1
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL, Edwards JC. Renin angiotensin system-induced muscle wasting: putative mechanisms and implications for clinicians. Mol Cell Biochem 2025; 480:1935-1949. [PMID: 38811433 PMCID: PMC11961475 DOI: 10.1007/s11010-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Renin angiotensin system (RAS) alters various mechanisms related to muscle wasting. The RAS system consists of classical and non-classical pathways, which mostly function differently. Classical RAS pathway, operates through angiotensin II (AngII) and angiotensin type 1 receptors, is associated with muscle wasting and sarcopenia. On the other hand, the non-classical RAS pathway, which operates through angiotensin 1-7 and Mas receptor, is protective against sarcopenia. The classical RAS pathway might induce muscle wasting by variety of mechanisms. AngII reduces body weight, via reduction in food intake, possibly by decreasing hypothalamic expression of orexin and neuropeptide Y, insulin like growth factor-1 (IGF-1) and mammalian target of rapamycin (mTOR), signaling, AngII increases skeletal muscle proteolysis by forkhead box transcription factors (FOXO), caspase activation and muscle RING-finger protein-1 transcription. Furthermore, AngII infusion in skeletal muscle reduces phospho-Bad (Ser136) expression and induces apoptosis through increased cytochrome c release and DNA fragmentation. Additionally, Renin angiotensin system activation through AT1R and AngII stimulates tumor necrosis factor-α, and interleukin-6 which induces muscle wasting, Last but not least classical RAS pathway, induce oxidative stress, disturb mitochondrial energy metabolism, and muscle satellite cells which all lead to muscle wasting and decrease muscle regeneration. On the contrary, the non-classical RAS pathway functions oppositely to mitigate these mechanisms and protects against muscle wasting. In this review, we summarize the mechanisms of RAS-induced muscle wasting and putative implications for clinical practice. We also emphasize the areas of uncertainties and suggest potential research areas.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Yasar Caliskan
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Krista L Lentine
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - John C Edwards
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
2
|
Deng H, Wang Y, Dai Y, Wang Q, Lu H, Wang Q. Unraveling the genetic mysteries of sarcopenia: A bioinformatics approach. Technol Health Care 2025; 33:1140-1153. [PMID: 40105173 DOI: 10.1177/09287329241291323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Background As life expectancy increases and the global population ages, the incidence of sarcopenia is also increasing, highlighting the need for better diagnosis and treatment methods.ObjectiveTo study the genetic expression of sarcopenia using bioinformatics methods.MethodsA Weighted Gene Coexpression Network Analysis (WGCNA) was conducted to construct coexpression networks, along with protein-protein interaction networks. Diagnostic biomarker potential was evaluated using receiver operating characteristic curves. An analysis of Single-Sample Gene Set Enrichment Analysis (ssGSEA) was performed in order to determine the amount of immune cell infiltration. We analyzed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) enrichment using the KEGG.ResultsWGCNA identified modules linked to bone metabolism, ssGSEA showed unique gene enrichment patterns, and 268 genes were found to be differentially expressed in sarcopenia. Fourteen co-expression modules related to bone metabolism were identified, with one showing a strong positive correlation. KEGG pathway analysis indicated downregulation of the renin-angiotensin system and Alzheimer's disease pathways. The differentially expressed genes were primarily involved in adipocyte differentiation.ConclusionThis study analyzes genetic changes and immune cell patterns in sarcopenia, providing insights into its causes and potential diagnostic markers for future research on treatments.
Collapse
Affiliation(s)
- Hui Deng
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuming Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Dai
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Lu
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Takeshita H, Yamamoto K, Mogi M, Rakugi H. Muscle mass, muscle strength and the renin-angiotensin system. Clin Sci (Lond) 2024; 138:1561-1577. [PMID: 39718491 DOI: 10.1042/cs20220501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
The renin-angiotensin system (RAS) is a classically known circulatory regulatory system. In addition to the previously known multi-organ circulatory form of the RAS, the existence of tissue RASs in individual organs has been well established. Skeletal muscle has also been identified as an organ with a distinct RAS. In recent years, the effects of RAS activation on skeletal muscle have been elucidated from several perspectives: differences in motor function due to genetic polymorphisms of RAS components, skeletal muscle dysfunction under conditions of excessive RAS activation such as heart failure, and the effects of the use of RAS inhibitors on muscle strength. In addition, the concept of the RAS itself has recently been expanded with the discovery of a 'protective arm' of the RAS formed by factors such as angiotensin-converting enzyme 2 and angiotensin 1-7. This has led to a new understanding of the physiological function of the RAS in skeletal muscle. This review summarizes the diverse physiological functions of the RAS in skeletal muscle and considers the potential of future therapeutic strategies targeting the RAS to overcome problems such as sarcopenia and muscle weakness associated with chronic disease.
