1
|
Ma Y, Gong H, Cheng L, Zhang D. Discoid Domain Receptors Signaling in Macrophages-Mediated Diseases. Int J Gen Med 2025; 18:907-926. [PMID: 39990299 PMCID: PMC11847422 DOI: 10.2147/ijgm.s487093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/18/2025] [Indexed: 02/25/2025] Open
Abstract
Macrophages, as a crucial component of the body's immune system, play a vital role in the onset, progression, and outcome of diseases. Discoidin domain receptors (DDRs), important members of the novel receptor tyrosine kinase superfamily, exhibit unique functions in macrophage physiology. Through interactions with the extracellular matrix, DDRs activate signaling pathways such as p38 MAPK and NF-κB, regulating macrophage adhesion, migration, and secretory functions, thereby influencing their behavior in diseases. Recent studies have indicated a direct correlation between DDRs and the progression of various diseases, including inflammation, cancer, and fibrosis. However, there remain numerous knowledge gaps regarding the specific mechanisms by which DDRs function in macrophage-mediated diseases. This article provides an in-depth summary of the regulatory mechanisms of DDRs on macrophages, detailing their modulatory roles in various diseases through macrophages and their underlying mechanisms. The aim is to offer new insights into biomedical therapies targeting DDRs and the development of novel drugs.
Collapse
Affiliation(s)
- Yaohui Ma
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Long Cheng
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
2
|
Bok S, Yallowitz AR, Sun J, McCormick J, Cung M, Hu L, Lalani S, Li Z, Sosa BR, Baumgartner T, Byrne P, Zhang T, Morse KW, Mohamed FF, Ge C, Franceschi RT, Cowling RT, Greenberg BH, Pisapia DJ, Imahiyerobo TA, Lakhani S, Ross ME, Hoffman CE, Debnath S, Greenblatt MB. A multi-stem cell basis for craniosynostosis and calvarial mineralization. Nature 2023; 621:804-812. [PMID: 37730988 PMCID: PMC10799660 DOI: 10.1038/s41586-023-06526-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC1 (CTSK+ CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2+ CSC) that we identified in this study. Deletion of Twist1, a gene associated with craniosynostosis in humans2,3, solely in CTSK+ CSCs is sufficient to drive craniosynostosis in mice, but the sites that are destined to fuse exhibit an unexpected depletion of CTSK+ CSCs and a corresponding expansion of DDR2+ CSCs, with DDR2+ CSC expansion being a direct maladaptive response to CTSK+ CSC depletion. DDR2+ CSCs display full stemness features, and our results establish the presence of two distinct stem cell lineages in the sutures, with both populations contributing to physiologic calvarial mineralization. DDR2+ CSCs mediate a distinct form of endochondral ossification without the typical haematopoietic marrow formation. Implantation of DDR2+ CSCs into suture sites is sufficient to induce fusion, and this phenotype was prevented by co-transplantation of CTSK+ CSCs. Finally, the human counterparts of DDR2+ CSCs and CTSK+ CSCs display conserved functional properties in xenograft assays. The interaction between these two stem cell populations provides a new biologic interface for the modulation of calvarial mineralization and suture patency.
Collapse
Affiliation(s)
- Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alisha R Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason McCormick
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Michelle Cung
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lingling Hu
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Sarfaraz Lalani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zan Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Branden R Sosa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomas Baumgartner
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Paul Byrne
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Kyle W Morse
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Fatma F Mohamed
- Department of Periodontics, Prevention and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chunxi Ge
- Department of Periodontics, Prevention and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Periodontics, Prevention and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - Barry H Greenberg
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thomas A Imahiyerobo
- Division of Plastic Surgery, Department of Surgery, New York-Presbyterian Hospital and Columbia University Medical Center, New York, NY, USA
| | - Shenela Lakhani
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Caitlin E Hoffman
- Department of Neurological Surgery, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, USA
| | - Shawon Debnath
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Research Division, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
3
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
4
|
Yang X, Li J, Zhao L, Chen Y, Cui Z, Xu T, Li X, Wu S, Zhang Y. Targeting adipocytic discoidin domain receptor 2 impedes fat gain while increasing bone mass. Cell Death Differ 2022; 29:737-749. [PMID: 34645939 PMCID: PMC8990016 DOI: 10.1038/s41418-021-00887-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity is closely associated with low-bone-mass disorder. Discoidin domain receptor 2 (DDR2) plays essential roles in skeletal metabolism, and is probably involved in fat metabolism. To test the potential role of DDR2 in fat and fat-bone crosstalk, Ddr2 conditional knockout mice (Ddr2Adipo) were generated in which Ddr2 gene is exclusively deleted in adipocytes by Adipoq Cre. We found that Ddr2Adipo mice are protected from fat gain on high-fat diet, with significantly decreased adipocyte size. Ddr2Adipo mice exhibit significantly increased bone mass and mechanical properties, with enhanced osteoblastogenesis and osteoclastogenesis. Marrow adipocyte is diminished in the bone marrow of Ddr2Adipo mice, due to activation of lipolysis. Fatty acid in the bone marrow was reduced in Ddr2Adipo mice. RNA-Seq analysis identified adenylate cyclase 5 (Adcy5) as downstream molecule of Ddr2. Mechanically, adipocytic Ddr2 modulates Adcy5-cAMP-PKA signaling, and Ddr2 deficiency stimulates lipolysis and supplies fatty acid for oxidation in osteoblasts, leading to the enhanced osteoblast differentiation and bone mass. Treatment of Adcy5 specific inhibitor abolishes the increased bone mass gain in Ddr2Adipo mice. These observations establish, for the first time, that Ddr2 plays an essential role in the crosstalk between fat and bone. Targeting adipocytic Ddr2 may be a potential strategy for treating obesity and pathological bone loss simultaneously.
