissue, whereas chrysin dose-dependently downregulated iNOS, achieving complete normalization at the highest dose. Collectively, these findings suggest that chrysin exerts significant cardioprotective effects against CP-induced cardiotoxicity, likely through the modulation of Treg expression, attenuation of apoptosis, and suppression of iNOS-mediated inflammatory responses, underscoring its potential as an adjunctive therapy in chemotherapy-associated cardiac complications.
Collapse
Affiliation(s)
- Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Ahmed A. Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| |
Collapse
|
2
|
Chen YZ, Wang WK, Yang YF, Cheng SY, Li LF, Shen H, Qi ZM, Liu Y. Acrolein exposure affects ovarian function by interfering with glycolysis and mitochondrial energy metabolism in mouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124776. [PMID: 39173867 DOI: 10.1016/j.envpol.2024.124776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Acrolein is a widespread contaminant found in both diet and environment, entering the human body through food, alcohol, smoking, and exposure to fuel combustion fumes. While prior studies have highlighted acrolein's harmful impact on oocyte quality and early embryonic development in vitro, the specific mechanisms by which acrolein affects the female reproductive system in vivo remain poorly understood. This study first confirmed that in vitro acrolein exposure disrupts spindle morphology and chromosome alignment during the mid-MI stage of oocyte development, thus hindering oocyte maturation. Besides, exposure to acrolein not only stunts growth in mice but also impairs ovarian development, decreases the ovarian coefficient, disrupts follicular development, and increases the count of atretic follicles in vivo. Additional research has shown that acrolein exposure reduces the activity of key enzymes in glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle within the ovaries. It also suppresses mitochondrial complex expression and disturbs the balance between mitochondrial fission and fusion, as confirmed by metabolomic analyses. Moreover, acrolein exposure in vivo induced granulosa cell apoptosis and reduced oocyte number. In summary, acrolein exposure impairs glucose metabolism and induces mitochondrial dysfunction in the ovaries.
Collapse
Affiliation(s)
- Yan-Zhu Chen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wen-Ke Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yi-Fan Yang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Si-Yao Cheng
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lin-Feng Li
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hao Shen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Min Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
3
|
Cao Q, Song Y, Huan C, Jia Z, Gao Q, Ma X, Zhou G, Chen S, Wei J, Wang Y, Wang C, Mao Z, Hou J, Huo W. Biological aging mediates the association between volatile organic compounds and cardiovascular disease. BMC Public Health 2024; 24:2928. [PMID: 39438892 PMCID: PMC11520164 DOI: 10.1186/s12889-024-20349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Evidence for the relationship between individual and combined volatile organic compounds (VOCs) and cardiovascular disease (CVD) is limited. Besides, the mediating role of biological aging (BA) has not been studied. Therefore, this study aimed to examine the association between VOCs and CVD risk and to explore the mediating effects of BA. METHODS Logistic regression models were used to investigate the relationships of metabolites of volatile organic compounds (mVOCs) and BA with CVD. In addition, weighted quantile sum (WQS) regression, adaptive elastic networks, and Environmental Risk Score (AENET-ERS) were utilized to assess overall associations of mixed VOCs co-exposure with CVD. Mediation analyses were used to identify potential mediating effects of BA. RESULTS In the single-pollutant model, CYMA was shown to be associated with an increased risk of CVD. Additionally, we identified significantly positive associations between the WQS index and CVD (odds ratio (OR) = 1.292, 95% confidence interval (CI): 1.006, 1.660), and DHBMA had the greatest contribution for CVD (0.246). Furthermore, the AENET-ERS results showed that 8 mVOCs were significantly associated with CVD, and ERS was related to an elevated risk of CVD (OR = 1.538, 95%CI: 1.255, 1.884). Three BA indicators mediated the association of the mVOCs mixture with CVD, with mediating effect proportions of 11.32%, 34.34%, and 7.92%, respectively. CONCLUSION The risk of CVD was found to increase with both individual and combined exposure to VOCs. BA mediates the positive effects of VOCs on CVD, suggesting that this pathway may be one of the mechanisms of CVD.
Collapse
Affiliation(s)
- Qingqing Cao
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Changsheng Huan
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Zexin Jia
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qian Gao
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoqing Ma
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Guihong Zhou
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Siyu Chen
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Jin Wei
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yuchuan Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
4
|
Gao J, Liu X, Wang M, Zeng X, Wang Z, Wang Y, Lou J, Liu J, Zhao L. Adenosine protects cardiomyocytes against acrolein-induced cardiotoxicity by enhancing mitochondrial homeostasis, antioxidant defense, and autophagic flux via ERK-activated FoxO1 upregulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116799. [PMID: 39094450 DOI: 10.1016/j.ecoenv.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Acrolein is a ubiquitous gaseous air pollutant and endogenous toxicant, which poses strong risk for oxidative stress-related diseases such as cardiovascular disease. Adenosine has been identified as potential therapeutic agent for age-related cardiovascular disease, while the molecular mechanisms underlying its cardioprotection remain elusive. In the present study, we investigated the myocardial protective effects and the mechanism of adenosine on acrolein-induced toxicity in H9c2 cells and primary neonatal rat cardiomyocytes. We found that acrolein caused apoptosis of cardiomyocytes resulting from oxidative damage, autophagy defect, and mitochondrial dysfunction, as evidenced by loss of mitochondrial membrane potential, impairment of mitochondrial biogenesis, dynamics, and oxidative phosphorylation, decrease of mitochondrial deoxyribonucleic acid (mtDNA) copy number and adenosine 5'-triphosphate (ATP) production. Adenosine pretreatment protected against acrolein-induced cardiotoxicity by maintaining mitochondrial homeostasis, activating the phase II detoxifying enzyme system, promoting autophagic flux, and alleviating mitochondrial-dependent apoptosis. We further demonstrated that the up-regulation of forkhead box protein O1 (FoxO1) mediated by extracellular regulated protein kinases (ERK) activation contributes to the cardioprotection of adenosine. These results expand the application of adenosine in cardioprotection to preventing myocardial damages induced by environmental pollutant acrolein exposure, and uncover the adenosine-ERK-FoxO1 axis as the underlying mechanism mediating the protection of mitochondrial homeostasis, Nrf2-mediated antioxidant defense and autophagic flux, shedding light on the better understanding about the pathological mechanism of cardiovascular disease caused by environmental pollutants and applications of adenosine in cardioprotection.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Health and Science, Xi'an Physical Education University, Xi'an, Shaanxi, China
| | - Xuyun Liu
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Wang
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Zeng
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhen Wang
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Lou
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiankang Liu
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.
| | - Lin Zhao
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Liu X, Li R, Xiu Z, Tang S, Duan Y. Toxicity mechanism of acrolein on energy metabolism disorder and apoptosis in human ovarian granulosa cells. Toxicology 2024; 506:153861. [PMID: 38866128 DOI: 10.1016/j.tox.2024.153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Acrolein (ACR), an unsaturated, highly reactive aldehyde, is a widespread environmental toxin. ACR exerts permanent and irreversible side effects on ovarian functions. Granulosa cells play a crucial role in supporting ovarian function. Thus, in this study, we investigated the toxicity effects of granulosa cells induced by ACR. Following treatment with varying ACR concentrations (0, 12.5, 25, 50, and 100 μM), we observed that ACR exposure induced reactive oxygen species accumulation, mitochondrial energy metabolism disorder, and apoptosis in KGN cells (a human ovarian granulosa cell line) in a dose-dependent manner. In addition, mitochondrial biogenesis in KGN cells displayed biphasic changes after ACR exposure, with activation at a low ACR dose (12.5 μM), but inhibition at higher ACR doses (≥50 μM). SIRT1/PGC-1α-mediated mitochondrial biogenesis is crucial for maintaining intracellular mitochondrial homeostasis and cellular function. The inhibition/activation of the SIRT1/PGC-1α pathway in KGN cells validated its role in ACR-induced damage. The results indicated that the inhibition of the SIRT1/PGC-1α pathway aggravated ACR-induced cell damage, whereas its activation partially counteracted ACR-induced cell damage. This study attempted to uncover a novel mechanism of ACR-induced ovarian toxicity so as to provide an effective treatment option for safeguarding female reproductive health from the adverse effects of ACR.
Collapse
Affiliation(s)
- Xueping Liu
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China
| | - Rongxia Li
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Gynecology Medicine, The Second Hospital of Hebei Medicine University, Shijiazhuang, Hebei Province 050004, China
| | - Zi Xiu
- College of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Siling Tang
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China
| | - Yancang Duan
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Hebei Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, Hebei Province 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, Hebei Province 050091, China.
| |
Collapse
|
6
|
Chaturvedi D, Attia Hussein Mahmoud H, Isaac A, Atla RH, Shakeel JN, Heredia M, Marepalli NR, Shukla PS, Gardezi M, Zeeshan M, Ashraf T. Understanding the Cardiovascular Fallout of E-cigarettes: A Comprehensive Review of the Literature. Cureus 2024; 16:e63489. [PMID: 39081430 PMCID: PMC11287103 DOI: 10.7759/cureus.63489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
E-cigarettes (ECs) deliver chemicals, including nicotine. They can cause respiratory distress, addiction, cardiovascular effects, and death. More research is needed, especially regarding their impact on the cardiovascular system (CVS) and during pregnancy. Our article aims to fill this gap by summarizing studies elaborating upon the current impact of ECs and the components thereof on the CVS. Acute respiratory distress outbreaks, nicotine addiction, CVS effects, and deaths have been occasionally reported within this cohort, although these events are not uncommon with neighboring age groups. Randomized control trials implying ECs have some contribution toward quitting smoking have been studied. To regulate EC distribution, the Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC) have created key checkpoints. Additionally, taxation, pricing, age restriction, and media campaigns could be modulated to significantly reduce illicit sales. Education to the users, distributors, and regulators about this product can also play an aiding role in promoting responsible EC use. Another strategy about licensing could be employed, which could incentivize genuine resellers. The effects on CVS and child-bearing by ECs are grim, which calls for strict regulation, awareness, and avoidance by the teetotaler public. They may help individuals stop smoking but not without harming themselves. Strict regulations are necessary to prevent non-judicious use of these devices.