Collapse
Affiliation(s)
- Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Medical Science Technology, Faculty of Medical Science Technology, Morinomiya University of Medical Sciences, Osaka, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | |
Collapse
|
4
|
Laddu DR, Kim H, Cawthon PM, LaMonte MJ, Phillips SA, Ma J, Stefanick ML. Physical performance changes as clues to late-life blood pressure changes with advanced age: the osteoporotic fractures in men study. J Nutr Health Aging 2024; 28:100317. [PMID: 39067140 DOI: 10.1016/j.jnha.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES This study examined whether changes in late-life physical performance are associated with contemporaneous changes in blood pressure (BP) in older men. DESIGN prospective cohort study over 7 years. SETTING AND PARTICIPANTS Physical performance (gait speed, grip strength, chair stand performance) and clinic-measured BP at baseline and at least one follow-up (year 7 or 9) were assessed in 3,135 men aged ≥65 y enrolled in the Osteoporotic Fractures in Men Study (MrOS). METHODS Generalized estimating equation analysis of multivariable models with standardized point estimates (β [95% CI]) described longitudinal associations between physical performance and BP changes in participants overall, and stratified by baseline cardiovascular disease (CVD), antihypertensive medication use (none, ≥1), and enrollment age (<75 years; ≥75 years). RESULTS Overall, positive associations (z-score units) were found between each increment increase in gait speed and systolic (SBP) (0.74 [0.22, 1.26]) and grip strength (0.35 [0.04, 0.65]) or gait speed (0.55 [0.24, 0.85]) with diastolic (DBP). Better grip strength and chair stand performance over time were associated with 1.83 [0.74, 2.91] and 3.47 [0.20, 6.74] mmHg higher SBP, respectively in men with CVD at baseline (both interaction P < .05). Gait speed increases were associated with higher SBP in men without CVD (0.76 [0.21, 1.32]), antihypertensive medication non-users (0.96 [0.30, 1.62]), aged <75 years (0.73 [0.05, 1.41]) and ≥75 years (0.76 [0.06, 1.47]). Similar positive, but modest associations for DBP were observed with grip strength in men with CVD, antihypertensive medication non-users, and aged <75 years, and with gait speed in men without CVD, aged <75 years, and irrespective of antihypertensive medication use. CONCLUSION In older men, better physical performance is longitudinally associated with higher BP. Mechanisms and implications of these seemingly paradoxical findings, which appears to be modified by CVD status, antihypertensive medication use, and age, requires further investigation.
Collapse
Affiliation(s)
- Deepika R Laddu
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Hajwa Kim
- University of Illinois at Chicago, Center for Clinical and Translational Science, Biostatistics Core, 914 S. Wood Street, Chicago, IL, USA
| | - Peggy M Cawthon
- California Pacific Medical Center Research Institute, San Francisco, California, USA; Department of Epidemiology and Biostatics, University of California, San Francisco, California, USA
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo - SUNY, New York, Buffalo, New York, USA
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Ma
- Department of Medicine, University of Illinois Chicago, 1747 W. Roosevelt Rd, Chicago, IL, USA
| | - Marcia L Stefanick
- Department of Medicine, Stanford Prevention Research Center, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Liu D, Wang S, Liu S, Wang Q, Che X, Wu G. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies. Mol Aspects Med 2024; 97:101270. [PMID: 38583268 DOI: 10.1016/j.mam.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
The onset of sarcopenia is intimately linked with aging, posing significant implications not only for individual patient quality of life but also for the broader societal healthcare framework. Early and accurate identification of sarcopenia and a comprehensive understanding of its mechanistic underpinnings and therapeutic targets paramount to addressing this condition effectively. This review endeavors to present a cohesive overview of recent advancements in sarcopenia research and diagnosis. We initially delve into the contemporary diagnostic criteria, specifically referencing the European Working Group on Sarcopenia in Older People (EWGSOP) 2 and Asian Working Group on Sarcopenia (AWGS) 2019 benchmarks. Additionally, we elucidate comprehensive assessment techniques for muscle strength, quantity, and physical performance, highlighting tools such as grip