Collapse
Affiliation(s)
- Xiaoyu Yang
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.452842.d0000 0004 8512 7544The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Li
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Liting Zhao
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yazhuo Chen
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zhijun Cui
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.47840.3f0000 0001 2181 7878Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA USA
| | - Taotao Xu
- grid.417400.60000 0004 1799 0055The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xu Li
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shufang Wu
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Zhang
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
5
|
Mohamed FF, Ge C, Cowling RT, Lucas D, Hallett SA, Ono N, Binrayes AA, Greenberg B, Franceschi RT. The collagen receptor, discoidin domain receptor 2, functions in Gli1-positive skeletal progenitors and chondrocytes to control bone development. Bone Res 2022; 10:11. [PMID: 35140200 PMCID: PMC8828874 DOI: 10.1038/s41413-021-00182-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/31/2021] [Accepted: 10/24/2021] [Indexed: 01/02/2023] Open
Abstract
Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor kinase that, together with integrins, is required for cells to respond to the extracellular matrix. Ddr2 loss-of-function mutations in humans and mice cause severe defects in skeletal growth and development. However, the cellular functions of Ddr2 in bone are not understood. Expression and lineage analysis showed selective expression of Ddr2 at early stages of bone formation in the resting zone and proliferating chondrocytes and periosteum. Consistent with these findings, Ddr2+ cells could differentiate into hypertrophic chondrocytes, osteoblasts, and osteocytes and showed a high degree of colocalization with the skeletal progenitor marker, Gli1. A conditional deletion approach showed a requirement for Ddr2 in Gli1-positive skeletal progenitors and chondrocytes but not mature osteoblasts. Furthermore, Ddr2 knockout in limb bud chondroprogenitors or purified marrow-derived skeletal progenitors inhibited chondrogenic or osteogenic differentiation, respectively. This work establishes a cell-autonomous function for Ddr2 in skeletal progenitors and cartilage and emphasizes the critical role of this collagen receptor in bone development.
Collapse
Affiliation(s)
- Fatma F Mohamed
- Department of Periodontics & Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chunxi Ge
- Department of Periodontics & Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Randy T Cowling
- Division of Cardiovascular Medicine, University of California at San Diego, San Diego, CA, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Shawn A Hallett
- Department of Periodontics & Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Noriaki Ono
- Department of Orthodontics & Pediatric Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Abdul-Aziz Binrayes
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Barry Greenberg
- Division of Cardiovascular Medicine, University of California at San Diego, San Diego, CA, USA
| | - Renny T Franceschi
- Department of Periodontics & Oral Medicine, University of Michigan, Ann Arbor, MI, USA. .,Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Grabowski K, Herlan L, Witten A, Qadri F, Eisenreich A, Lindner D, Schädlich M, Schulz A, Subrova J, Mhatre KN, Primessnig U, Plehm R, van Linthout S, Escher F, Bader M, Stoll M, Westermann D, Heinzel FR, Kreutz R. Cpxm2 as a novel candidate for cardiac hypertrophy and failure in hypertension. Hypertens Res 2022; 45:292-307. [PMID: 34916661 PMCID: PMC8766285 DOI: 10.1038/s41440-021-00826-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.
Collapse
Affiliation(s)
- Katja Grabowski
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Laura Herlan
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Anika Witten
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Fatimunnisa Qadri
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany
| | - Andreas Eisenreich
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Diana Lindner
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Clinic for Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schädlich
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Angela Schulz
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Jana Subrova
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Ketaki Nitin Mhatre
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany
| | - Uwe Primessnig
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ralph Plehm
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany
| | - Sophie van Linthout
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Charité—Universitätsmedizin Berlin, BCRT—Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Felicitas Escher
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.486773.9Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, Berlin, Germany
| | - Michael Bader
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10178 Berlin, Germany ,grid.4562.50000 0001 0057 2672University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Monika Stoll
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany ,grid.5012.60000 0001 0481 6099Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dirk Westermann
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Clinic for Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Frank R. Heinzel
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178, Berlin, Germany.
