1
|
Fogo GM, Torres Torres FJ, Speas RL, Anzell AR, Sanderson TH. Agent-based modeling of neuronal mitochondrial dynamics using intrinsic variables of individual mitochondria. iScience 2025; 28:112390. [PMID: 40330889 PMCID: PMC12053660 DOI: 10.1016/j.isci.2025.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/24/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Mitochondrial networks undergo remodeling to regulate form and function. The dynamic nature of mitochondria is maintained by the dueling processes of mitochondrial fission and fusion. Dysfunctional mitochondrial dynamics have been linked to debilitating diseases and injuries, suggesting mitochondrial dynamics as a promising therapeutic target. Increasing our understanding of the factors influencing mitochondrial dynamics will help inform therapeutic development. Utilizing live imaging of primary neurons, we analyzed how intrinsic properties of individual mitochondria influence their behavior. We found that size, shape, mitochondrial membrane potential, and protein oxidation predict mitochondrial fission and fusion. We constructed an agent-based model of mitochondrial dynamics, the mitochondrial dynamics simulation (MiDyS). In silico experiments of neuronal ischemia/reperfusion injury and antioxidant treatment illustrate the utility of MiDyS for testing hypothesized mechanisms of injury progression and evaluating therapeutic strategies. We present MiDyS as a framework for leveraging in silico experimentation to inform and improve the design of therapeutic trials.
Collapse
Affiliation(s)
- Garrett M. Fogo
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Reagan L. Speas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Anthony R. Anzell
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas H. Sanderson
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, USA
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Rai NK, Venugopal H, Rajesh R, Ancha P, Venkatesh S. Mitochondrial complex-1 as a therapeutic target for cardiac diseases. Mol Cell Biochem 2025; 480:869-890. [PMID: 39033212 DOI: 10.1007/s11010-024-05074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Mitochondrial dysfunction is critical for the development and progression of cardiovascular diseases (CVDs). Complex-1 (CI) is an essential component of the mitochondrial electron transport chain that participates in oxidative phosphorylation and energy production. CI is the largest multisubunit complex (~ 1 Mda) and comprises 45 protein subunits encoded by seven mt-DNA genes and 38 nuclear genes. These subunits function as the enzyme nicotinamide adenine dinucleotide hydrogen (NADH): ubiquinone oxidoreductase. CI dysregulation has been implicated in various CVDs, including heart failure, ischemic heart disease, pressure overload, hypertrophy, and cardiomyopathy. Several studies demonstrated that impaired CI function contributes to increased oxidative stress, altered calcium homeostasis, and mitochondrial DNA damage in cardiac cells, leading to cardiomyocyte dysfunction and apoptosis. CI dysfunction has been associated with endothelial dysfunction, inflammation, and vascular remodeling, critical processes in developing atherosclerosis and hypertension. Although CI is crucial in physiological and pathological conditions, no potential therapeutics targeting CI are available to treat CVDs. We believe that a lack of understanding of CI's precise mechanisms and contributions to CVDs limits the development of therapeutic strategies. In this review, we comprehensively analyze the role of CI in cardiovascular health and disease to shed light on its potential therapeutic target role in CVDs.
Collapse
Affiliation(s)
- Neeraj Kumar Rai
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Harikrishnan Venugopal
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ritika Rajesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Pranavi Ancha
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Sundararajan Venkatesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA.