Collapse
Affiliation(s)
- Devansh Chaturvedi
- Medicine, Dr Chaturvedi Cancer Hospital and Research Institute, Gorakhpur, IND
- Internal Medicine, King George's Medical University, Lucknow, IND
| | | | - Ashley Isaac
- General Medicine, Isra University Hospital, Hyderabad, PAK
| | - Ragha Harshitha Atla
- Internal Medicine and Obstetrics, Bicol Christian College of Medicine, Ago Medical Center, Legazpi City, PHL
| | | | - Maria Heredia
- Cardiology, Ministry of Public Health of Ecuador, Quito, ECU
| | | | - Pranav S Shukla
- Medicine, Grant Medical College and Sir JJ group of Hospitals, Mumbai, IND
| | - Maira Gardezi
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
| | | | | |
Collapse
|
7
|
Han S, Xie M, Cheng S, Han Y, Li P, Guo J. Associations between specific volatile organic chemical exposures and cardiovascular disease risks: insights from NHANES. Front Public Health 2024; 12:1378444. [PMID: 38846604 PMCID: PMC11153666 DOI: 10.3389/fpubh.2024.1378444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction An increasing body of research has demonstrated a correlation between pollutants from the environment and the development of cardiovascular diseases (CVD). However, the impact of volatile organic chemicals (VOC) on CVD remains unknown and needs further investigation. Objectives This study assessed whether exposure to VOC was associated with CVD in the general population. Methods A cross-sectional analysis was conducted utilizing data from five survey cycles (2005-2006, 2011-2012, 2013-2014, 2015-2016, and 2017-2018) of the National Health and Nutrition Examination Survey (NHANES) program. We analyzed the association between urinary VOC metabolites (VOCs) and participants by multiple logistic regression models, further Bayesian Kernel Machine Regression (BKMR) models and Weighted Quantile Sum (WQS) regression were performed for mixture exposure analysis. Results Total VOCs were found to be positively linked with CVD in multivariable-adjusted models (p for trend = 0.025), independent of established CVD risk variables, such as hypertension, diabetes, drinking and smoking, and total cholesterol levels. Compared with the reference quartile of total VOCs levels, the multivariable-adjusted odds ratios in increasing quartiles were 1.01 [95% confidence interval (CI): 0.78-1.31], 1.26 (95% CI: 1.05-1.21) and 1.75 (95% CI: 1.36-1.64) for total CVD. Similar positive associations were found when considering individual VOCs, including AAMA, CEMA, CYMA, 2HPMA, 3HPMA, IPM3 and MHBMA3 (acrolein, acrylamide, acrylonitrile, propylene oxide, isoprene, and 1,3-butadiene). In BKMR analysis, the overall effect of a mixture is significantly related to VOCs when all chemicals reach or exceed the 75th percentile. Moreover, in the WQS models, the most influential VOCs were found to be CEMA (40.30%), DHBMA (21.00%), and AMCC (19.70%). Conclusion The results of our study indicated that VOC was all found to have a significant association with CVD when comparing results from different models. These findings hold significant potential for public health implications and offer valuable insights for future research directions.
Collapse
Affiliation(s)
- Shaojie Han
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Xie
- Department of Cardiology, Seventh People’s Hospital of Chengdu, Chengdu, China
| | - Siyuan Cheng
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuchen Han
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Panpan Li
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Guo
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Nishimura A, Zhou L, Kato Y, Mi X, Ito T, Ibuki Y, Kanda Y, Nishida M. Supersulfide prevents cigarette smoke extract-induced mitochondria hyperfission and cardiomyocyte early senescence by inhibiting Drp1-filamin complex formation. J Pharmacol Sci 2024; 154:127-135. [PMID: 38246726 DOI: 10.1016/j.jphs.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Lazaridi E, Hennebelle M, Hollebrands B, Hageman J, Vincken JP, Janssen HG. Selective ionization of oxidized lipid species using different solvent additives in flow injection mass spectrometry. Anal Bioanal Chem 2024; 416:787-799. [PMID: 37847408 PMCID: PMC10766781 DOI: 10.1007/s00216-023-04988-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Lipid oxidation in food products is a crucial problem that causes undesirable changes in the food's flavor, texture, and nutritional value. It should be carefully monitored as it can lead to the formation of potentially toxic compounds and in that way reduce the shelf life of the product. Liquid chromatography coupled to mass spectrometry is a powerful tool to monitor the formation of oxidized lipids. However, the presence of lipid species in both their non-oxidized and oxidized forms at distinctly different concentrations can hinder the detection and identification of the less abundant oxidized species, due to coelution. In this study, a flow injection mass spectrometry approach was used to selectively ionize oxidized triacylglycerols versus their non-oxidized precursors. Three mobile phase additives were investigated (ammonium formate, sodium acetate, and sodium iodide) at three different concentrations, and ion source settings (i.e., sheath gas temperature, capillary voltage, and nozzle voltage) were optimized. A fractional factorial design was conducted to examine not only the direct effect of the operating parameters on the selectivity of ionization for the oxidized lipid species, but also to assess their combined effect. Overall, selective ionization of oxidized versus non-oxidized lipid species was favored by the use of sodium-containing solvent additives. The application of specific ion source settings resulted in an increased ionization selectivity, with sheath gas temperature and capillary voltage having the most significant influence. A selectivity factor as high as 120 could be reached by combining 0.1 mg/mL sodium-containing additives, with 250 °C sheath gas temperature and 5000 V capillary voltage. These findings will contribute to future studies on fast detection and relative quantification of low abundant oxidized triacylglycerols and their possible impact on human health.
Collapse
Affiliation(s)
- Eleni Lazaridi
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands.
| | - Boudewijn Hollebrands
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, the Netherlands
- Unilever Food Innovation Center, Wageningen, the Netherlands
| | - Jos Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Hans-Gerd Janssen
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, the Netherlands.
- Unilever Food Innovation Center, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Sahu R, Shah K, Malviya R, Paliwal D, Sagar S, Singh S, Prajapati BG, Bhattacharya S. E-Cigarettes and Associated Health Risks: An Update on Cancer Potential. Adv Respir Med 2023; 91:516-531. [PMID: 37987300 PMCID: PMC10660480 DOI: 10.3390/arm91060038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The potential cancer risk associated with electronic-cigarette (e-cigarette) use is ongoing and remains a subject of debate. E-Cigarettes work by heating a liquid that usually contains nicotine, flavorings, and other chemicals. When the liquid is heated, users inhale an aerosol into their lungs. While e-cigarettes are generally considered less harmful than traditional tobacco products, they still contain potentially harmful chemicals, which can damage DNA and lead to cancer. Several studies have investigated the potential cancer risk associated with e-cigarette use, while other studies have suggested that e-cigarette aerosol may contain carcinogenic chemicals that could increase the risk of lung and bladder cancer in humans. However, these studies are limited in their scope and do not provide conclusive evidence. Overall, the long-term cancer risk associated with e-cigarette use remains uncertain, more research is needed to fully understand the potential risks and benefits of e-cigarettes. However, this review will allow the investigator to get more recent updates about e-cigarettes.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India; (R.M.); (D.P.); (S.S.)
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Kamal Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India; (R.M.); (D.P.); (S.S.)
| | - Deepika Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India; (R.M.); (D.P.); (S.S.)
| | - Sakshi Sagar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India; (R.M.); (D.P.); (S.S.)
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-Be University, Shirpur 425405, India;
| |
Collapse
|
11
|
Satpathy C, Kumar Mishra T, Singh S, Jha AK. Reverse cardio-oncology: A budding concept. Indian Heart J 2023; 75:398-402. [PMID: 37774949 PMCID: PMC10774571 DOI: 10.1016/j.ihj.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Having established the significance of cardiovascular side-effects of anti-neoplastic drugs, present day cardio-oncology has forayed into newer territories buoyed by research into the multiple connections that exist between cardiovascular disease and cancer. An emerging concept of reverse cardio-oncology focuses on the heightened risk of cancer in patients with cardiovascular disease. Common mechanistics of cancer and heart failure (HF) like chronic inflammation and clonal haematopoesis as well as common predisposing factors like obesity and diabetes underline the relation between both cardiovascular disease and various cancers.This review discusses the potential magnitude of the problem, the underlying pathophysiological mechanisms and classification of this novel subject.
Collapse
Affiliation(s)
- Chhabi Satpathy
- Department of Cardiology, MKCG Medical College and Hospital, Berhampur, Odisha, India
| | - Trinath Kumar Mishra
- Department of Cardiology, MKCG Medical College and Hospital, Berhampur, Odisha, India.
| | - Subhasish Singh
- Department of Cardiology, MKCG Medical College and Hospital, Berhampur, Odisha, India
| | - Anshu Kumar Jha
- Department of Cardiology, MKCG Government Medical College, Berhampur, Odisha, India
| |
Collapse
|
12
|
Chauhan PK, Sowdhamini R. Transcriptome data analysis of primary cardiomyopathies reveals perturbations in arachidonic acid metabolism. Front Cardiovasc Med 2023; 10:1110119. [PMID: 37288265 PMCID: PMC10242083 DOI: 10.3389/fcvm.2023.1110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Cardiomyopathies are complex heart diseases with significant prevalence around the world. Among these, primary forms are the major contributors to heart failure and sudden cardiac death. As a high-energy demanding engine, the heart utilizes fatty acids, glucose, amino acid, lactate and ketone bodies for energy to meet its requirement. However, continuous myocardial stress and cardiomyopathies drive towards metabolic impairment that advances heart failure (HF) pathogenesis. So far, metabolic profile correlation across different cardiomyopathies remains poorly understood. Methods In this study, we systematically explore metabolic differences amongst primary cardiomyopathies. By assessing the metabolic gene expression of all primary cardiomyopathies, we highlight the significantly shared and distinct metabolic pathways that may represent specialized adaptations to unique cellular demands. We utilized publicly available RNA-seq datasets to profile global changes in the above diseases (|log2FC| ≥ 0.28 and BH adjusted p-val 0.1) and performed gene set analysis (GSA) using the PAGE statistics on KEGG pathways. Results Our analysis demonstrates that genes in arachidonic acid metabolism (AA) are significantly perturbed across cardiomyopathies. In particular, the arachidonic acid metabolism gene PLA2G2A interacts with fibroblast marker genes and can potentially influence fibrosis during cardiomyopathy. Conclusion The profound significance of AA metabolism within the cardiovascular system renders it a key player in modulating the phenotypes of cardiomyopathies.