| |
Collapse
|
7
|
Umbarkar P, Ejantkar S, Tousif S, Lal H. Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells 2021; 10:cells10092412. [PMID: 34572061 PMCID: PMC8471002 DOI: 10.3390/cells10092412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation of extracellular matrix components. This is a physiological response to tissue injury. However, uncontrolled fibrosis leads to adverse cardiac remodeling and contributes significantly to cardiac dysfunction. Fibroblasts (FBs) are the primary drivers of myocardial fibrosis. However, until recently, FBs were thought to play a secondary role in cardiac pathophysiology. This review article will present the evolving story of fibroblast biology and fibrosis in cardiac diseases, emphasizing their recent shift from a supporting to a leading role in our understanding of the pathogenesis of cardiac diseases. Indeed, this story only became possible because of the emergence of FB-specific mouse models. This study includes an update on the advancements in the generation of FB-specific mouse models. Regarding the underlying mechanisms of myocardial fibrosis, we will focus on the pathways that have been validated using FB-specific, in vivo mouse models. These pathways include the TGF-β/SMAD3, p38 MAPK, Wnt/β-Catenin, G-protein-coupled receptor kinase (GRK), and Hippo signaling. A better understanding of the mechanisms underlying fibroblast activation and fibrosis may provide a novel therapeutic target for the management of adverse fibrotic remodeling in the diseased heart.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| | - Suma Ejantkar
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| |
Collapse
|
8
|
Titus AS, Venugopal H, Ushakumary MG, Wang M, Cowling RT, Lakatta EG, Kailasam S. Discoidin Domain Receptor 2 Regulates AT1R Expression in Angiotensin II-Stimulated Cardiac Fibroblasts via Fibronectin-Dependent Integrin-β1 Signaling. Int J Mol Sci 2021; 22:ijms22179343. [PMID: 34502259 PMCID: PMC8431251 DOI: 10.3390/ijms22179343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
This study probed the largely unexplored regulation and role of fibronectin in Angiotensin II-stimulated cardiac fibroblasts. Using gene knockdown and overexpression approaches, Western blotting, and promoter pull-down assay, we show that collagen type I-activated Discoidin Domain Receptor 2 (DDR2) mediates Angiotensin II-dependent transcriptional upregulation of fibronectin by Yes-activated Protein in cardiac fibroblasts. Furthermore, siRNA-mediated fibronectin knockdown attenuated Angiotensin II-stimulated expression of collagen type I and anti-apoptotic cIAP2, and enhanced cardiac fibroblast susceptibility to apoptosis. Importantly, an obligate role for fibronectin was observed in Angiotensin II-stimulated expression of AT1R, the Angiotensin II receptor, which would link extracellular matrix (ECM) signaling and Angiotensin II signaling in cardiac fibroblasts. The role of fibronectin in Angiotensin II-stimulated cIAP2, collagen type I, and AT1R expression was mediated by Integrin-β1-integrin-linked kinase signaling. In vivo, we observed modestly reduced basal levels of AT1R in DDR2-null mouse myocardium, which were associated with the previously reported reduction in myocardial Integrin-β1 levels. The role of fibronectin, downstream of DDR2, could be a critical determinant of cardiac fibroblast-mediated wound healing following myocardial injury. In summary, our findings suggest a complex mechanism of regulation of cardiac fibroblast function involving two major ECM proteins, collagen type I and fibronectin, and their receptors, DDR2 and Integrin-β1.
Collapse
Affiliation(s)
- Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Harikrishnan Venugopal
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Mereena George Ushakumary
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA; (M.W.); (E.G.L.)
| | - Randy T. Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, La Jolla, CA 92093, USA;
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA; (M.W.); (E.G.L.)
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
- Correspondence:
| |
Collapse
|
9
|
Matos-Nieves A, Manivannan S, Majumdar U, McBride KL, White P, Garg V. A Multi-Omics Approach Using a Mouse Model of Cardiac Malformations for Prioritization of Human Congenital Heart Disease Contributing Genes. Front Cardiovasc Med 2021; 8:683074. [PMID: 34504875 PMCID: PMC8421733 DOI: 10.3389/fcvm.2021.683074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Congenital heart disease (CHD) is the most common type of birth defect, affecting ~1% of all live births. Malformations of the cardiac outflow tract (OFT) account for ~30% of all CHD and include a range of CHDs from bicuspid aortic valve (BAV) to tetralogy of Fallot (TOF). We hypothesized that transcriptomic profiling of a mouse model of CHD would highlight disease-contributing genes implicated in congenital cardiac malformations in humans. To test this hypothesis, we utilized global transcriptional profiling differences from a mouse model of OFT malformations to prioritize damaging, de novo variants identified from exome sequencing datasets from published cohorts of CHD patients. Notch1 +/- ; Nos3 -/- mice display a spectrum of cardiac OFT malformations ranging from BAV, semilunar valve (SLV) stenosis to TOF. Global transcriptional profiling of the E13.5 Notch1 +/- ; Nos3 -/- mutant mouse OFTs and wildtype controls was performed by RNA sequencing (RNA-Seq). Analysis of the RNA-Seq dataset demonstrated genes belonging to the Hif1α, Tgf-β, Hippo, and Wnt signaling pathways were differentially expressed in the mutant OFT. Mouse to human comparative analysis was then performed to determine if patients with TOF and SLV stenosis display an increased burden of damaging, genetic variants in gene homologs that were dysregulated in Notch1 +/- ; Nos3 -/- OFT. We found an enrichment of de novo variants in the TOF population among the 1,352 significantly differentially expressed genes in Notch1 +/- ; Nos3 -/- mouse OFT but not the SLV population. This association was not significant when comparing only highly expressed genes in the murine OFT to de novo variants in the TOF population. These results suggest that transcriptomic datasets generated from the appropriate temporal, anatomic and cellular tissues from murine models of CHD may provide a novel approach for the prioritization of disease-contributing genes in patients with CHD.