| |
Collapse
|
3
|
Liu X, Sun Y, Gao Y, Zhang X, Li X, Zheng W, Liu M, Zhao T, Yuan XA, Yue M, Liu Z. Anticancer behavior of cyclometallated iridium(III)-tributyltin(IV) carboxylate schiff base complexes with aggregation-induced emission. J Inorg Biochem 2025; 262:112767. [PMID: 39486100 DOI: 10.1016/j.jinorgbio.2024.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Cyclometallated iridium(III) and organotin(IV) carboxylate complexes have shown potential application value in the field of anticancer. However, the widespread aggregation-caused quenching (ACQ) effect of these complexes is not conducive to the exploration of their targeting and anticancer mechanism, and the idea of aggregation-induced emission (AIE) effect can effectively solve this problem. Then, AIE-activated cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes were designed and prepared in this study. Complexes exhibited AIE effect in highly concentrated solution or aggregative state, which facilitated the investigation of subcellular tissue targeting (mitochondria) and cell morphology. Compared with cyclometallated iridium(III) complex and tributyltin(IV) carboxylate monomers, these complexes showed the better in-vitro anti-proliferative activity toward A549 cells, confirming the favorable synergistic anticancer activity. Even for A549/DDP (cisplatin-resistance) cells, these complexes also exhibited the better activity. In addition, complexes showed a mitochondrial apoptotic pathway. Therefore, cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes can be used as the potential substitutes for platinum-based drugs and gain further application.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuan Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenya Zheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ting Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
4
|
Pushie MJ, Sylvain NJ, Hou H, Pendleton N, Wang R, Zimmermann L, Pally M, Cayabyab FS, Peeling L, Kelly ME. X-ray fluorescence mapping of brain tissue reveals the profound extent of trace element dysregulation in stroke pathophysiology. Metallomics 2024; 16:mfae054. [PMID: 39547935 PMCID: PMC11631071 DOI: 10.1093/mtomcs/mfae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The brain is a privileged organ with regard to its trace element composition and maintains a robust barrier system to sequester this specialized environment from the rest of the body and the vascular system. Stroke is caused by loss of adequate blood flow to a region of the brain. Without adequate blood flow ischaemic changes begin almost immediately, triggering an ischaemic cascade, characterized by ion dysregulation, loss of function, oxidative damage, cellular degradation, and breakdown of the barrier that helps maintain this environment. Ion dysregulation is a hallmark of stroke pathophysiology and we observe that most elements in the brain are dysregulated after stroke. X-ray fluorescence-based detection of physiological changes in the neurometallome after stroke reveals profound ion dysregulation within the lesion and surrounding tissue. Not only are most elements significantly dysregulated after stroke, but the level of dysregulation cannot be predicted from a cell-level description of dysregulation. X-ray fluorescence imaging reveals that the stroke lesion retains <25% of essential K+ after stroke, but this element is not concomitantly elevated elsewhere in the organ. Moreover, elements like Na+, Ca2+, and Cl- are vastly elevated above levels available in normal brain tissue (>400%, >200%, and >150%, respectively). We hypothesize that weakening of the blood-brain barrier after stroke allows elements to freely diffuse down their concentration gradient so that the stroke lesion is in equilibrium with blood (and the compartments containing brain interstitial fluid and cerebrospinal fluid). The change observed for the neurometallome likely has consequences for the potential to rescue infarcted tissue, but also presents specific targets for treatment.
Collapse
Affiliation(s)
- M Jake Pushie
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicole J Sylvain
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Huishu Hou
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicole Pendleton
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Richard Wang
- College of Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Liam Zimmermann
- College of Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Maxwell Pally
- College of Arts & Science, Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Francisco S Cayabyab
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Lissa Peeling
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michael E Kelly
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
5
|
Neikirk K, Harris C, Le H, Oliver A, Shao B, Liu K, Beasley HK, Jamison S, Ishimwe JA, Kirabo A, Hinton A. Air pollutants as modulators of mitochondrial quality control in cardiovascular disease. Physiol Rep 2024; 12:e70118. [PMID: 39562150 PMCID: PMC11576129 DOI: 10.14814/phy2.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