Collapse
Affiliation(s)
- Pankaj Kumar Chauhan
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| |
Collapse
|
13
|
McGraw KE, Konkle SL, Riggs DW, Rai SN, DeJarnett N, Xie Z, Keith RJ, Oshunbade A, Hall ME, Shimbo D, Bhatnagar A. Exposure to Volatile Organic Compounds Is Associated with Hypertension in Black Adults: The Jackson Heart Study. ENVIRONMENTAL RESEARCH 2023; 223:115384. [PMID: 36796615 PMCID: PMC10134439 DOI: 10.1016/j.envres.2023.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The prevalence of hypertension is higher among Black adults than among White and Hispanic adults. Nevertheless, reasons underlying the higher rates of hypertension in the Black population remain unclear but may relate to exposure to environmental chemicals such as volatile organic compounds (VOCs). METHODS We evaluated the associations of blood pressure (BP) and hypertension with VOC exposure in non-smokers and smokers in a subgroup of the Jackson Heart Study (JHS), consisting of 778 never smokers and 416 age- and sex-matched current smokers. We measured urinary metabolites of 17 VOCs by mass spectrometry. RESULTS After adjusting for covariates, we found that amoong non-smokers, metabolites of acrolein and crotonaldehyde were associated with a 1.6 mm Hg (95%CI: 0.4, 2.7; p = 0.007) and a 0.8 mm Hg (95%CI: 0.01, 1.6; p = 0.049) higher systolic BP, and the styrene metabolite was associated with a 0.4 mm Hg (95%CI: 0.09, 0.8, p = 0.02) higher diastolic BP. Current smokers had 2.8 mm Hg (95% CI 0.5, 5.1) higher systolic BP. They were at higher risk of hypertension (relative risk = 1.2; 95% CI, 1.1, 1.4), and had higher urinary levels of several VOC metabolites. Individuals who smoke had higher levels of the urinary metabolites of acrolein, 1,3-butadiene, and crotonaldehyde and were associated with higher systolic BP. The associations were stronger among participants who were <60 years of age and male. Using Bayesian kernel machine regression to assess the effects of multiple VOC exposures, we found that the relationship between VOCs and hypertension among non-smokers was driven primarily by acrolein and styrene in non-smokers, and crotonaldehyde in smokers. CONCLUSIONS Hypertension in Black individuals may be attributed, in part, to VOC exposure from the environment or tobacco smoke.
Collapse
Affiliation(s)
- Katlyn E McGraw
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Stacey L Konkle
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Daniel W Riggs
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Shesh N Rai
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Natasha DeJarnett
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Rachel J Keith
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Adebamike Oshunbade
- University of Mississippi Medical Center Department of Medicine - Cardiology, 2500 North State St, Jackson, MS, 39216, USA
| | - Michael E Hall
- University of Mississippi Medical Center Department of Medicine - Cardiology, 2500 North State St, Jackson, MS, 39216, USA
| | - Diachi Shimbo
- Columbia University Department of Medicine, 161 Fort Washington Ave, New York, NY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; University of Louisville Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Moreira MTG, Pereira PR, Aquino A, Conte-Junior CA, Paschoalin VMF. Aldehyde Accumulation in Aged Alcoholic Beer: Addressing Acetaldehyde Impacts on Upper Aerodigestive Tract Cancer Risks. Int J Mol Sci 2022; 23:14147. [PMID: 36430619 PMCID: PMC9698545 DOI: 10.3390/ijms232214147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Aldehydes, particularly acetaldehyde, are carcinogenic molecules and their concentrations in foodstuffs should be controlled to avoid upper aerodigestive tract (UADT) and liver cancers. Highly reactive, acetaldehyde forms DNA and protein adducts, impairing physiological functions and leading to the development of pathological conditions. The consumption of aged beer, outside of the ethanol metabolism, exposes habitual drinkers to this carcinogen, whose concentrations can be over-increased due to post-brewing chemical and biochemical reactions. Storage-related changes are a challenge faced by the brewing industry, impacting volatile compound formation and triggering flavor instability. Aldehydes are among the volatile compounds formed during beer aging, recognized as off-flavor compounds. To track and understand aldehyde formation through multiple pathways during beer storage, consequent changes in flavor but particularly quality losses and harmful compound formation, this systematic review reunited data on volatile compound profiles through gas chromatography analyses from 2011 to 2021. Conditions to avoid flavor instability and successful methods for reducing beer staling, and consequent acetaldehyde accumulation, were raised by exploring the dynamic conversion between free and bound-state aldehydes. Future research should focus on implementing sensory analyses to investigate whether adding aldehyde-binding agents, e.g., cysteine and bisulfite, would contribute to consumer acceptance, restore beer flavor, and minimize acetaldehyde-related health damage.
Collapse
Affiliation(s)
- Mariana Toledo Gonçalves Moreira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Adriano Aquino
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
15
|
Elsayed FF, Elshenawy WM, Khalifa EM, Rizq MR, Abdelaziz RR. Ameliorative effect of flavocoxid on cyclophosphamide-induced cardio and neurotoxicity via targeting the GM-CSF/NF-κB signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69635-69651. [PMID: 35576032 PMCID: PMC9512761 DOI: 10.1007/s11356-022-20441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 06/12/2023]
Abstract
Cyclophosphamide (Cyclo) is a chemotherapeutic agent used as an immunosuppressant and as a treatment for many cancerous diseases. Many previous pieces of literature proved the marked cardio and neurotoxicity of the drug. Thus, this research provides evidence on the alleviative effect of flavocoxid on the cardiac and brain toxicity of cyclophosphamide in mice and determines its underlying mechanisms. Flavocoxid (Flavo) is a potent antioxidant and anti-inflammatory agent that inhibits the peroxidase activity of cyclooxygenase (COX-1 and COX-2) enzymes and 5-lipooxygenase (5-LOX). Flavo was administered orally (20 mg/kg) for 2 weeks, followed by Cyclo (100 mg/kg, i.p.) on day 14. Higher heart and brain weight indices, serum lactate dehydrogenase (LDH), creatine kinase (CK-MB), and nitric oxide (NO) were mitigated following Flavo administration. Flavo modulated oxidative stress biomarkers (malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD)), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β. Additionally, cardiac troponin I (cTn-I), nuclear factor kappa B (NF-κB), brain amyloid precursor protein (APP), and granulocyte macrophage colony-stimulating factor (GM-CSF) were decreased by Flavo administration. Moreover, Flavo ameliorated heart and brain histopathological changes and caspase-3 levels. Collectively, Flavo (20 mg/kg) for 14 days showed significant cardio and neuroprotective effects due to its antioxidant, anti-inflammatory, and antiapoptotic activities via modulation of oxidative stress, inflammation, and the GM-CSF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fatma F Elsayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Waad M Elshenawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Eman M Khalifa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed R Rizq
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
16
|
Liang Z, He Y, Hu X. Cardio-Oncology: Mechanisms, Drug Combinations, and Reverse Cardio-Oncology. Int J Mol Sci 2022; 23:10617. [PMID: 36142538 PMCID: PMC9501315 DOI: 10.3390/ijms231810617] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy have brought hope to cancer patients. With the prolongation of survival of cancer patients and increased clinical experience, cancer-therapy-induced cardiovascular toxicity has attracted attention. The adverse effects of cancer therapy that can lead to life-threatening or induce long-term morbidity require rational approaches to prevention and treatment, which requires deeper understanding of the molecular biology underpinning the disease. In addition to the drugs used widely for cardio-protection, traditional Chinese medicine (TCM) formulations are also efficacious and can be expected to achieve "personalized treatment" from multiple perspectives. Moreover, the increased prevalence of cancer in patients with cardiovascular disease has spurred the development of "reverse cardio-oncology", which underscores the urgency of collaboration between cardiologists and oncologists. This review summarizes the mechanisms by which cancer therapy induces cardiovascular toxicity, the combination of antineoplastic and cardioprotective drugs, and recent advances in reverse cardio-oncology.
Collapse
Affiliation(s)
| | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
| |
Collapse
|
17
|
Rashad WA, Sakr S, Domouky AM. Comparative study of oral versus parenteral crocin in mitigating acrolein-induced lung injury in albino rats. Sci Rep 2022; 12:10233. [PMID: 35715565 PMCID: PMC9205959 DOI: 10.1038/s41598-022-14252-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Acrolein (Ac) is the second most commonly inhaled toxin, produced in smoke of fires, tobacco smoke, overheated oils, and fried foods; and usually associated with lung toxicity. Crocin (Cr) is a natural carotenoid with a direct antioxidant capacity. Yet, oral administration of crocin as a natural rout is doubtful, because of poor absorbability. Therefore, the current study aimed to compare the potential protective effect of oral versus intraperitoneal (ip) crocin in mitigating Ac-induced lung toxicity. 50 Adult rats were randomly divided into 5 equal groups; Control (oral-saline and ip-saline) group, Cr (oral-Cr and ip-Cr) group, Ac group, oral-Cr/Ac group, and ip-Cr/Ac group; for biochemical, histopathological, and immunohistochemical investigations. Results indicated increased oxidative stress and inflammatory biomarkers in lungs of Ac-treated group. Histopathological and immunohistochemical examinations revealed lung edema, infiltration, fibrosis, and altered expression of apoptotic and anti-apoptotic markers. Compared to oral-Cr/Ac group, the ip-Cr/Ac group demonstrated remarkable improvement in the oxidative, inflammatory, and apoptotic biomarkers, as well as the histopathological alterations. In conclusion, intraperitoneal crocin exerts a more protective effect on acrolein-induced lung toxicity than the orally administered crocin.
Collapse
Affiliation(s)
- Walaa Abdelhaliem Rashad
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt.
| | - Samar Sakr
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| |
Collapse
|
18
|
Younis NS. β-Caryophyllene Ameliorates Cyclophosphamide Induced Cardiac Injury: The Association of TLR4/NFκB and Nrf2/HO1/NQO1 Pathways. J Cardiovasc Dev Dis 2022; 9:jcdd9050133. [PMID: 35621844 PMCID: PMC9145742 DOI: 10.3390/jcdd9050133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Background: β-caryophyllene (BCP), a natural sesquiterpene, is extensively present in the essential oils of several plants. Cyclophosphamide (CYC) is an anticancer drug. However, its clinical usage is inadequate due to its cardiotoxicity. The aim of this study was to study the effects of BCP on cardiac injury induced by CYC exposure, and to identify the underlying mechanism of action. Methods: Five groups of Wistar rats were allocated. Group I (Normal), II (BCP), and III (CYC) acted as controls. Group IV, V (CYC + BCP) received BCP in two doses (100 and 200 mg/kg, orally, respectively) for 14 days after CYC challenge. CYC groups received 200 mg/kg, i.p. of the drug once on the first day of experiments. Results: CYC group displayed numerous ECG and histological irregularities and cardiac markers elevation. CYC induced lipid peroxidation and oxidative stress intensification, as well as inflammatory and apoptotic markers escalation. Treatment with BCP resulted in modified ECG traces and histological sections. BCP mitigated cardiac markers and lipid peroxidation whereas intensified antioxidant capacity. BCP activated Nrf2, with subsequent HO1 and NQO1 amplification. BCP diminished TLR4/NFκB pathway, which consequently lessened the inflammatory and apoptosis responses. Conclusion: BCP administration was associated with activated Nrf2/HO1/NQO1 and inhibited TLR4/NFκB pathways with subsequent enhanced anti-oxidative capacity and diminished inflammatory and apoptosis responses.