strength, chair stand test, dual-energy X-ray Absorptiometry (DEXA), bioelectrical impedance analysis (BIA), gait speed, and short physical performance battery (SPPB), while also discussing their inherent advantages and limitations. Such diagnostic advancements pave the way for early identification and unequivocal diagnosis of sarcopenia. Proceeding further, we provide a deep-dive into sarcopenia's pathogenesis, offering a thorough examination of associated signaling pathways like the Myostatin, AMP-activated protein kinase (AMPK), insulin/IGF-1 Signaling (IIS), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Each pathway's role in sarcopenia mediation is detailed, underscoring potential therapeutic target avenues. From a mechanistic perspective, the review also underscores the pivotal role of mitochondrial dysfunction in sarcopenia, emphasizing elements such as mitochondrial oxidative overload, mitochondrial biogenesis, and mitophagy, and highlighting their therapeutic significance. At last, we capture recent strides made in sarcopenia treatment, ranging from nutritional and exercise interventions to potential pharmacological and supplementation strategies. In sum, this review meticulously synthesizes the latest scientific developments in sarcopenia, aiming to enhance diagnostic precision in clinical practice and provide comprehensive insights into refined mechanistic targets and innovative therapeutic interventions, ultimately contributing to optimized patient care and advancements in the field.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shuang Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
6
|
Gan X, Zeng Y, Huang J, Chen X, Kang H, Huang S. Tumor-Derived Sarcopenia Factors Are Diverse in Different Tumor Types: A Pan-Cancer Analysis. Biomedicines 2024; 12:329. [PMID: 38397931 PMCID: PMC10887289 DOI: 10.3390/biomedicines12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer-associated muscle wasting is a widespread syndrome in people with cancer and is characterized by weight loss and muscle atrophy, leading to increased morbidity and mortality. However, the tumor-derived factors that affect the development of muscle wasting and the mechanism by which they act remain unknown. To address this knowledge gap, we aimed to delineate differences in tumor molecular characteristics (especially secretion characteristics) between patients with and without sarcopenia across 10 tumor types from The Cancer Genome Atlas (TCGA). We integrated radiological characteristics from CT scans of TCGA cancer patients, which allowed us to calculate skeletal muscle area (SMA) to confirm sarcopenia. We combined TCGA and GTEx (The Genotype-Tissue Expression) data to analyze upregulated secretory genes in 10 tumor types compared with normal tissues. Upregulated secretory genes in the tumor microenvironment and their relation to SMA were analyzed to identify potential muscle wasting biomarkers (560 samples). Meanwhile, their predictive values for patient survival was validated in 3530 samples in 10 tumor types. A total of 560 participants with transcriptomic data and SMA were included. Among those, 136 participants (24.28%) were defined as having sarcopenia based on SMA. Enrichment analysis for upregulated secretory genes in cancers revealed that pathways associated with muscle wasting were strongly enriched in tumor types with a higher prevalence of sarcopenia. A series of SMA-associated secretory protein-coding genes were identified in cancers, which showed distinct gene expression profiles according to tumor type, and could be used to predict prognosis in cancers (p value ≤ 0.002). Unfortunately, those genes were different and rarely overlapped across tumor types. Tumor secretome characteristics were closely related to sarcopenia. Highly expressed secretory mediators in the tumor microenvironment were associated with SMA and could affect the overall survival of cancer patients, which may provide a valuable starting point for the further understanding of the molecular basis of muscle wasting in cancers. More importantly, tumor-derived pro-sarcopenic factors differ across tumor types and genders, which implies that mechanisms of cancer-associated muscle wasting are complex and diverse across tumors, and may require individualized treatment approaches.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (Y.Z.); (X.C.)
| | - Yunqian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (Y.Z.); (X.C.)
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (Y.Z.); (X.C.)
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (Y.Z.); (X.C.)