It is important to understand the effects of environmental factors such as air pollution on mitochondrial structure and function, especially when these changes increase cardiovascular disease risk. Although lifestyle choices directly determine many mitochondrial diseases, increasingly, it is becoming clear that the structure and function of mitochondria may be affected by pollutants found in the atmosphere (e.g., gases, pesticides herbicide aerosols, or microparticles). To date, the role of such agents on mitochondria and the potential impact on cardiovascular fitness is neglected. Here we offer a review of airborne stressors and pollutants, that may contribute to impairments in mitochondrial function and structure to cause heart disease.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Chanel Harris
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Han Le
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Ashton Oliver
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Bryanna Shao
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Kaihua Liu
- Department of Anatomy of Cell BiologyUniversity of IowaIowa CityIowaUSA
| | - Heather K. Beasley
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Sydney Jamison
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeanne A. Ishimwe
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for ImmunobiologyNashvilleTennesseeUSA
- Vanderbilt Institute for Infection, Immunology and InflammationNashvilleTennesseeUSA
- Vanderbilt Institute for Global HealthNashvilleTennesseeUSA
| | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
6
|
Zhou Q, Li H, Zhang Y, Zhao Y, Wang C, Liu C. Hydrogen-Rich Water to Enhance Exercise Performance: A Review of Effects and Mechanisms. Metabolites 2024; 14:537. [PMID: 39452918 PMCID: PMC11509640 DOI: 10.3390/metabo14100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Hydrogen-rich water (HRW) has garnered significant interest within the sports and exercise science community due to its selective antioxidant properties. Despite its potential benefits, comprehensive reviews specifically addressing its effects on athletic performance are limited. This review aims to assess the impact of HRW on sports performance and explore the underlying molecular biological mechanisms, with the goal of elucidating how HRW might enhance athletic performance. Methods: This review synthesizes research on HRW by examining articles published between 1980 and April 2024 in databases such as PubMed, the Cochrane Library, Embase, Scopus, and Web of Science. Results: It highlights HRW's effects on various aspects of athletic performance, including endurance, strength, sprint times, lunge movements, countermovement jump height, and time to exhaustion. While the precise mechanisms by which HRW affects athletic performance remain unclear, this review investigates its general molecular biological mechanisms beyond the specific context of sports. This provides a theoretical foundation for future research aimed at understanding how HRW can enhance athletic performance. HRW targets the harmful reactive oxygen and nitrogen species produced during intense exercise, thereby reducing oxidative stress-a critical factor in muscle fatigue, inflammation, and diminished athletic performance. HRW helps to scavenge hydroxyl radicals and peroxynitrite, regulate antioxidant enzymes, mitigate lipid peroxidation, reduce inflammation, protect against mitochondrial dysfunction, and modulate cellular signaling pathways. Conclusions: In summary, while a few studies have indicated that HRW may not produce significant beneficial effects, the majority of research supports the conclusion that HRW may enhance athletic performance across various sports. The potential mechanisms underlying these benefits are thought to involve HRW's role as a selective antioxidant, its impact on oxidative stress, and its regulation of redox homeostasis. However, the specific molecular biological mechanisms through which HRW improves athletic performance remain to be fully elucidated.
Collapse
Affiliation(s)
- Qiaorui Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Huixin Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China;
| | - Ye Zhang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China;
| | - Yirui Zhao
- China Ice and Snow Sports College, Beijing Sport University, Beijing 100084, China;
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
7
|
Long F, Su L, Zhang M, Wang S, Sun Q, Liu J, Chen W, Wang H, Chen J. Betulonic Acid Inhibits Type-2 Porcine Reproductive and Respiratory Syndrome Virus Replication by Downregulating Cellular ATP Production. Int J Mol Sci 2024; 25:10366. [PMID: 39408695 PMCID: PMC11477185 DOI: 10.3390/ijms251910366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV) infection, has been a serious threat to the pork industry worldwide and continues to bring significant economic loss. Current vaccination strategies offer limited protection against PRRSV transmission, highlighting the urgent need for novel antiviral approaches. In the present study, we reported for the first time that betulonic acid (BA), a widely available pentacyclic triterpenoids throughout the plant kingdom, exhibited potent inhibition on PRRSV infections in both Marc-145 cells and primary porcine alveolar macrophages (PAMs), with IC50 values ranging from 3.3 µM to 3.7 µM against three different type-2 PRRSV strains. Mechanistically, we showed that PRRSV replication relies on energy supply from cellular ATP production, and BA inhibits PRRSV infection by reducing cellular ATP production. Our findings indicate that controlling host ATP production could be a potential strategy to combat PRRSV infections, and that BA might be a promising therapeutic agent against PRRSV epidemics.