Collapse
Affiliation(s)
- Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
19
|
Environmental exposure to volatile organic compounds is associated with endothelial injury. Toxicol Appl Pharmacol 2022; 437:115877. [PMID: 35045333 PMCID: PMC10045232 DOI: 10.1016/j.taap.2022.115877] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Volatile organic compounds (VOCs) are airborne toxicants abundant in outdoor and indoor air. High levels of VOCs are also present at various Superfund and other hazardous waste sites; however, little is known about the cardiovascular effects of VOCs. We hypothesized that ambient exposure to VOCs exacerbate cardiovascular disease (CVD) risk by depleting circulating angiogenic cells (CACs). APPROACH AND RESULTS In this cross-sectional study, we recruited 603 participants with low-to-high CVD risk and measured 15 subpopulations of CACs by flow cytometry and 16 urinary metabolites of 12 VOCs by LC/MS/MS. Associations between CAC and VOC metabolite levels were examined using generalized linear models in the total sample, and separately in non-smokers. In single pollutant models, metabolites of ethylbenzene/styrene and xylene, were negatively associated with CAC levels in both the total sample, and in non-smokers. The metabolite of acrylonitrile was negatively associated with CD45dim/CD146+/CD34+/AC133+ cells and CD45+/CD146+/AC133+, and the toluene metabolite with AC133+ cells. In analysis of non-smokers (n = 375), multipollutant models showed a negative association with metabolites of ethylbenzene/styrene, benzene, and xylene with CD45dim/CD146+/CD34+ cells, independent of other VOC metabolite levels. Cumulative VOC risk score showed a strong negative association with CD45dim/CD146+/CD34+ cells, suggesting that total VOC exposure has a cumulative effect on pro-angiogenic cells. We found a non-linear relationship for benzene, which showed an increase in CAC levels at low, but depletion at higher levels of exposure. Sex and race, hypertension, and diabetes significantly modified VOC associated CAC depletion. CONCLUSION Low-level ambient exposure to VOCs is associated with CAC depletion, which could compromise endothelial repair and angiogenesis, and exacerbate CVD risk.
Collapse
|
20
|
Zelko IN, Taylor BS, Das TP, Watson WH, Sithu ID, Wahlang B, Malovichko MV, Cave MC, Srivastava S. Effect of vinyl chloride exposure on cardiometabolic toxicity. ENVIRONMENTAL TOXICOLOGY 2022; 37:245-255. [PMID: 34717031 PMCID: PMC8724461 DOI: 10.1002/tox.23394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/09/2021] [Accepted: 10/22/2021] [Indexed: 05/08/2023]
Abstract
Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice.
Collapse
Affiliation(s)
- Igor N. Zelko
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Breandon S. Taylor
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| | - Trinath P. Das
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Walter H. Watson
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, KY 40202
| | - Israel D. Sithu
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| | - Banrida Wahlang
- Superfund Research Center, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
| | - Marina V. Malovichko
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Matthew C. Cave
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
| | - Sanjay Srivastava
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| |
Collapse
|
21
|
Machado M, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Vegetable oils oxidation: mechanisms, consequences and protective strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2026378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manuela Machado
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Luís M. Rodriguez-Alcalá
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana M Gomes
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
22
|
Grootveld M. Evidence-Based Challenges to the Continued Recommendation and Use of Peroxidatively-Susceptible Polyunsaturated Fatty Acid-Rich Culinary Oils for High-Temperature Frying Practises: Experimental Revelations Focused on Toxic Aldehydic Lipid Oxidation Products. Front Nutr 2022; 8:711640. [PMID: 35071288 PMCID: PMC8769064 DOI: 10.3389/fnut.2021.711640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
In this manuscript, a series of research reports focused on dietary lipid oxidation products (LOPs), their toxicities and adverse health effects are critically reviewed in order to present a challenge to the mindset supporting, or strongly supporting, the notion that polyunsaturated fatty acid-laden frying oils are "safe" to use for high-temperature frying practises. The generation, physiological fates, and toxicities of less commonly known or documented LOPs, such as epoxy-fatty acids, are also considered. Primarily, an introduction to the sequential autocatalytic peroxidative degradation of unsaturated fatty acids (UFAs) occurring during frying episodes is described, as are the potential adverse health effects posed by the dietary consumption of aldehydic and other LOP toxins formed. In continuance, statistics on the dietary consumption of fried foods by humans are reviewed, with a special consideration of French fries. Subsequently, estimates of human dietary aldehyde intake are critically explored, which unfortunately are limited to acrolein and other lower homologues such as acetaldehyde and formaldehyde. However, a full update on estimates of quantities derived from fried food sources is provided here. Further items reviewed include the biochemical reactivities, metabolism and volatilities of aldehydic LOPs (the latter of which is of critical importance regarding the adverse health effects mediated by the inhalation of cooking/frying oil fumes); their toxicological actions, including sections focussed on governmental health authority tolerable daily intakes, delivery methods and routes employed for assessing such effects in animal model systems, along with problems encountered with the Cramer classification of such toxins. The mutagenicities, genotoxicities, and carcinogenic potential of aldehydes are then reviewed in some detail, and following this the physiological concentrations of aldehydes and their likely dietary sources are considered. Finally, conclusions from this study are drawn, with special reference to requirements for (1) the establishment of tolerable daily intake (TDI) values for a much wider range of aldehydic LOPs, and (2) the performance of future nutritional and epidemiological trials to explore associations between their dietary intake and the incidence and severity of non-communicable chronic diseases (NCDs).
Collapse
Affiliation(s)
- Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
23
|
Liu D, Cheng Y, Chen J, Mei X, Tang Z, Cao X, Liu J. Exploring the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity by luteolin using network pharmacology and cell biology technology. Food Chem Toxicol 2021; 160:112779. [PMID: 34958803 DOI: 10.1016/j.fct.2021.112779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Acrolein is a highly reactive unsaturated hazardous air pollutant, which is extremely irritating to the respiratory tract. Luteolin, an active flavonoid compound, possesses multiple biological activities. The purpose of this study was to evaluate the mechanism of the inhibition of acrolein-induced human bronchial epithelial (BEAS-2B) cells cytotoxicity by luteolin using network pharmacology and cell biology technology. Firstly, network pharmacology results indicated that oxidative stress processes might play an important role in luteolin inhibiting lung injury. Next, it was verified at the cellular level. Reactive oxygen species (ROS) generation increased, glutathione (GSH) level decreased after exposure to acrolein. MAPK signaling pathways were activated, which activated downstream IκBα/NF-κB signaling pathways. Meanwhile, acrolein caused oxidative DNA damage and double-strand breaks, induced DNA damage response (DDR) and apoptosis. These adverse effects were significantly reversed by luteolin, which inhibited the activation of MAPK/IκBα/NF-κB and DDR pathways, and reduced the ratio of Bax/Bcl-2. Moreover, luteolin also had a similar effect to antioxidant N-acetyl cysteine (NAC) in the regulation of signaling transduction mechanisms, which indicated that the regulation of oxidative stress played an important role in the process. These results provide an experimental basis for elucidating the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity with luteolin.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Junliang Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
24
|
Song X, Lu Y, Lu Y, Lv L. Adduct Formation of Acrolein with Cyanidin-3- O-glucoside and Its Degradants/Metabolites during Thermal Processing or In Vivo after Consumption of Red Bayberry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13143-13154. [PMID: 34714663 DOI: 10.1021/acs.jafc.1c05727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrolein (ACR) derives from the external environment and the endogenous metabolism of organisms. It has super-reactivity and can induce various diseases. We investigated the capacity of cyanidin-3-O-glucoside (C3G) and its degradants/metabolites to capture ACR during thermal processing or in vivo. Our results indicated that both C3G and its degradants, including phloroglucinaldehyde (PGA) and protocatechuic acid (PCA), could efficiently trap ACR to form adducts, such as C3G-ACR, C3G-2ACR, PGA-ACR, PGA-2ACR, PCA-ACR, and PCA-2ACR. Additionally, these adducts were detected in commercial canned red bayberry products. The adducts of C3G and its metabolites conjugated with ACR, such as C3G-ACR, C3G-2ACR, PGA-ACR, and 4-hydroxybenzoic-acid-ACR (4-HBA-ACR), were also detected in mice feces treated with C3G by oral gavage, where the adduct level was dose-dependent. A similar pattern was observed in tests on human consumption of red bayberry. In human urine, only PGA-2ACR and 4-HBA-ACR, were found, whereas C3G-ACR, C3G-2ACR, myricetin-3-O-rhamnoside-ACR (M3R-ACR), PGA-2ACR, 4-HBA-ACR and ferulic acid-ACR (FA-ACR) were detected in human feces following administration of red bayberry. Our results are the first demonstration that C3G and its metabolites can capture ACR in vitro and in vivo (mice and humans) and present a novel strategy, the development of C3G as a promising ACR inhibitor.
Collapse
Affiliation(s)
- Xiaoli Song
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yang Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
25
|
McGraw KE, Riggs DW, Rai S, Navas-Acien A, Xie Z, Lorkiewicz P, Lynch J, Zafar N, Krishnasamy S, Taylor KC, Conklin DJ, DeFilippis AP, Srivastava S, Bhatnagar A. Exposure to volatile organic compounds - acrolein, 1,3-butadiene, and crotonaldehyde - is associated with vascular dysfunction. ENVIRONMENTAL RESEARCH 2021; 196:110903. [PMID: 33636185 PMCID: PMC8119348 DOI: 10.1016/j.envres.2021.110903] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Exposure to air pollution, specifically particulate matter of diameter ≤2.5 μm (PM2.5), is a well-established risk factor for CVD. However, the contribution of gaseous pollutant exposure to CVD risk is less clear. OBJECTIVE To examine the vascular effects of exposure to individual volatile organic compounds (VOCs) and mixtures of VOCs. METHODS We measured urinary metabolites of acrolein (CEMA and 3HPMA), 1,3-butadiene (DHBMA and MHBMA3), and crotonaldehyde (HPMMA) in 346 nonsmokers with varying levels of CVD risk. On the day of enrollment, we measured blood pressure (BP), reactive hyperemia index (RHI - a measure of endothelial function), and urinary levels of catecholamines and their metabolites. We used generalized linear models for evaluating the association between individual VOC metabolites and BP, RHI, and catecholamines, and we used Bayesian Kernel Machine Regression (BKMR) to assess exposure to VOC metabolite mixtures and BP. RESULTS We found that the levels of 3HPMA were positively associated with systolic BP (0.98 mmHg per interquartile range (IQR) of 3HPMA; CI: 0.06, 1.91; P = 0.04). Stratified analysis revealed an increased association with systolic BP in Black participants despite lower levels of urinary 3HPMA. This association was independent of PM2.5 exposure and BP medications. BKMR analysis confirmed that 3HPMA was the major metabolite associated with higher BP in the presence of other metabolites. We also found that 3HPMA and DHBMA were associated with decreased endothelial function. For each IQR of 3HPMA or DHBMA, there was a -4.4% (CI: -7.2, -0.0; P = 0.03) and a -3.9% (CI: -9.4, -0.0; P = 0.04) difference in RHI, respectively. Although in the entire cohort the levels of several urinary VOC metabolites were weakly associated with urinary catecholamines and their metabolites, in Black participants, DHBMA levels showed strong associations with urinary norepinephrine and normetanephrine levels. DISCUSSION Exposure to acrolein and 1,3-butadiene is associated with endothelial dysfunction and may contribute to elevated risk of hypertension in participants with increased sympathetic tone, particularly in Black individuals.