Collapse
Affiliation(s)
- Adrianna Matos-Nieves
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sathiyanarayanan Manivannan
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kim L. McBride
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
| | - Peter White
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
The role of basement membranes in cardiac biology and disease. Biosci Rep 2021; 41:229516. [PMID: 34382650 PMCID: PMC8390786 DOI: 10.1042/bsr20204185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Basement membranes are highly specialised extracellular matrix structures that within the heart underlie endothelial cells and surround cardiomyocytes and vascular smooth muscle cells. They generate a dynamic and structurally supportive environment throughout cardiac development and maturation by providing physical anchorage to the underlying interstitium, structural support to the tissue, and by influencing cell behaviour and signalling. While this provides a strong link between basement membrane dysfunction and cardiac disease, the role of the basement membrane in cardiac biology remains under-researched and our understanding regarding the mechanistic interplay between basement membrane defects and their morphological and functional consequences remain important knowledge-gaps. In this review we bring together emerging understanding of basement membrane defects within the heart including in common cardiovascular pathologies such as contractile dysfunction and highlight some key questions that are now ready to be addressed.
Collapse
|
11
|
Soliman H, Rossi FMV. Cardiac fibroblast diversity in health and disease. Matrix Biol 2020; 91-92:75-91. [PMID: 32446910 DOI: 10.1016/j.matbio.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
The cardiac stroma plays essential roles in health and following cardiac damage. The major player of the stroma with respect to extracellular matrix deposition, maintenance and remodeling is the poorly defined fibroblast. It has long been recognized that there is considerable variability to the fibroblast phenotype. With the advent of new, high throughput analytical methods our understanding and appreciation of this heterogeneity has grown dramatically. This review aims to explore the diversity of cardiac fibroblasts and highlights new insights into the diverse nature of these cells and their progenitors as revealed by single cell sequencing and fate mapping studies. We propose that at least in part the observed heterogeneity is related to the existence of a differentiation cascade within stromal cells. Beyond in-organ heterogeneity, we also discuss how the stromal response to damage differs between non-regenerating organs such as the heart and regenerating organs such as skeletal muscle. In exploring possible causes for these differences, we outline that although fibrogenic cells from different organs overlap in many properties, they still possess organ-specific transcriptional signatures and differentiation biases that make them functionally distinct.
Collapse
Affiliation(s)
- Hesham Soliman
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada; Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
12
|
Titus AS, V H, Kailasam S. Coordinated regulation of cell survival and cell cycle pathways by DDR2-dependent SRF transcription factor in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2020; 318:H1538-H1558. [PMID: 32412792 DOI: 10.1152/ajpheart.00740.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relative resistance to apoptosis and the ability to proliferate and produce a collagen-rich scar determine the critical role of cardiac fibroblasts in wound healing and tissue remodeling following myocardial injury. Identification of cardiac fibroblast-specific factors and mechanisms underlying these aspects of cardiac fibroblast function is therefore of considerable scientific and clinical interest. In the present study, gene knockdown and overexpression approaches and promoter binding assays showed that discoidin domain receptor 2 (DDR2), a mesenchymal cell-specific collagen receptor tyrosine kinase localized predominantly in fibroblasts in the heart, acts via ERK1/2 MAPK-activated serum response factor (SRF) transcription factor to enhance the expression of antiapoptotic cIAP2 in cardiac fibroblasts, conferring resistance against oxidative injury. Furthermore, DDR2 was found to act via ERK1/2 MAPK-activated SRF to transcriptionally upregulate Skp2 that in turn facilitated post-translational degradation of p27, the cyclin-dependent kinase inhibitor that causes cell cycle arrest, to promote G1-S transition, as evidenced by Rb phosphorylation, increased proliferating cell nuclear antigen (PCNA) levels, and flow cytometry. DDR2-dependent ERK1/2 MAPK activation also suppressed forkhead box O 3a (FoxO3a)-mediated transcriptional induction of p27. Inhibition of the binding of collagen type I to DDR2 using WRG-28 indicated the obligate role of collagen type I in the activation of DDR2 and its regulatory role in cell survival and cell cycle protein expression. Notably, DDR2 levels positively correlated with SRF, cIAP2, and PCNA levels in cardiac fibroblasts from spontaneously hypertensive rats. To conclude, DDR2-mediated ERK1/2 MAPK activation facilitates coordinated regulation of cell survival and cell cycle progression in cardiac fibroblasts via SRF.NEW & NOTEWORTHY Relative resistance to apoptosis and the ability to proliferate and produce a collagen-rich scar enable cardiac fibroblasts to play a central role in myocardial response to injury. This study reports novel findings that mitogen-stimulated cardiac fibroblasts exploit a common regulatory mechanism involving collagen receptor (DDR2)-dependent activation of ERK1/2 MAPK and serum response factor to achieve coordinated regulation of apoptosis resistance and cell cycle progression, which could facilitate their survival and function in the injured myocardium.