| | - Shuaiwen Huang
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Kasumi E, Chiba M, Kuzumaki Y, Kuzuoka H, Sato N, Takahashi B. Development and Characterization of a Cancer Cachexia Rat Model Transplanted with Cells of the Rat Lung Adenocarcinoma Cell Line Sato Lung Cancer (SLC). Biomedicines 2023; 11:2824. [PMID: 37893197 PMCID: PMC10604092 DOI: 10.3390/biomedicines11102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer cachexia is a complex malnutrition syndrome that causes progressive dysfunction. This syndrome is accompanied by protein and energy losses caused by reduced nutrient intake and the development of metabolic disorders. As many as 80% of patients with advanced cancer develop cancer cachexia; however, an effective targeted treatment remains to be developed. In this study, we developed a novel rat model that mimics the human pathology during cancer cachexia to elucidate the mechanism underlying the onset and progression of this syndrome. We subcutaneously transplanted rats with SLC cells, a rat lung adenocarcinoma cell line, and evaluated the rats' pathophysiological characteristics. To ensure that our observations were not attributable to simple starvation, we evaluated the characteristics under tube feeding. We observed that SLC-transplanted rats exhibited severe anorexia, weight loss, muscle atrophy, and weakness. Furthermore, they showed obvious signs of cachexia, such as anemia, inflammation, and low serum albumin. The rats also exhibited weight and muscle losses despite sufficient nutrition delivered by tube feeding. Our novel cancer cachexia rat model is a promising tool to elucidate the pathogenesis of cancer cachexia and to conduct further research on the development of treatments and supportive care for patients with this disease.
Collapse
Affiliation(s)
- Eiji Kasumi
- R&D Laboratories, EN Otsuka Pharmaceutical Co., Ltd., Hanamaki 025-0312, Japan (N.S.)
| | | | | | | | | | | |
Collapse
|
8
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
9
|
Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling. Biochem Soc Trans 2023; 51:501-512. [PMID: 36892215 DOI: 10.1042/bst20220616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Protein homeostasis (proteostasis) is essential for cellular function and organismal health and requires the concerted actions of protein synthesis, folding, transport, and turnover. In sexually reproducing organisms, the immortal germline lineage passes genetic information across generations. Accumulating evidence indicates the importance of proteome integrity for germ cells as genome stability. As gametogenesis involves very active protein synthesis and is highly energy-demanding, it has unique requirements for proteostasis regulation and is sensitive to stress and nutrient availability. The heat shock factor 1 (HSF1), a key transcriptional regulator of cellular response to cytosolic and nuclear protein misfolding has evolutionarily conserved roles in germline development. Similarly, insulin/insulin-like growth factor-1 (IGF-1) signaling, a major nutrient-sensing pathway, impacts many aspects of gametogenesis. Here, we focus on HSF1 and IIS to review insights into their roles in germline proteostasis and discuss the implications on gamete quality control during stress and aging.
Collapse
|
10
|
Is the anti-aging effect of ACE2 due to its role in the renin-angiotensin system?-Findings from a comparison of the aging phenotypes of ACE2-deficient, Tsukuba hypertensive, and Mas-deficient mice. Hypertens Res 2023; 46:1210-1220. [PMID: 36788301 PMCID: PMC9925940 DOI: 10.1038/s41440-023-01189-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 02/16/2023]
Abstract
Angiotensin converting enzyme 2 (ACE2) functions as an enzyme that produces angiotensin 1-7 (A1-7) from angiotensin II (AII) in the renin-angiotensin system (RAS). We evaluated aging phenotypes, especially skeletal muscle aging, in ACE2 systemically deficient (ACE2 KO) mice and found that ACE2 has an antiaging function. The characteristic aging phenotype observed in ACE2 KO mice was not reproduced in mice deficient in the A1-7 receptor Mas or in Tsukuba hypertensive mice, a model of chronic AII overproduction, suggesting that ACE2 has a RAS-independent antiaging function. In this review, the results we have obtained and related studies on the aging regulatory mechanism mediated by RAS components will be presented and summarized. We evaluated the aging phenotype of ACE2 systemically deficient (ACE2 KO) mice, particularly skeletal muscle aging, and found that ACE2 has an antiaging function. The characteristic aging phenotype observed in ACE2 KO mice was not reproduced in Mas KO mice, angiotensin 1-7 receptor-deficient mice or in Tsukuba hypertensive mice, a model of chronic angiotensin II overproduction, suggesting that the antiaging functions of ACE2 are independent of the renin-angiotensin system (RAS).