Collapse
Affiliation(s)
- Katlyn E McGraw
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA; University of Louisville School of Public Health and Information Sciences, USA; Department of Environmental and Occupational Health Sciences, USA
| | - Daniel W Riggs
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA; University of Louisville School of Public Health and Information Sciences, USA; Department of Epidemiology and Population Health, USA
| | - Shesh Rai
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA; University of Louisville School of Public Health and Information Sciences, USA; Department of Bioinformatics and Biostatistics, 485 E Gray Street, Louisville, KY, 40202, USA
| | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, USA; Department of Environmental Health Science, 722 W 168th St, New York, NY, 10032, USA
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA
| | - Jordan Lynch
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA
| | - Nagma Zafar
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Sathya Krishnasamy
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Kira C Taylor
- University of Louisville School of Public Health and Information Sciences, USA; Department of Epidemiology and Population Health, USA
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA
| | - Andrew P DeFilippis
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA; University of Louisville School of Public Health and Information Sciences, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA; Superfund Research Center, 302 E Muhammad Ali Blvd, Louisville, KY 40202, USA.
| |
Collapse
|
26
|
St Helen G, Benowitz NL, Ko J, Jacob P, Gregorich SE, Pérez-Stable EJ, Murphy SE, Hecht SS, Hatsukami DK, Donny EC. Differences in exposure to toxic and/or carcinogenic volatile organic compounds between Black and White cigarette smokers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:211-223. [PMID: 31406274 PMCID: PMC7012700 DOI: 10.1038/s41370-019-0159-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/23/2019] [Indexed: 06/01/2023]
Abstract
OBJECTIVE It is unclear why Black smokers in the United States have elevated risk of some tobacco-related diseases compared to White smokers. One possible causal mechanism is differential intake of tobacco toxicants, but results across studies are inconsistent. Thus, we examined racial differences in biomarkers of toxic volatile organic compounds (VOCs) present in tobacco smoke. METHOD We analyzed baseline data collected from 182 Black and 184 White adult smokers who participated in a randomized clinical trial in 2013-2014 at 10 sites across the United States. We examined differences in urinary levels of ten VOC metabolites, total nicotine equivalents (TNE), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), controlling for covariates such as cigarettes per day (CPD), as well as differences in VOCs per TNE to assess the extent to which tobacco exposure, and not metabolic factors, accounted for racial differences. RESULTS Concentration of metabolites of acrolein, acrylonitrile, ethylene oxide, and methylating agents were significantly higher in Blacks compared to Whites when controlled for covariates. Other than the metabolite of methylating agents, VOCs per TNE did not differ between Blacks and Whites. Concentrations of TNE/CPD and VOCs/CPD were significantly higher in Blacks. Menthol did not contribute to racial differences in VOC levels. CONCLUSIONS For a given level of CPD, Black smokers likely take in higher levels of acrolein, acrylonitrile, and ethylene oxide than White smokers. Our findings are consistent with Blacks taking in more nicotine and toxicants per cigarette smoked, which may explain their elevated disease risk relative to other racial groups.
Collapse
Affiliation(s)
- Gideon St Helen
- Clinical Pharmacology Research Program, Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA, USA.
- Center for Tobacco Control Research and Education (CTCRE), University of California, San Francisco, CA, USA.
| | - Neal L Benowitz
- Clinical Pharmacology Research Program, Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA, USA
- Center for Tobacco Control Research and Education (CTCRE), University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jennifer Ko
- Clinical Pharmacology Research Program, Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA, USA
| | - Peyton Jacob
- Clinical Pharmacology Research Program, Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA, USA
- Center for Tobacco Control Research and Education (CTCRE), University of California, San Francisco, CA, USA
| | - Steven E Gregorich
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, National Heart, Lung and Blood Institute and Office of the Director, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Dorothy K Hatsukami
- Masonic Cancer Center, Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Eric C Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
27
|
In-Depth AGE and ALE Profiling of Human Albumin in Heart Failure: Ex Vivo Studies. Antioxidants (Basel) 2021; 10:antiox10030358. [PMID: 33673523 PMCID: PMC7997412 DOI: 10.3390/antiox10030358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs), particularly carboxymethyl-lysine (CML), have been largely proposed as factors involved in the establishment and progression of heart failure (HF). Despite this evidence, the current literature lacks the comprehensive identification and characterization of the plasma AGEs/ALEs involved in HF (untargeted approach). This work provides the first ex vivo high-resolution mass spectrometry (HR-MS) profiling of AGEs/ALEs occurring in human serum albumin (HSA), the most abundant protein in plasma, characterized by several nucleophilic sites and thus representing the main protein substrate for AGE/ALE formation. A set of AGE/ALE adducts in pooled HF-HSA samples was defined, and a semi-quantitative analysis was carried out in order to finally select those presenting in increased amounts in the HF samples with respect to the control condition. These adducts were statistically confirmed by monitoring their content in individual HF samples by applying a targeted approach. Selected AGEs/ALEs proved to be mostly CML derivatives on Lys residues (i.e., CML-Lys12, CML-Lys378, CML-Lys402), and one deoxy-fructosyl derivative on the Lys 389 (DFK-Lys 389). The nature of CML adducts was finally confirmed using immunological methods and in vitro production of such adducts further confirmed by mass spectrometry.
Collapse
|
28
|
Lorenz DR, Misra V, Chettimada S, Uno H, Wang L, Blount BC, De Jesús VR, Gelman BB, Morgello S, Wolinsky SM, Gabuzda D. Acrolein and other toxicant exposures in relation to cardiovascular disease among marijuana and tobacco smokers in a longitudinal cohort of HIV-positive and negative adults. EClinicalMedicine 2021; 31:100697. [PMID: 33554087 PMCID: PMC7846668 DOI: 10.1016/j.eclinm.2020.100697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Marijuana smoke contains some of the same toxicants present in tobacco smoke. Marijuana smoking is prevalent among HIV+ individuals, but few studies have characterized smoke-related toxicants or associated health outcomes in exclusive marijuana users. METHODS This longitudinal study included 245 participants over age 40 (76% HIV+). 33 plasma and 28 urine metabolites of nicotine, ∆-9-trans-tetrahydrocannabinol, polycyclic aromatic hydrocarbons, and volatile organic compounds were assayed by liquid or gas chromatography/mass spectrometry. Exposures and health outcomes were assessed from surveys and medical records. FINDINGS At baseline, 18% of participants were marijuana-only smokers, 20% tobacco-only smokers, and 24% dual marijuana-tobacco smokers (median (IQR) age 53 (47-60) years, 78% male, 54% white race). Marijuana smoking was independently associated with elevated plasma naphthalenes, 2-hydroxyfluorene sulfate, 4-vinylphenol sulfate, and o-cresol sulfate (p<0·05) and urine acrylonitrile and acrylamide metabolites (p<0·05), but levels were lower than those associated with tobacco smoking. Acrolein metabolite N-Acetyl-S-(3-hydroxypropyl)-l-cysteine (3HPMA) was significantly elevated in plasma and urine in tobacco-only and dual but not marijuana-only smokers, and correlated with nicotine metabolites (p<0·05). The highest tertile of 3HPMA was associated with increased cardiovascular disease diagnoses independent of tobacco smoking, traditional risk factors, and HIV status (odds ratio [95% CI] 3·34 [1·31-8·57]; p = 0·012). INTERPRETATION Smoke-related toxicants, including acrylonitrile and acrylamide metabolites, are detectable in exclusive marijuana smokers, but exposures are lower compared with tobacco or dual smokers. Acrolein exposure is increased by tobacco smoking but not exclusive marijuana smoking in HIV+ and HIV- adults, and contributes to cardiovascular disease in tobacco smokers. FUNDING U.S. NIH.
Collapse
Affiliation(s)
- David R. Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Hajime Uno
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lanqing Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C. Blount
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Víctor R. De Jesús
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA 02215, USA
- Corresponding author.
| |
Collapse
|
29
|
Liao S, Zhang J, Shi S, Gong D, Lu X, Cheang I, Zhang H, Li X. Association of aldehyde exposure with cardiovascular disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111385. [PMID: 33010595 DOI: 10.1016/j.ecoenv.2020.111385] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The effect of aldehyde exposure on the cardiovascular system remains unclear. The objective of this study was to determine whether aldehyde exposure is associated with the prevalence of cardiovascular disease (CVD). We analyzed associations between aldehydes and CVD using data from 1962 adult participants in the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2014. Multivariable logistic regression and restricted cubic spline models were used to examine the association between aldehydes and CVD. The prevalence of CVD was 10.3%. After adjusting for confounding factors, including age, sex, education level, race, diabetes mellitus, smoking, alcohol use, hypertension, body mass index, the poverty-income ratio, physical activity, energy intake, high-density cholesterol (HDL) and low-density cholesterol (LDL), compared with the lowest quartiles, the odds ratios (ORs) with 95% confidence intervals (CIs) for CVD across the quartiles were 0.52 (0.31, 0.87), 0.73 (0.43, 1.22), and 1.13 (0.68, 1.86) for benzaldehyde and 1.48 (0.87, 2.52), 1.70 (1.01, 2.92), and 2.13 (1.19, 3.86) for isopentanaldehyde. There was no significant association between other aldehydes and CVD. The restricted cubic spline plot showed a J-curve relationship between benzaldehyde and CVD. The inflection point for the curve was found at a benzaldehyde level of 0.98 ng/ml. The ORs (95% CIs) for CVD were 0.51 (0.31, 0.86) and 1.58 (1.15, 2.17) on the left and right sides of the inflection point, respectively. Our results demonstrate a J-curve relationship between benzaldehyde and CVD. Isopentanaldehyde is positively associated with CVD. Further study is warranted to verify this association and to elucidate its underlying mechanisms.