Collapse
Affiliation(s)
- Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Harikrishnan V
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
13
|
Mohamed F, Ge C, Binrayes A, Franceschi R. The Role of Discoidin Domain Receptor 2 in Tooth Development. J Dent Res 2020; 99:214-222. [PMID: 31869264 PMCID: PMC7315682 DOI: 10.1177/0022034519892563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Collagen signaling is critical for proper bone and tooth formation. Discoidin domain receptor 2 (DDR2) is a collagen-activated tyrosine kinase receptor shown to be essential for skeletal development. Patients with loss of function mutations in DDR2 develop spondylo-meta-epiphyseal dysplasia (SMED), a rare, autosomal recessive disorder characterized by short stature, short limbs, and craniofacial anomalies. A similar phenotype was observed in Ddr2-deficient mice, which exhibit dwarfism and defective bone formation in the axial, appendicular, and cranial skeletons. However, it is not known if Ddr2 has a role in tooth formation. We first defined the expression pattern of Ddr2 during tooth formation using Ddr2-LacZ knock-in mice. Ddr2 expression was detected in the dental follicle/sac and dental papilla mesenchyme of developing teeth and in odontoblasts and the periodontal ligament (PDL) of adults. No LacZ staining was detected in wild-type littermates. This Ddr2 expression pattern suggests a potential role in the tooth and surrounding periodontium. To uncover the function of Ddr2, we used Ddr2slie/slie mice, which contain a spontaneous 150-kb deletion in the Ddr2 locus to produce an effective null. In comparison with wild-type littermates, Ddr2slie/slie mice displayed disproportional tooth size (decreased root/crown ratio), delayed tooth root development, widened PDL space, and interradicular alveolar bone defects. Ddr2slie/slie mice also had abnormal collagen content associated with upregulation of periostin levels within the PDL. The delayed root formation and periodontal abnormalities may be related to defects in RUNX2-dependent differentiation of odontoblasts and osteoblasts; RUNX2-S319-P was reduced in PDLs from Ddr2slie/slie mice, and deletion of Ddr2 in primary cell cultures from dental pulp and PDL inhibited differentiation of cells to odontoblasts or osteoblasts, respectively. Together, our studies demonstrate odontoblast- and PDL-specific expression of Ddr2 in mature and immature teeth, as well as indicate that DDR2 signaling is important for normal tooth formation and maintenance of the surrounding periodontium.
Collapse
Affiliation(s)
- F.F. Mohamed
- Departments of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA
| | - C. Ge
- Departments of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA
| | - A. Binrayes
- Departments of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA,Department of Prosthetic Dental
Sciences, College of Dentistry, King Saud University, Riyadh, Saudi
Arabia
| | - R.T. Franceschi
- Departments of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA,Department of Biological
Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI,
USA,Department of Biomedical
Engineering, University of Michigan, Ann Arbor, MI, USA,R.T. Franceschi, Department of
Periodontics and Oral Medicine, School of Dentistry, University of
Michigan, 1011 N. University Ave., Ann Arbor, MI, 48109-1078 USA.
| |
Collapse
|
14
|
V H, Titus AS, Cowling RT, Kailasam S. Collagen receptor cross-talk determines α-smooth muscle actin-dependent collagen gene expression in angiotensin II-stimulated cardiac fibroblasts. J Biol Chem 2019; 294:19723-19739. [PMID: 31699892 DOI: 10.1074/jbc.ra119.009744] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive collagen deposition by myofibroblasts during adverse cardiac remodeling leads to myocardial fibrosis that can compromise cardiac function. Unraveling the mechanisms underlying collagen gene expression in cardiac myofibroblasts is therefore an important clinical goal. The collagen receptors, discoidin domain receptor 2 (DDR2), a collagen-specific receptor tyrosine kinase, and integrin-β1, are reported to mediate tissue fibrosis. Here, we probed the role of DDR2-integrin-β1 cross-talk in the regulation of collagen α1(I) gene expression in angiotensin II (Ang II)-stimulated cardiac fibroblasts. Results from gene silencing/overexpression approaches, electrophoretic mobility shift assays, and ChIP revealed that DDR2 acts via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK)-dependent transforming growth factor-β1 (TGF-β1) signaling to activate activator protein-1 (AP-1) that in turn transcriptionally enhances the expression of collagen-binding integrin-β1 in Ang II-stimulated cardiac fibroblasts. The DDR2-integrin-β1 link was also evident in spontaneously hypertensive rats and DDR2-knockout mice. Further, DDR2 acted via integrin-β1 to regulate α-smooth muscle actin (α-SMA) and collagen type I expression in Ang II-exposed cardiac fibroblasts. Downstream of the DDR2-integrin-β1 axis, α-SMA was found to regulate collagen α1(I) gene expression via the Ca2+ channel, transient receptor potential cation channel subfamily C member 6 (TRPC6), and the profibrotic transcription factor, Yes-associated protein (YAP). This finding indicated that fibroblast-to-myofibroblast conversion is mechanistically coupled to collagen expression. The observation that collagen receptor cross-talk underlies α-SMA-dependent collagen type I expression in cardiac fibroblasts expands our understanding of the complex mechanisms involved in collagen gene expression in the heart and may be relevant to cardiac fibrogenesis.