Collapse
Affiliation(s)
- Feixiang Long
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; (F.L.); (L.S.); (M.Z.); (S.W.); (Q.S.); (J.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; (F.L.); (L.S.); (M.Z.); (S.W.); (Q.S.); (J.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; (F.L.); (L.S.); (M.Z.); (S.W.); (Q.S.); (J.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shuhua Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; (F.L.); (L.S.); (M.Z.); (S.W.); (Q.S.); (J.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; (F.L.); (L.S.); (M.Z.); (S.W.); (Q.S.); (J.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jinyi Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; (F.L.); (L.S.); (M.Z.); (S.W.); (Q.S.); (J.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Haihong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; (F.L.); (L.S.); (M.Z.); (S.W.); (Q.S.); (J.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Sun Y, Liu J, Li Q, Zhang X, Cao Z, Bu L, Cao S, Liu X, Yuan XA, Liu Z. Studies of Anticancer Activities In Vitro and In Vivo for Butyltin(IV)-Iridium(III) Imidazole-Phenanthroline Complexes with Aggregation-Induced Emission Properties. Inorg Chem 2024; 63:14641-14655. [PMID: 39053139 DOI: 10.1021/acs.inorgchem.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Organotin(IV) and iridium(III) complexes have shown good application potential in the field of anticancer; however, the aggregation-caused quenching (ACQ) effect induced by high concentration or dose has limited the research on their targeting and anticancer mechanism. Then, a series of aggregation-induced emission (AIE)-activated butyltin(IV)-iridium(III) imidazole-phenanthroline complexes were prepared in this study. Complexes exhibited significant fluorescence improvement in the aggregated state because of the restricted intramolecular rotation (RIR), accompanied by an absolute fluorescence quantum yield of up to 29.2% (IrSn9). Complexes demonstrated potential in vitro antiproliferative and antimigration activity against A549 cells, following a lysosomal-mitochondrial apoptotic pathway. Nude mouse models further confirmed that complexes had favorable in vivo antitumor and antimigration activity in comparison to cisplatin. Therefore, butyltin(IV)-iridium(III) imidazole-phenanthroline complexes possess the potential as potential substitutes for platinum-based drugs.
Collapse
Affiliation(s)
- Yiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qinyu Li
- Experimental Teaching and Equipment Management Center, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ziwei Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Luoyi Bu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuying Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
9
|
Adedokun MA, Enye LA, Akinluyi ET, Ajibola TA, Edem EE. Black seed oil reverses chronic antibiotic-mediated depression and social behaviour deficits via modulation of hypothalamic mitochondrial-dependent markers and insulin expression. IBRO Neurosci Rep 2024; 16:267-279. [PMID: 38379607 PMCID: PMC10876594 DOI: 10.1016/j.ibneur.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic antibiotic use has been reported to impair mitochondrial indices, hypothalamus-mediated metabolic function, and amygdala-regulated emotional processes. Natural substances such as black seed (Nigella sativa) oil could be beneficial in mitigating these impairments. This study aimed to assess the impact of black seed oil (NSO) on depression and sociability indices, redox imbalance, mitochondrial-dependent markers, and insulin expression in mice subjected to chronic ampicillin exposure. Forty adult male BALB/c mice (30 ± 2 g) were divided into five groups: the CTRL group received normal saline, the ABT group received ampicillin, the NSO group received black seed oil, the ABT/NSO group concurrently received ampicillin and black seed oil, and the ABT+NSO group experienced pre-exposure to ampicillin followed by subsequent treatment with black seed oil. The ampicillin-exposed group exhibited depressive-like behaviours, impaired social interactive behaviours, and disruptions in mitochondrial-dependent markers in plasma and hypothalamic tissues, accompanied by an imbalance in antioxidant levels. Moreover, chronic antibiotic exposure downregulated insulin expression in the hypothalamus. However, these impairments were significantly ameliorated in the ABT/NSO, and ABT+NSO groups compared to the untreated antibiotic-exposed group. Overall, findings from this study suggest the beneficial role of NSO as an adjuvant therapy in preventing and abrogating mood behavioural and neural-metabolic impairments of chronic antibiotic exposure.
Collapse
Affiliation(s)
- Mujeeb Adekunle Adedokun
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus Anderson Enye
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Toheeb Adesumbo Ajibola
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
10
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
11
|
Wang S, Liu W, Liu S, Li J, Geng Y, Zhao Y. Improved cardioprotective effect of 3-nitro-N-methyl salicylamide solution after a prolonged preservation time of rat heart. Clin Exp Pharmacol Physiol 2024; 51:e13835. [PMID: 37994166 DOI: 10.1111/1440-1681.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Ischemic reperfusion injury, caused by oxidative stress during reperfusion, is an inevitable outcome of organ transplantation, especially when the organ preservation time is prolonged. Prolonged ischaemic preservation is a valuable technique for improving the success of organ transplantation, but numerous challenges remain. 3-nitro-N-methyl salicylamide (3-NNMS), an inhibitor of mitochondrial electron transport chain complex III, can be used to reduce reactive oxygen species production during blood reperfusion by slowing the electron flow rate of the respiratory chain. Based on this property, a novel preservation solution was developed for the preservation of isolated rat heart and its cardioprotective effect was investigated during an 8-h cold ischaemia preservation time for the first time. For comparison, 3-NNMS was also included in the histidine-tryptophan-ketoglutarate (HTK) solution. Compared to HTK, HTK supplemented with 3-NNMS significantly improved the heart rate of isolated rat hearts after 8 h of cold storage. Both 3-NNMS solution and HTK supplemented with 3-NNMS solution decreased cardiac troponin T and lactate dehydrogenase levels in perfusion fluid and reduced reactive oxygen species and malondialdehyde levels in the myocardium. The 3-NNMS also maintained the membrane potential of myocardial mitochondria and significantly increased superoxide dismutase levels. These results showed that the new 3-NNMS solution can protect mitochondrial and cardiomyocyte function by increasing antioxidant capacity and reducing oxidative stress in cryopreserved rat hearts during a prolonged preservation time, resulting in less myocardial injury and better heart rate.