Collapse
Affiliation(s)
- Shengen Liao
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Jian Zhang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Shi Shi
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Dexing Gong
- Institute of Public Health, Guangdong Center for Disease Control and Prevention, Guangzhou, 510000, China
| | - Xinyi Lu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Haifeng Zhang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China.
| |
Collapse
|
30
|
Arman S, İşisağ Üçüncü S. Cardiac toxicity of acrolein exposure in embryonic zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22423-22433. [PMID: 32307682 DOI: 10.1007/s11356-020-08853-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Acrolein is a widely distributed pollutant produced from various sources such as industrial waste, organic combustion, and power plant emissions. It is also intentionally released into irrigation canals to control invasive aquatic plants. Zebrafish (Danio rerio) has a good reputation for being an attractive model organism for developmental and toxicological research. In this study, zebrafish embryos were exposed to acrolein to investigate the cardiotoxic effects. The 96-h LC50 (median lethal concentration) value of acrolein was determined as 654.385 μg/L. Then, the embryos were treated with the sublethal experimental concentrations of acrolein (1, 4, 16, 64, and 256 μg/L) for 96 h. Embryos were examined at 48, 72, and 96 h post-fertilization (hpf). Acrolein affected the cardiac morphology and function of the embryos. Sinus venosus-bulbus arteriosus (SV-BA) distance of 64 μg/L and 256 μg/L acrolein groups was elongated compared with the control samples. Immunostaining with MF20 antibody clearly exhibited that the atrium positioned posterior to the ventricle which indicated cardiac looping inhibition. Histological preparations also showed the mispositioning and the lumens of the chambers narrowed. Acrolein-induced increased heart rate was noted in the 4, 16, 64, and 256 μg/L treatment groups. Taken together, these results indicated that acrolein disrupted the heart development and cardiac function in zebrafish, suggesting that its water-borne risks should be considered seriously.
Collapse
Affiliation(s)
- Sezgi Arman
- Department of Biology, Faculty of Arts and Sciences, Sakarya University, 54050, Serdivan, Sakarya, Turkey.
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
31
|
Grootveld M, Percival BC, Leenders J, Wilson PB. Potential Adverse Public Health Effects Afforded by the Ingestion of Dietary Lipid Oxidation Product Toxins: Significance of Fried Food Sources. Nutrients 2020; 12:E974. [PMID: 32244669 PMCID: PMC7254282 DOI: 10.3390/nu12040974] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Exposure of polyunsaturated fatty acid (PUFA)-rich culinary oils (COs) to high temperature frying practices generates high concentrations of cytotoxic and genotoxic lipid oxidation products (LOPs) via oxygen-fueled, recycling peroxidative bursts. These toxins, including aldehydes and epoxy-fatty acids, readily penetrate into fried foods and hence are available for human consumption; therefore, they may pose substantial health hazards. Although previous reports have claimed health benefits offered by the use of PUFA-laden COs for frying purposes, these may be erroneous in view of their failure to consider the negating adverse public health threats presented by food-transferable LOPs therein. When absorbed from the gastrointestinal (GI) system into the systemic circulation, such LOPs may significantly contribute to enhanced risks of chronic non-communicable diseases (NCDs), e.g. cancer, along with cardiovascular and neurological diseases. Herein, we provide a comprehensive rationale relating to the public health threats posed by the dietary ingestion of LOPs in fried foods. We begin with an introduction to sequential lipid peroxidation processes, describing the noxious effects of LOP toxins generated therefrom. We continue to discuss GI system interactions, the metabolism and biotransformation of primary lipid hydroperoxide LOPs and their secondary products, and the toxicological properties of these agents, prior to providing a narrative on chemically-reactive, secondary aldehydic LOPs available for human ingestion. In view of a range of previous studies focused on their deleterious health effects in animal and cellular model systems, some emphasis is placed on the physiological fate of the more prevalent and toxic α,β-unsaturated aldehydes. We conclude with a description of targeted nutritional and interventional strategies, whilst highlighting the urgent and unmet clinical need for nutritional and epidemiological trials probing relationships between the incidence of NCDs, and the frequency and estimated quantities of dietary LOP intake.
Collapse
Affiliation(s)
- Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (B.C.P.); (J.L.); (P.B.W.)
| | | | | | | |
Collapse
|
32
|
Reis-Mendes A, Carvalho F, Remião F, Sousa E, Bastos MDL, Costa VM. The Main Metabolites of Fluorouracil + Adriamycin + Cyclophosphamide (FAC) Are Not Major Contributors to FAC Toxicity in H9c2 Cardiac Differentiated Cells. Biomolecules 2019; 9:98. [PMID: 30862114 PMCID: PMC6468772 DOI: 10.3390/biom9030098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the clinical practice, the combination of 5-fluorouracil (5-FU) + Adriamycin (also known as doxorubicin, DOX) + cyclophosphamide (CYA) (known as FAC) is used to treat breast cancer. The FAC therapy, however, carries some serious risks, namely potential cardiotoxic effects, although the mechanisms are still unclear. In the present study, the role of the main metabolites regarding FAC-induced cardiotoxicity was assessed at clinical relevant concentrations. Seven-day differentiated H9c2 cells were exposed for 48 h to the main metabolites of FAC, namely the metabolite of 5-FU, α-fluoro-β-alanine (FBAL, 50 or 100 μM), of DOX, doxorubicinol (DOXOL, 0.2 or 1 μM), and of CYA, acrolein (ACRO, 1 or 10 μM), as well as to their combination. The parent drugs (5-FU 50 μM, DOX 1 μM, and CYA 50 μM) were also tested isolated or in combination with the metabolites. Putative cytotoxicity was evaluated through phase contrast microscopy, Hoechst staining, membrane mitochondrial potential, and by two cytotoxicity assays: the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and the neutral red (NR) lysosomal incorporation. The metabolite DOXOL was more toxic than FBAL and ACRO in the MTT and NR assays. When in combination, neither FBAL nor ACRO increased DOXOL-induced cytotoxicity. No nuclear condensation was observed for any of the tested combinations; however, a significant mitochondrial potential depolarization after FBAL 100 μM + DOXOL 1 μM + ACRO 10 μM or FBAL 100 μM + DOXOL 1 μM exposure was seen at 48 h. When tested alone DOX 1 μM was more cytotoxic than all the parent drugs and metabolites in both the cytotoxicity assays performed. These results demonstrated that DOXOL was the most toxic of all the metabolites tested; nonetheless, the metabolites do not seem to be the major contributors to FAC-induced cardiotoxicity in this cardiac model.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
- CIIMAR⁻Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
33
|
Chen HJ, Wang CC, Chan DC, Chiu CY, Yang RS, Liu SH. Adverse effects of acrolein, a ubiquitous environmental toxicant, on muscle regeneration and mass. J Cachexia Sarcopenia Muscle 2019; 10:165-176. [PMID: 30378754 PMCID: PMC6438343 DOI: 10.1002/jcsm.12362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acrolein is an extremely electrophilic aldehyde. Increased urinary acrolein adducts have been found in type 2 diabetic patients and people with a smoking habit. The increased blood acrolein was shown in patients who received the cancer drug cyclophosphamide. Both diabetes and smoking are risk factors for skeletal muscle wasting or atrophy. Acrolein has been found to induce myotube atrophy in vitro. The in vitro and in vivo effects and mechanisms of acrolein on myogenesis and the in vivo effect of acrolein on muscle wasting still remain unclear. METHODS C2C12 myoblasts were used to assess the effects of low-dose acrolein (0.125-1 μM) on myogenesis in vitro. Mice were exposed daily to acrolein in distilled water by oral administration (2.5 and 5 mg/kg) for 4 weeks with or without glycerol-induced muscle injury to investigate the effects of acrolein on muscle wasting and regeneration. RESULTS Non-cytotoxic-concentration acrolein dose dependently inhibited myogenic differentiation in myoblasts (myotube formation inhibition: 0.5 and 1 μM, 66.25% and 46.25% control, respectively, n = 4, P < 0.05). The protein expression for myogenesis-related signalling molecules (myogenin and phosphorylated Akt: 0.5 and 1 μM, 85.15% and 51.52% control and 62.63% and 56.57% control, respectively, n = 4, P < 0.05) and myosin heavy chain (MHC: 0.5 and 1 μM, 63.64% and 52.53% control, n = 4, P < 0.05) were decreased in acrolein-treated myoblasts. Over-expression of the constitutively active form of Akt in myoblasts during differentiation prevented the inhibitory effects of acrolein (1 μM) on myogenesis (MHC and myogenin protein expression: acrolein with or without constitutively active Akt, 64.65% and 105.21% control and 69.14% and 102.02% control, respectively, n = 5, P < 0.05). Oral administration of acrolein for 4 weeks reduced muscle weights (5 mg/kg/day: 65.52% control, n = 6, P < 0.05) and cross-sectional area of myofibers in soleus muscles (5 mg/kg/day: 79.92% control, n = 6, P < 0.05) with an up-regulation of atrogin-1 and a down-regulation of phosphorylated Akt protein expressions. Acrolein retarded soleus muscle regeneration in a glycerol-induced muscle regeneration mouse model (5 mg/kg/day: 49.29% control, n = 4, P < 0.05). Acrolein exposure reduced muscle endurance during rotarod fatigue performance in mice with or without glycerol-induced muscle injury (5 mg/kg/day without glycerol: 30.43% control, n = 4, P < 0.05). Accumulation of acrolein protein adducts could be detected in the soleus muscles of acrolein-treated mice. CONCLUSIONS Low-dose acrolein significantly inhibited myogenic differentiation in vitro, which might be through inhibition of Akt signalling. Acrolein induced muscle wasting and retarded muscle regeneration in mice. These results suggest that acrolein may be a risk factor for myogenesis and disease-related myopathy.
Collapse
Affiliation(s)
- Huang-Jen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ding-Cheng Chan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Geriatrics and Gerontology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Carnosine protects cardiac myocytes against lipid peroxidation products. Amino Acids 2018; 51:123-138. [PMID: 30449006 DOI: 10.1007/s00726-018-2676-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
Endogenous histidyl dipeptides such as carnosine (β-alanine-L-histidine) form conjugates with lipid peroxidation products such as 4-hydroxy-trans-2-nonenal (HNE and acrolein), chelate metals, and protect against myocardial ischemic injury. Nevertheless, it is unclear whether these peptides protect against cardiac injury by directly reacting with lipid peroxidation products. Hence, to examine whether changes in the structure of carnosine could affect its aldehyde reactivity and metal chelating ability, we synthesized methylated analogs of carnosine, balenine (β-alanine-Nτ-methylhistidine) and dimethyl balenine (DMB), and measured their aldehyde reactivity and metal chelating properties. We found that methylation of Nτ residue of imidazole ring (balenine) or trimethylation of carnosine backbone at Nτ residue of imidazole ring and terminal amine group dimethyl balenine (DMB) abolishes the ability of these peptides to react with HNE. Incubation of balenine with acrolein resulted in the formation of single product (m/z 297), whereas DMB did not react with acrolein. In comparison with carnosine, balenine exhibited moderate acrolein quenching capacity. The Fe2+ chelating ability of balenine was higher than that of carnosine, whereas DMB lacked chelating capacity. Pretreatment of cardiac myocytes with carnosine increased the mean lifetime of myocytes superfused with HNE or acrolein compared with balenine or DMB. Collectively, these results suggest that carnosine protects cardiac myocytes against HNE and acrolein toxicity by directly reacting with these aldehydes. This reaction involves both the amino group of β-alanyl residue and the imidazole residue of L-histidine. Methylation of these sites prevents or abolishes the aldehyde reactivity of carnosine, alters its metal-chelating property, and diminishes its ability to prevent electrophilic injury.