Collapse
Affiliation(s)
- Harikrishnan V
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| |
Collapse
|
15
|
Histone Arginine Methylation-Mediated Epigenetic Regulation of Discoidin Domain Receptor 2 Controls the Senescence of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2019; 2019:7670316. [PMID: 31379950 PMCID: PMC6657615 DOI: 10.1155/2019/7670316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022] Open
Abstract
The application of human bone marrow mesenchymal stem cells (hBM-MSCs) in cell-based clinical therapies is hindered by the limited number of cells remaining after the initial isolation process and by cellular senescence following in vitro expansion. Understanding the process of in vitro senescence in hBM-MSCs would enable the development of strategies to maintain their vitality after cell culture. Herein, we compared the gene expression profiles of human embryonic stem cells and human BM-MSCs from donors of different ages. We first found that the expression of discoidin domain receptor 2 (DDR2) in adult donor-derived hBM-MSCs was lower than it was in the young donor-derived hBM-MSCs. Moreover, in vitro cultured late-passage hBM-MSCs showed significant downregulation of DDR2 compared to their early-passage counterparts, and siRNA inhibition of DDR2 expression recapitulated features of senescence in early-passage hBM-MSCs. Further, we found through knockdown and overexpression approaches that coactivator-associated arginine methyltransferase 1 (CARM1) regulated the expression level of DDR2 and the senescence of hBM-MSCs. Finally, chromatin immunoprecipitation analysis confirmed direct binding of CARM1 to the DDR2 promoter region with a high level of H3R17 methylation in early-passage hBM-MSCs, and inhibition of CARM1-mediated histone arginine methylation decreased DDR2 expression and led to cellular senescence. Taken together, our findings suggest that DDR2 plays a major role in regulating the in vitro senescence of hBM-MSCs and that CARM1-mediated histone H3 methylation might be the upstream regulatory mechanism controlling this function of DDR2.
Collapse
|
16
|
Yeh YC, Lin HH, Tang MJ. Dichotomy of the function of DDR1 in cells and disease progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118473. [PMID: 30954568 DOI: 10.1016/j.bbamcr.2019.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Abstract
Discoidin domain receptors DDR1 and DDR2 are collagen receptor tyrosine kinases that have many roles in tissue development and disease progression. Under physiological conditions, DDR1 is predominantly expressed in epithelial cells and functions to maintain cell differentiation and tissue homeostasis. A switch in expression from DDR1 to DDR2 occurs during epithelial-to-mesenchymal transition. However, opposite effects of DDR1 are reported to be involved in the progression of cancer and fibrotic diseases. Accumulating evidence suggests that DDR1 is involved in pro-metastasis and pro-survival signals. This review summarizes the roles of DDR1 in epithelial cell differentiation, cell migration, cancer progression and tissues fibrosis and highlights how the dichotomous functions of DDR1 may relevant to different cell types and statues. Elucidation of the underlying mechanism of the dichotomous functions of DDR1 will help to develop DDR1 as a therapeutic target.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- International Center for Wound Repair and Regeneration, Tainan, Taiwan
| | - Hsi-Hui Lin
- International Center for Wound Repair and Regeneration, Tainan, Taiwan; Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, Tainan, Taiwan; Department of Physiology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Moll S, Desmoulière A, Moeller MJ, Pache JC, Badi L, Arcadu F, Richter H, Satz A, Uhles S, Cavalli A, Drawnel F, Scapozza L, Prunotto M. DDR1 role in fibrosis and its pharmacological targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118474. [PMID: 30954571 DOI: 10.1016/j.bbamcr.2019.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/28/2023]
Abstract
Discoidin domain receptor1 (DDR1) is a collagen activated receptor tyrosine kinase and an attractive anti-fibrotic target. Its expression is mainly limited to epithelial cells located in several organs including skin, kidney, liver and lung. DDR1's biology is elusive, with unknown downstream activation pathways; however, it may act as a mediator of the stromal-epithelial interaction, potentially controlling the activation state of the resident quiescent fibroblasts. Increased expression of DDR1 has been documented in several types of cancer and fibrotic conditions including skin hypertrophic scars, idiopathic pulmonary fibrosis, cirrhotic liver and renal fibrosis. The present review article focuses on: a) detailing the evidence for a role of DDR1 as an anti-fibrotic target in different organs, b) clarifying DDR1 tissue distribution in healthy and diseased tissues as well as c) exploring DDR1 protective mode of action based on literature evidence and co-authors experience; d) detailing pharmacological efforts attempted to drug this subtle anti-fibrotic target to date.