Collapse
Affiliation(s)
- Shuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Wenjun Liu
- School of Graduate, Harbin Sport University, Harbin, China
| | - Shan Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
- Guiyang Healthcare Vocational University, Guiyang, China
| | - Jiacong Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Yi Geng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
12
|
Zhao J, Yu HQ, Ge FQ, Zhang MR, Song YC, Guo DD, Li QH, Zhu H, Hang PZ. 7,8,3'-Trihydroxyflavone prevents doxorubicin-induced cardiotoxicity and mitochondrial dysfunction via activating Akt signaling pathway in H9c2 cells. Cell Signal 2023; 112:110924. [PMID: 37838311 DOI: 10.1016/j.cellsig.2023.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Clinical application of the widely used chemotherapeutic agent, doxorubicin (DOX), is limited by its cardiotoxicity. Mitochondrial dysfunction has been revealed as a crucial factor in DOX-induced cardiotoxicity. 7,8,3'-Trihydroxyflavone (THF) is a mimetic brain-derived neurotrophic factor with neuroprotective effects. However, the potential effects of THF on DOX-induced cardiomyocyte damage and mitochondrial disorders remain unclear. H9c2 cardiomyoblasts were exposed to DOX and/or THF at different concentrations. Cardiomyocyte injury was evaluated using lactate dehydrogenase (LDH) assay and Live/Dead cytotoxicity kit. Meanwhile, mitochondrial membrane potential (MMP), morphology, mitochondrial reactive oxygen species (mito-ROS) production, and the oxygen consumption rate of cardiomyocytes were measured. The protein levels of key mitochondria-related factors such as adenosine monophosphate-activated protein kinase (AMPK), mitofusin 2 (Mfn2), dynamin-related protein 1 (Drp1), and optic atrophy protein 1 (OPA1) were examined. We found that THF reduced LDH content and death ratio of DOX-treated cardiomyocytes in a concentration-dependent manner, while increasing MMP without significantly affecting the routine and maximum capacity of mitochondrial respiration. Mechanistically, THF increased the activity of Akt and protein levels of Mfn2 and heme oxygenase 1 (HO-1). Moreover, inhibition of Akt reversed the protective role of THF, increased mito-ROS levels, and repressed Mfn2 and HO-1 expression. Therefore, we conclude, THF relieves DOX-induced cardiotoxicity and improves mitochondrial function by activating Akt-mediated Mfn2 and HO-1 pathways. This finding provides promising therapeutic insights for DOX-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Hua-Qing Yu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China; College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Feng-Qin Ge
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China; Medical College, Yangzhou University, Yangzhou 225009, China
| | - Man-Ru Zhang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China; College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yu-Chen Song
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China; Medical College, Yangzhou University, Yangzhou 225009, China
| | - Dan-Dan Guo
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China; Medical College, Yangzhou University, Yangzhou 225009, China
| | - Qi-Hang Li
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China; Medical College, Yangzhou University, Yangzhou 225009, China
| | - Hua Zhu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Peng-Zhou Hang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| |
Collapse
|
13
|
Feng G, Zhang H, Guo Q, Shen X, Wang S, Guo Y, Zhong X. NONHSAT098487.2 protects cardiomyocytes from oxidative stress injury by regulating the Notch pathway. Heliyon 2023; 9:e17388. [PMID: 37408899 PMCID: PMC10319237 DOI: 10.1016/j.heliyon.2023.e17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
Acute myocardial infarction has increasingly become a global health problem and is a primary cause of cardiovascular disease-related death. Although long noncoding RNAs have been reported to play an important role in various cardiovascular diseases, their protective effects on cardiomyocytes against reactive oxygen species-induced oxidative injury have nonetheless been poorly studied. The present study aims to explore the effect of a novel long noncoding RNA, NONHSAT098487.2, on cardiomyocyte injury induced by H2O2. The expression of NONHSAT098487.2 and pathway-related genes was evaluated by quantitative real-time polymerase chain reaction. Cell viability, release of lactate dehydrogenase, and apoptosis levels were detected by cell counting kit-8, lactate dehydrogenase release assay, and flow cytometry analysis, respectively. The protein levels were estimated by western blotting. The results showed that NONHSAT098487.2 was expressed at a high level in peripheral blood mononuclear cells from acute myocardial infarction patients, which showed a positive correlation with the HS-TnT and CK-MB levels of patients. Furthermore, it is also upregulated in human AC16 cardiomyocytes treated with H2O2 or exposed to hypoxia/reoxygenation conditions. Knockdown of NONHSAT098487.2 restrained the Notch signalling pathway and aggravated H2O2-induced cardiomyocyte oxidative stress injury. In contrast, overexpression of NONHSAT098487.2 activated the Notch signalling pathway and suppressed H2O2-induced oxidative stress injury. However, the Notch inhibitor DAPT weakened the protective effects of NONHSAT098487.2. Therefore, the novel lncRNA NONHSAT098487.2 may play a role in protecting cardiomyocytes from oxidative stress injury by regulating the Notch pathway.