Collapse
|
35
|
Wu X, Li C, Mariyam Z, Jiang P, Zhou M, Zeb F, Haq IU, Chen A, Feng Q. Acrolein-induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol. J Cell Physiol 2018; 234:475-485. [PMID: 29953618 DOI: 10.1002/jcp.26600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
Acrolein, a highly toxic α, β-unsaturated aldehyde, promotes the progression of atherosclerosis in association with inflammatory signaling pathway and reverse cholesterol transport (RCT) process. Additionally, hepatic flavin containing monooxygenase 3 (FMO3) is involved in the pathogenesis of atherosclerosis by regulating cholesterol metabolism. Hydroxytyrosol (HT), as a major phenolic compound in olive oil, exerts anti-inflammatory and anti-atherogenic activities in vitro and animal models. The current study was designed to evaluate whether FMO3 participated in pro-atherogenic process by acrolein and HT showed protective effect during this process. Here, endothelial cells and macrophage Raw264.7 cells were used as the cell models. Following oxidized low-density lipoprotein (OX-LDL) treatment, acrolein exposure promoted foam cells formation in macrophage Raw264.7 cells. The expression of FMO3 and inflammatory makers such as phospho-NF-κB, IL-1β, TNFα as well as IL-6 were significantly increased. However, ATP-binding cassette transporters subfamily A member 1 (ABCA1), a major transporter in RCT process, was repressed by acrolein. In addition, FMO3 knockdown could suppress inflammatory markers and promote ABCA1 expression. Hydroxytyrosol (HT) was observed to reduce lipid accumulation, FMO3 expression as well as inflammatory response. Moreover, it promoted ABCA1 expression. Therefore, our findings indicated that acrolein-enhanced atherogenesis by increasing FMO3 which increased inflammatory responses and decreased ABCA1 in vitro can be alleviated by HT, which may have a therapeutic potential for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Abstract
Acrolein is a highly reactive unsaturated aldehyde that is formed during the burning of gasoline and diesel fuels, cigarettes, woods and plastics. In addition, acrolein is generated during the cooking or frying of food with fats or oils. Acrolein is also used in the synthesis of many organic chemicals and as a biocide in agricultural and industrial water supply systems. The total emissions of acrolein in the United States from all sources are estimated to be 62,660 tons/year. Acrolein is classified by the Environmental Protection Agency as a high-priority air and water toxicant. Acrolein can exert toxic effects following inhalation, ingestion, and dermal exposures that are dose dependent. Cardiovascular tissues are particularly sensitive to the toxic effects of acrolein based primarily on in vitro and in vivo studies. Acrolein can generate free oxygen radical stress in the heart, decrease endothelial nitric oxide synthase phosphorylation and nitric oxide formation, form cytoplasmic and nuclear protein adducts with myocyte and vascular endothelial cell proteins and cause vasospasm. In this manner, chronic exposure to acrolein can cause myocyte dysfunction, myocyte necrosis and apoptosis and ultimately lead to cardiomyopathy and cardiac failure. Epidemiological studies of acrolein exposure and toxicity should be developed and treatment strategies devised that prevent or significantly limit acrolein cardiovascular toxicity.
Collapse
|
37
|
Keith RJ, Fetterman JL, Riggs DW, O'Toole T, Nystoriak JL, Holbrook M, Lorkiewicz P, Bhatnagar A, DeFilippis AP, Hamburg NM. Protocol to assess the impact of tobacco-induced volatile organic compounds on cardiovascular risk in a cross- sectional cohort: Cardiovascular Injury due to Tobacco Use study. BMJ Open 2018; 8:e019850. [PMID: 29602846 PMCID: PMC5884372 DOI: 10.1136/bmjopen-2017-019850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Tobacco use leads to increased mortality, the majority of which is attributed to cardiovascular disease. Despite this knowledge, the early cardiovascular impact of tobacco product use is not well understood. Tobacco use increases exposure to harmful and potentially harmful constituents including volatile organic compounds (VOCs) such as acrolein and crotonaldehyde, which may contribute to cardiovascular risk. The link between exposure patterns, risk profiles and demographic distribution of tobacco product users, particularly users of new and emerging products, are not well known. Therefore, we designed the Cardiovascular Injury due to Tobacco Use (CITU) study to assess population characteristics, demographic features, exposure patterns and cardiovascular risk in relation to tobacco. METHODS AND ANALYSIS We present the design and methodology of the CITU study, a cross-sectional observational tobacco study conducted in Boston, Massachusetts and Louisville, Kentucky starting in 2014. Healthy participants 21-45 years of age who use tobacco products, including electronic nicotine devices, or who never used tobacco are being recruited. The study aims to recruit an evenly split cohort of African-Americans and Caucasians, that is, sex balanced for evaluation of self-reported tobacco exposure, VOC exposure and tobacco-induced injury profiling. Detailed information about participant's demographics, health status and lifestyle is also collected. ETHICS AND DISSEMINATION The study protocol was approved institutional review boards at both participating universities. All study protocols will protect participant confidentiality. Results from the study will be disseminated via peer-reviewed journals and presented at scientific conferences.
Collapse
Affiliation(s)
- Rachel J Keith
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Jessica L Fetterman
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
- American Heart Association Tobacco Regulation and Addiction Center, Boston University
| | - Daniel W Riggs
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Timothy O'Toole
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Jessica L Nystoriak
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Monika Holbrook
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
- American Heart Association Tobacco Regulation and Addiction Center, Boston University
| | - Pawel Lorkiewicz
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Andrew P DeFilippis
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville
| | - Naomi M Hamburg
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
- American Heart Association Tobacco Regulation and Addiction Center, Boston University
| |
Collapse
|
38
|
Chen WY, Wang M, Zhang J, Barve SS, McClain CJ, Joshi-Barve S. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2686-2697. [PMID: 28935573 PMCID: PMC5818631 DOI: 10.1016/j.ajpath.2017.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/20/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease.
Collapse
Affiliation(s)
- Wei-Yang Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Min Wang
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Jingwen Zhang
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Shirish S Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky; Department of Medicine, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Swati Joshi-Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
39
|
Verhaegen A, Van Gaal L. Do E-cigarettes induce weight changes and increase cardiometabolic risk? A signal for the future. Obes Rev 2017; 18:1136-1146. [PMID: 28660671 DOI: 10.1111/obr.12568] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
Abstract
The prevalence of non-cigarette tobacco use in electronic cigarettes, also called vaping, is rapidly increasing, especially in adolescents and young adults, due to attractive marketing techniques promoting them as healthier alternatives to conventional tobacco cigarettes. Although smoking is associated with weight loss, it increases insulin resistance and attributes to other features of the metabolic syndrome, increasing the cardiometabolic risk profile. Whether vaping has the same deleterious effects on metabolic parameters as regular cigarette smoke has not yet been studied thoroughly in humans. However, animal model experiments attribute comparable effects of e-cigarette smoking, even without nicotine exposure, on weight and metabolic parameters as compared to smoking cigarettes. In this review paper, we want to give an overview of published data on the effects on weight and cardiometabolic parameters of e-cigarette use and formulate some mechanistic hypotheses.
Collapse
Affiliation(s)
- A Verhaegen
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium
| | - L Van Gaal
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
40
|
Lee SE, Park HR, Kim H, Choi Y, Jin YH, Park CS, Ahn HJ, Cho JJ, Park YS. Effect of crotonaldehyde on the induction of COX-2 expression in human endothelial cells. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0038-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Abstract
Many features of the environment have been found to exert an important influence on cardiovascular disease (CVD) risk, progression, and severity. Changes in the environment because of migration to different geographic locations, modifications in lifestyle choices, and shifts in social policies and cultural practices alter CVD risk, even in the absence of genetic changes. Nevertheless, the cumulative impact of the environment on CVD risk has been difficult to assess and the mechanisms by which some environment factors influence CVD remain obscure. Human environments are complex, and their natural, social, and personal domains are highly variable because of diversity in human ecosystems, evolutionary histories, social structures, and individual choices. Accumulating evidence supports the notion that ecological features such as the diurnal cycles of light and day, sunlight exposure, seasons, and geographic characteristics of the natural environment such as altitude, latitude, and greenspaces are important determinants of cardiovascular health and CVD risk. In highly developed societies, the influence of the natural environment is moderated by the physical characteristics of the social environments such as the built environment and pollution, as well as by socioeconomic status and social networks. These attributes of the social environment shape lifestyle choices that significantly modify CVD risk. An understanding of how different domains of the environment, individually and collectively, affect CVD risk could lead to a better appraisal of CVD and aid in the development of new preventive and therapeutic strategies to limit the increasingly high global burden of heart disease and stroke.
Collapse
Affiliation(s)
- Aruni Bhatnagar
- From the Diabetes and Obesity Center and the Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
42
|
Ogunwale M, Li M, Ramakrishnam Raju MV, Chen Y, Nantz MH, Conklin DJ, Fu XA. Aldehyde Detection in Electronic Cigarette Aerosols. ACS OMEGA 2017; 2:1207-1214. [PMID: 28393137 PMCID: PMC5377270 DOI: 10.1021/acsomega.6b00489] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 05/23/2023]
Abstract
Acetaldehyde, acrolein, and formaldehyde are the principal toxic aldehydes present in cigarette smoke and contribute to the risk of cardiovascular disease and noncancerous pulmonary disease. The rapid growth of the use of electronic cigarettes (e-cigarettes) has raised concerns over emissions of these harmful aldehydes. This work determines emissions of these aldehydes in both free and bound (aldehyde-hemiacetal) forms and other carbonyls from the use of e-cigarettes. A novel silicon microreactor with a coating phase of 4-(2-aminooxyethyl)-morpholin-4-ium chloride (AMAH) was used to trap carbonyl compounds in the aerosols of e-cigarettes via oximation reactions. AMAH-aldehyde adducts were measured using gas chromatography-mass spectrometry. 1H nuclear magnetic resonance spectroscopy was used to analyze hemiacetals in the aerosols. These aldehydes were detected in the aerosols of all e-cigarettes. Newer-generation e-cigarette devices generated more aldehydes than the first-generation e-cigarettes because of higher battery power output. Formaldehyde-hemiacetal was detected in the aerosols generated from some e-liquids using the newer e-cigarette devices at a battery power output of 11.7 W and above. The emission of these aldehydes from all e-cigarettes, especially higher levels of aldehydes from the newer-generation e-cigarette devices, indicates the risk of using e-cigarettes.