Collapse
Affiliation(s)
- Solange Moll
- Department of Pathology, University Hospital of Geneva, Switzerland; Department of Pathology, Lausanne University Hospital, Switzerland
| | - Alexis Desmoulière
- Department of Physiology, Faculty of Pharmacy, University of Limoges, Limoges, France
| | - Marcus J Moeller
- Department of Nephrology and Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | | | - Laura Badi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Filippo Arcadu
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Hans Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Alexander Satz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Sabine Uhles
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500, Bellinzona, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Faye Drawnel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Marco Prunotto
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Perdios C, Parnall M, Pang KL, Loughna S. Altered haemodynamics causes aberrations in the epicardium. J Anat 2019; 234:800-814. [PMID: 30882904 PMCID: PMC6539700 DOI: 10.1111/joa.12977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 02/04/2023] Open
Abstract
During embryo development, the heart is the first functioning organ. Although quiescent in the adult, the epicardium is essential during development to form a normal four‐chambered heart. Epicardial‐derived cells contribute to the heart as it develops with fibroblasts and vascular smooth muscle cells. Previous studies have shown that a heartbeat is required for epicardium formation, but no study to our knowledge has shown the effects of haemodynamic changes on the epicardium. Since the aetiologies of many congenital heart defects are unknown, we suggest that an alteration in the heart's haemodynamics might provide an explanatory basis for some of them. To change the heart's haemodynamics, outflow tract (OFT) banding using a double overhang knot was performed on HH21 chick embryos, with harvesting at different developmental stages. The epicardium of the heart was phenotypically and functionally characterised using a range of techniques. Upon alteration of haemodynamics, the epicardium exhibited abnormal morphology at HH29, even though migration of epicardial cells along the surface of the heart was found to be normal between HH24 and HH28. The abnormal epicardial phenotype was exacerbated at HH35 with severe changes in the structure of the extracellular matrix (ECM). A number of genes tied to ECM production were also differentially expressed in HH29 OFT‐banded hearts, including DDR2 and collagen XII. At HH35, the differential expression of these genes was even greater with additional downregulation of collagen I and TCF21. In this study, the epicardium was found to be severely impacted by altered haemodynamics upon OFT banding. The increased volume of the epicardium at HH29, upon OFT‐banding, and the expression changes of ECM markers were the first indicative signs of aberrations in epicardial architecture; by HH35, the phenotype had progressed. The decrease in epicardial thickness at HH35 suggests an increase in tension, with a force acting perpendicular to the surface of the epicardium. Although the developing epicardium and the blood flowing through the heart are separated by the endocardium and myocardium, the data presented here demonstrate that altering the blood flow affects the structure and molecular expression of the epicardial layer. Due to the intrinsic role the epicardium in cardiogenesis, defects in epicardial formation could have a role in the formation of a wide range of congenital heart defects.
Collapse
Affiliation(s)
- Chrysostomos Perdios
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
19
|
Que X, Hung MY, Yeang C, Gonen A, Prohaska TA, Sun X, Diehl C, Määttä A, Gaddis DE, Bowden K, Pattison J, MacDonald JG, Ylä-Herttuala S, Mellon PL, Hedrick CC, Ley K, Miller YI, Glass CK, Peterson KL, Binder CJ, Tsimikas S, Witztum JL. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 2018; 558:301-306. [PMID: 29875409 PMCID: PMC6033669 DOI: 10.1038/s41586-018-0198-8] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022]
Abstract
Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.
Collapse
Affiliation(s)
- Xuchu Que
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ming-Yow Hung
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Calvin Yeang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Thomas A Prohaska
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoli Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Cody Diehl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Brigham Young University Idaho, Rexburg, ID, USA
| | - Antti Määttä
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Dalia E Gaddis
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Karen Bowden
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Pattison
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Pamela L Mellon
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christopher K Glass
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kirk L Peterson
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph L Witztum
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Guo Y, Gupte M, Umbarkar P, Singh AP, Sui JY, Force T, Lal H. Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol 2017; 110:109-120. [PMID: 28756206 DOI: 10.1016/j.yjmcc.2017.07.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
Nearly every form of the heart disease is associated with myocardial fibrosis, which is characterized by the accumulation of activated cardiac fibroblasts (CFs) and excess deposition of extracellular matrix (ECM). Although, CFs are the primary mediators of myocardial fibrosis in a diseased heart, in the traditional view, activated CFs (myofibroblasts) and resulting fibrosis were simply considered the secondary consequence of the disease, not the cause. Recent studies from our lab and others have challenged this concept by demonstrating that fibroblast activation and fibrosis are not simply the secondary consequence of a diseased heart, but are crucial for mediating various myocardial disease processes. In regards to the mechanism, the vast majority of literature is focused on the direct role of canonical SMAD-2/3-mediated TGF-β signaling to govern the fibrogenic process. Herein, we will discuss the emerging role of the GSK-3β, β-catenin and TGF-β1-SMAD-3 signaling network as a critical regulator of myocardial fibrosis in the diseased heart. The underlying molecular interactions and cross-talk among signaling pathways will be discussed. We will primarily focus on recent in vivo reports demonstrating that CF-specific genetic manipulation can lead to aberrant myocardial fibrosis and sturdy cardiac phenotype. This will allow for a better understanding of the driving role of CFs in the myocardial disease process. We will also review the specificity and limitations of the currently available genetic tools used to study myocardial fibrosis and its associated mechanisms. A better understanding of the GSK-3β, β-catenin and SMAD-3 signaling network may provide a novel therapeutic target for the management of myocardial fibrosis in the diseased heart.
Collapse
Affiliation(s)
- Yuanjun Guo
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Manisha Gupte
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Prachi Umbarkar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Anand Prakash Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Jennifer Y Sui
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Thomas Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB, Suite#348, Nashville, TN 37232, United States.
| |
Collapse
|
21
|
Doppler SA, Carvalho C, Lahm H, Deutsch MA, Dreßen M, Puluca N, Lange R, Krane M. Cardiac fibroblasts: more than mechanical support. J Thorac Dis 2017; 9:S36-S51. [PMID: 28446967 DOI: 10.21037/jtd.2017.03.122] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fibroblasts are cells with a structural function, synthesizing components of the extracellular matrix. They are accordingly associated with various forms of connective tissue. During cardiac development fibroblasts originate from different sources. Most derive from the epicardium, some derive from the endocardium, and a small population derives from the neural crest. Cardiac fibroblasts have important functions during development, homeostasis, and disease. However, since fibroblasts are a very heterogeneous cell population no truly specific markers exist. Therefore, studying them in detail is difficult. Nevertheless, several lineage tracing models have been widely used. In this review, we describe the developmental origins of cardiac fibroblasts, comment on fibroblast markers and related lineage tracing approaches, and discuss the cardiac cell composition, which has recently been revised, especially in terms of non-myocyte cells.