Collapse
Affiliation(s)
- Guiju Feng
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Hong Zhang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qingling Guo
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shouyan Wang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yi Guo
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| |
Collapse
|
14
|
Wang L, Liu X, Wu Y, He X, Guo X, Gao W, Tan L, Yuan XA, Liu J, Liu Z. In Vitro and In Vivo Antitumor Assay of Mitochondrially Targeted Fluorescent Half-Sandwich Iridium(III) Pyridine Complexes. Inorg Chem 2023; 62:3395-3408. [PMID: 36763897 DOI: 10.1021/acs.inorgchem.2c03333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Half-sandwich iridium(III) complexes show potential value in the anticancer field. However, complexes with favorable luminescence performance are rare, which limits further investigation of the anticancer mechanism. In this paper, 10 triphenylamine-modified fluorescent half-sandwich iridium(III) pyridine complexes {[(η5-Cpx)Ir(L)Cl2]} (Ir1-Ir10) were prepared and showed potential antiproliferative activity, effectively inhibiting the migration of A549 cells. Ir6, showing the best activity among these complexes, exhibited excellent fluorescence performance (absolute fluorescence quantum yield of 15.17%) in solution. Laser confocal detection showed that Ir6 followed an energy-dependent cellular uptake mechanism, specifically accumulating in mitochondria (Pearson co-localization coefficient of 0.95). A Western blot assay further confirmed the existence of a mitochondrial apoptotic channel. Additionally, Ir6 could arrest the cell cycle at the G2/M phase, catalyze NADH oxidation, reduce the mitochondrial membrane potential, induce an increase in the level of intracellular reactive oxygen species, and exhibit a mechanism of oxidation. An in vivo antitumor assay confirmed that Ir6 can effectively inhibit tumor growth and is safer than cisplatin.
Collapse
Affiliation(s)
- Liyan Wang
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xian He
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaohui Guo
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenshan Gao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lin Tan
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
15
|
Al Rimon R, Nelson VL, Brunt KR, Kassiri Z. High-impact opportunities to address ischemia: a focus on heart and circulatory research. Am J Physiol Heart Circ Physiol 2022; 323:H1221-H1230. [PMID: 36331554 DOI: 10.1152/ajpheart.00402.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myocardial ischemic injury and its resolution are the key determinants of morbidity or mortality in heart failure. The cause and duration of ischemia in patients vary. Numerous experimental models and methods have been developed to define genetic, metabolic, molecular, cellular, and pathophysiological mechanisms, in addition to defining structural and functional deterioration of cardiovascular performance. The rapid rise of big data, such as single-cell analysis techniques with bioinformatics, machine learning, and neural networking, brings a new level of sophistication to our understanding of myocardial ischemia. This mini-review explores the multifaceted nature of ischemic injury in the myocardium. We highlight recent state-of-the-art findings and strategies to show new directions of high-impact approach to understanding myocardial tissue remodeling. This next age of heart and circulatory physiology research will be more comprehensive and collaborative to uncover the origin, progression, and manifestation of heart failure while strengthening novel treatment strategies.
Collapse
Affiliation(s)
- Razoan Al Rimon
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Victoria L Nelson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|