Collapse
Affiliation(s)
- Mumiye
A. Ogunwale
- Department
of Chemistry, Department of Chemical Engineering,
and American Heart Association—Tobacco
Regulation and Addiction Center, University
of Louisville, Louisville, Kentucky 40292, United States
| | - Mingxiao Li
- Department
of Chemistry, Department of Chemical Engineering,
and American Heart Association—Tobacco
Regulation and Addiction Center, University
of Louisville, Louisville, Kentucky 40292, United States
| | - Mandapati V. Ramakrishnam Raju
- Department
of Chemistry, Department of Chemical Engineering,
and American Heart Association—Tobacco
Regulation and Addiction Center, University
of Louisville, Louisville, Kentucky 40292, United States
| | - Yizheng Chen
- Department
of Chemistry, Department of Chemical Engineering,
and American Heart Association—Tobacco
Regulation and Addiction Center, University
of Louisville, Louisville, Kentucky 40292, United States
| | - Michael H. Nantz
- Department
of Chemistry, Department of Chemical Engineering,
and American Heart Association—Tobacco
Regulation and Addiction Center, University
of Louisville, Louisville, Kentucky 40292, United States
| | - Daniel J. Conklin
- Department
of Chemistry, Department of Chemical Engineering,
and American Heart Association—Tobacco
Regulation and Addiction Center, University
of Louisville, Louisville, Kentucky 40292, United States
| | - Xiao-An Fu
- Department
of Chemistry, Department of Chemical Engineering,
and American Heart Association—Tobacco
Regulation and Addiction Center, University
of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
43
|
|
44
|
Aizenbud D, Aizenbud I, Reznick AZ, Avezov K. Acrolein-an α,β-Unsaturated Aldehyde: A Review of Oral Cavity Exposure and Oral Pathology Effects. Rambam Maimonides Med J 2016; 7:RMMJ.10251. [PMID: 27487309 PMCID: PMC5001796 DOI: 10.5041/rmmj.10251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acrolein is a highly reactive unsaturated aldehyde widely present in the environment, particularly as a product of tobacco smoke. Our previous studies indicated the adverse consequences of even short-term acrolein exposure and proposed a molecular mechanism of its potential harmful effect on oral cavity keratinocytic cells. In this paper we chose to review the broad spectrum of acrolein sources such as pollution, food, and smoking. Consequently, in this paper we consider a high level of oral exposure to acrolein through these sources and discuss the noxious effects it has on the oral cavity including on salivary quality and contents, oral resistance to oxidative stress, and stress mechanism activation in a variety of oral cells.
Collapse
Affiliation(s)
- Dror Aizenbud
- Department of Orthodontics and Craniofacial Anomalies, School of Graduate Dentistry, Rambam Health Care Campus, Oral Biology Research Laboratory, Technion–Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- To whom correspondence should be addressed. E-mail:
| | - Itay Aizenbud
- Hebrew University, Hadassah, School of Dental Medicine, Jerusalem, Israel
| | - Abraham Z. Reznick
- Department of Anatomy and Cell Biology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Katia Avezov
- Department of Orthodontics and Craniofacial Anomalies, School of Graduate Dentistry, Rambam Health Care Campus, Oral Biology Research Laboratory, Technion–Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| |
Collapse
|
45
|
E-Cigarettes and Cardiovascular Disease Risk: Evaluation of Evidence, Policy Implications, and Recommendations. CURRENT CARDIOVASCULAR RISK REPORTS 2016. [DOI: 10.1007/s12170-016-0505-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 2015; 143:242-55. [PMID: 25628402 DOI: 10.1093/toxsci/kfu233] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and its potential as a serious environmental health threat is beginning to be recognized. Humans are exposed to acrolein per oral (food and water), respiratory (cigarette smoke, automobile exhaust, and biocide use) and dermal routes, in addition to endogenous generation (metabolism and lipid peroxidation). Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimer's disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephro-toxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, endoplasmic reticulum stress, and immune dysfunction. This review addresses our current understanding of each pathogenic mechanism of acrolein toxicity, with emphasis on the known and anticipated contribution to clinical disease, and potential therapies.
Collapse
Affiliation(s)
- Akshata Moghe
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Smita Ghare
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Bryan Lamoreau
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Mohammad Mohammad
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Shirish Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Craig McClain
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Swati Joshi-Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| |
Collapse
|
47
|
Zhao Y, Wang C. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:174050. [PMID: 26491656 PMCID: PMC4600480 DOI: 10.1155/2015/174050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/29/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022]
Abstract
Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP) of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced "flushing" syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer's disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology at Weihai, Shandong 264209, China
| | - Chuancai Wang
- Department of Mathematics, Harbin Institute of Technology at Weihai, Shandong 264209, China
| |
Collapse
|
48
|
Perez CM, Hazari MS, Ledbetter AD, Haykal-Coates N, Carll AP, Cascio WE, Winsett DW, Costa DL, Farraj AK. Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhal Toxicol 2015; 27:54-63. [PMID: 25600140 DOI: 10.3109/08958378.2014.984881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CONTEXT Air pollution exposure affects autonomic function, heart rate, blood pressure and left ventricular function. While the mechanism for these effects is uncertain, several studies have reported that air pollution exposure modifies activity of the carotid body, the major organ that senses changes in arterial oxygen and carbon dioxide levels, and elicits downstream changes in autonomic control and cardiac function. OBJECTIVE We hypothesized that exposure to acrolein, an unsaturated aldehyde and mucosal irritant found in cigarette smoke and diesel exhaust, would activate the carotid body chemoreceptor response and lead to secondary cardiovascular responses in rats. MATERIALS AND METHODS Spontaneously hypertensive (SH) rats were exposed once for 3 h to 3 ppm acrolein gas or filtered air in whole body plethysmograph chambers. To determine if the carotid body mediated acrolein-induced cardiovascular responses, rats were pretreated with an inhibitor of cystathionine γ-lyase (CSE), an enzyme essential for carotid body signal transduction. RESULTS Acrolein exposure induced several cardiovascular effects. Systolic, diastolic and mean arterial blood pressure increased during exposure, while cardiac contractility decreased 1 day after exposure. The cardiovascular effects were associated with decreases in pO2, breathing frequency and expiratory time, and increases in sympathetic tone during exposure followed by parasympathetic dominance after exposure. The CSE inhibitor prevented the cardiovascular effects of acrolein exposure. DISCUSSION AND CONCLUSION Pretreatment with the CSE inhibitor prevented the cardiovascular effects of acrolein, suggesting that the cardiovascular responses with acrolein may be mediated by carotid body-triggered changes in autonomic tone. (This abstract does not reflect EPA policy.).
Collapse
Affiliation(s)
- Christina M Perez
- Curriculum in Toxicology, University of North Carolina , Chapel Hill, NC , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Conklin DJ, Guo Y, Jagatheesan G, Kilfoil PJ, Haberzettl P, Hill BG, Baba SP, Guo L, Wetzelberger K, Obal D, Rokosh DG, Prough RA, Prabhu SD, Velayutham M, Zweier JL, Hoetker JD, Riggs DW, Srivastava S, Bolli R, Bhatnagar A. Genetic Deficiency of Glutathione S-Transferase P Increases Myocardial Sensitivity to Ischemia-Reperfusion Injury. Circ Res 2015; 117:437-49. [PMID: 26169370 DOI: 10.1161/circresaha.114.305518] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/13/2015] [Indexed: 01/18/2023]
Abstract
RATIONALE Myocardial ischemia-reperfusion (I/R) results in the generation of oxygen-derived free radicals and the accumulation of lipid peroxidation-derived unsaturated aldehydes. However, the contribution of aldehydes to myocardial I/R injury has not been assessed. OBJECTIVE We tested the hypothesis that removal of aldehydes by glutathione S-transferase P (GSTP) diminishes I/R injury. METHODS AND RESULTS In adult male C57BL/6 mouse hearts, Gstp1/2 was the most abundant GST transcript followed by Gsta4 and Gstm4.1, and GSTP activity was a significant fraction of the total GST activity. mGstp1/2 deletion reduced total GST activity, but no compensatory increase in GSTA and GSTM or major antioxidant enzymes was observed. Genetic deficiency of GSTP did not alter cardiac function, but in comparison with hearts from wild-type mice, the hearts isolated from GSTP-null mice were more sensitive to I/R injury. Disruption of the GSTP gene also increased infarct size after coronary occlusion in situ. Ischemia significantly increased acrolein in hearts, and GSTP deficiency induced significant deficits in the metabolism of the unsaturated aldehyde, acrolein, but not in the metabolism of 4-hydroxy-trans-2-nonenal or trans-2-hexanal; on ischemia, the GSTP-null hearts accumulated more acrolein-modified proteins than wild-type hearts. GSTP deficiency did not affect I/R-induced free radical generation, c-Jun N-terminal kinase activation, or depletion of reduced glutathione. Acrolein exposure induced a hyperpolarizing shift in INa, and acrolein-induced cell death was delayed by SN-6, a Na(+)/Ca(++) exchange inhibitor. Cardiomyocytes isolated from GSTP-null hearts were more sensitive than wild-type myocytes to acrolein-induced protein crosslinking and cell death. CONCLUSIONS GSTP protects the heart from I/R injury by facilitating the detoxification of cytotoxic aldehydes, such as acrolein.
Collapse
Affiliation(s)
- Daniel J Conklin
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.).
| | - Yiru Guo
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Ganapathy Jagatheesan
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Peter J Kilfoil
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Petra Haberzettl
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Bradford G Hill
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Shahid P Baba
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Luping Guo
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Karin Wetzelberger
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Detlef Obal
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - D Gregg Rokosh
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Russell A Prough
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Sumanth D Prabhu
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Murugesan Velayutham
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Jay L Zweier
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - J David Hoetker
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Daniel W Riggs
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Sanjay Srivastava
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Roberto Bolli
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| | - Aruni Bhatnagar
- From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of Biochemistry and Molecular Genetics (P.J.K., R.A.P., A.B.), University of Louisville, KY; Division of Cardiovascular Disease, University of Alabama at Birmingham (S.D.P.); and Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus (M.V., J.L.Z.)
| |
Collapse
|
50
|
Farmer SA, Nelin TD, Falvo MJ, Wold LE. Ambient and household air pollution: complex triggers of disease. Am J Physiol Heart Circ Physiol 2015; 307:H467-76. [PMID: 24929855 DOI: 10.1152/ajpheart.00235.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.
Collapse
|