Collapse
Affiliation(s)
- Stefanie A Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Catarina Carvalho
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Harald Lahm
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Marcus-André Deutsch
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Martina Dreßen
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Nazan Puluca
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Rüdiger Lange
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
22
|
Mulvihill EE, Varin EM, Ussher JR, Campbell JE, Bang KWA, Abdullah T, Baggio LL, Drucker DJ. Inhibition of Dipeptidyl Peptidase-4 Impairs Ventricular Function and Promotes Cardiac Fibrosis in High Fat-Fed Diabetic Mice. Diabetes 2016; 65:742-54. [PMID: 26672095 DOI: 10.2337/db15-1224] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) inhibitors used for the treatment of type 2 diabetes are cardioprotective in preclinical studies; however, some cardiovascular outcome studies revealed increased hospitalization rates for heart failure (HF) among a subset of DPP4 inhibitor-treated subjects with diabetes. We evaluated cardiovascular function in young euglycemic Dpp4(-/-) mice and in older, high fat-fed, diabetic C57BL/6J mice treated with either the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide or the highly selective DPP4 inhibitor MK-0626. We assessed glucose metabolism, ventricular function and remodeling, and cardiac gene expression profiles linked to inflammation and fibrosis after transverse aortic constriction (TAC) surgery, a pressure-volume overload model of HF. Young euglycemic Dpp4(-/-) mice exhibited a cardioprotective response after TAC surgery or doxorubicin administration, with reduced fibrosis; however, cardiac mRNA analysis revealed increased expression of inflammation-related transcripts. Older, diabetic, high fat-fed mice treated with the GLP-1R agonist liraglutide exhibited preservation of cardiac function. In contrast, diabetic mice treated with MK-0626 exhibited modest cardiac hypertrophy, impairment of cardiac function, and dysregulated expression of genes and proteins controlling inflammation and cardiac fibrosis. These findings provide a model for the analysis of mechanisms linking fibrosis, inflammation, and impaired ventricular function to DPP4 inhibition in preclinical studies.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John R Ussher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - K W Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Tahmid Abdullah
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Has the search for a marker of activated fibroblasts finally come to an end? J Mol Cell Cardiol 2015; 88:120-3. [DOI: 10.1016/j.yjmcc.2015.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
|
24
|
Zhu X, Gillespie DG, Jackson EK. NPY1-36 and PYY1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4. Am J Physiol Heart Circ Physiol 2015; 309:H1528-42. [PMID: 26371160 DOI: 10.1152/ajpheart.00070.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Cardiac sympathetic nerves release neuropeptide Y (NPY)1-36, and peptide YY (PYY)1-36 is a circulating peptide; therefore, these PP-fold peptides could affect cardiac fibroblasts (CFs). We examined the effects of NPY1-36 and PYY1-36 on the proliferation of and collagen production ([(3)H]proline incorporation) by CFs isolated from Wistar-Kyoto (WKY) normotensive rats and spontaneously hypertensive rats (SHRs). Experiments were performed with and without sitagliptin, an inhibitor of dipeptidyl peptidase 4 [DPP4; an ectoenzyme that metabolizes NPY1-36 and PYY1-36 (Y1 receptor agonists) to NPY3-36 and PYY3-36 (inactive at Y1 receptors), respectively]. NPY1-36 and PYY1-36, but not NPY3-36 or PYY3-36, stimulated proliferation of CFs, and these effects were more potent than ANG II, enhanced by sitagliptin, blocked by BIBP3226 (Y1 receptor antagonist), and greater in SHR CFs. SHR CF membranes expressed more receptor for activated C kinase (RACK)1 [which scaffolds the Gi/phospholipase C (PLC)/PKC pathway] compared with WKY CF membranes. RACK1 knockdown (short hairpin RNA) and inhibition of Gi (pertussis toxin), PLC (U73122), and PKC (GF109203X) blocked the proliferative effects of NPY1-36. NPY1-36 and PYY1-36 stimulated collagen production more potently than did ANG II, and this was enhanced by sitagliptin and greater in SHR CFs. In conclusion, 1) NPY1-36 and PYY1-36, via the Y1 receptor/Gi/PLC/PKC pathway, activate CFs, and this pathway is enhanced in SHR CFs due to increased localization of RACK1 in membranes; and 2) DPP4 inhibition enhances the effects of NPY1-36 and PYY1-36 on CFs, likely by inhibiting the metabolism of NPY1-36 and PYY1-36. The implications are that endogenous NPY1-36 and PYY1-36 could adversely affect cardiac structure/function by activating CFs, and this may be exacerbated in genetic hypertension and by DPP4 inhibitors.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|