Collapse
|
11
|
Sadri H, Ghaffari MH, Sauerwein H. Invited review: Muscle protein breakdown and its assessment in periparturient dairy cows. J Dairy Sci 2023; 106:822-842. [PMID: 36460512 DOI: 10.3168/jds.2022-22068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Mobilization of body reserves including fat, protein, and glycogen is necessary to overcome phases of negative nutrient balance typical for high-yielding dairy cows during the periparturient period. Skeletal muscle, the largest internal organ in mammals, plays a crucial role in maintaining metabolic homeostasis. However, unlike in liver and adipose tissue, the metabolic and regulatory role of skeletal muscle in the adaptation of dairy cows to the physiological needs of pregnancy and lactation has not been studied extensively. The functional integrity and quality of skeletal muscle are maintained through a constant turnover of protein, resulting from both protein breakdown and protein synthesis. Thus, muscle protein breakdown (MPB) and synthesis are intimately connected and tightly controlled to ensure proper protein homeostasis. Understanding the regulation of MPB, the catabolic component of muscle turnover, and its assessment are therefore important considerations to provide information about the timing and extent of tissue mobilization in periparturient dairy cows. Based on animal models and human studies, it is now evident that MPB occurs via the integration of 3 main systems: autophagy-lysosomal, calpain Ca2+-dependent cysteine proteases, and the ubiquitin-proteasome system. These 3 main systems are interconnected and do not work separately, and the regulation is complex. The ubiquitin-proteasomal system is the most well-known cellular proteolytic system and plays a fundamental role in muscle physiology. Complete degradation of a protein often requires a combination of the systems, depending on the physiological situation. Determination of MPB in dairy cows is technically challenging, resulting in a relative dearth of information. The methods for assessing MPB can be divided into either direct or indirect measurements, both having their strengths and limitations. Available information on the direct measures of MPB primarily comes from stable isotopic tracer methods and those of indirect measurements from assessing expression and activity measures of the components of the 3 MPB systems in muscle biopsy samples. Other indirect approaches (i.e., potential indicators of MPB), including ultrasound imaging and measuring metabolites from muscle degradation (i.e., 3-methylhistidine and creatinine), seem to be applicable methods and can provide useful information about the extent and timing of MPB. This review presents our current understanding, including methodological considerations, of the process of MPB in periparturient dairy cows.
Collapse
Affiliation(s)
- H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran; Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany.
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
12
|
Li XL, Wang L, He MC, Li WX, Zhang JL, Fu YF, Zhang Y. A clinical herbal prescription Gu-Shu-Kang capsule exerted beneficial effects on the musculoskeletal system of dexamethasone-treated mice by acting on tissue IGF-1 signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2098-2109. [PMID: 36269032 PMCID: PMC9590446 DOI: 10.1080/13880209.2022.2132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Gu-Shu-Kang (GSK) is a clinical traditional Chinese medicine prescription for the treatment of primary osteoporosis. OBJECTIVE This study investigates the protection of GSK against dexamethasone (Dex)-induced disturbance of musculoskeletal system in male mice and to identify the underlying mechanism. MATERIALS AND METHODS Male C57BL/6 mice in Dex-treated groups were orally administered (i.g.) with vehicle, low dose (0.38 g/kg), middle dose (0.76 g/kg), or high dose (1.52 g/kg) of GSK for 8 weeks. A control group was designed without any treatment. The quadriceps femoris, tibialis anterior and gastrocnemius were harvested. Molecular expression was determined by RT-PCR and immunoblotting. RESULTS Treatment with GSK enhanced weight-loaded swimming time (from 411.7 ± 58.4 s in Dex group to 771.4 ± 87.3 s in GSK-M) and grip strength (from 357.8 ± 23.9 g in Dex group to 880.3 ± 47.6 g in GSK-M). GSK produced a rise in cross-sectional area of myofibers and promoted a switching of glycolytic-to-oxidative myofiber. The administration with GSK affected expression of muscle regulatory factors shown by the down-regulation in MuRF-1 and atrogin-1 and the up-regulation in myogenic differentiation factor (MyoD) and myosin heavy chain (MHC). GSK stimulated tissue IGF-1 signalling pathway (IGF-1R/PI3K/Akt), not only in skeletal muscle but also in bone associated with the amelioration of trabecular bone mineral density and the improvement of osteogenesis. CONCLUSIONS These findings revealed the potential mechanisms involved in the beneficial effects of Gu-Shu-Kang on musculoskeletal system in mice with challenging to dexamethasone, and this prescription may have applications in management for muscle atrophy and osteoporosis triggered by glucocorticoid.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liang Wang
- Department of Geriatric, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Xiong Li
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Trauma, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Fang Fu
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ministry of Education, Key Laboratory of Theory and Therapy of Muscles and Bones, Shanghai, China
| |
Collapse
|
13
|
Liu Q, Chen L, Liang X, Cao Y, Zhu X, Wang S, Li J, Gao J, Xiao J. Exercise attenuates angiotensinⅡ-induced muscle atrophy by targeting PPARγ/miR-29b. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:696-707. [PMID: 34116237 PMCID: PMC9729927 DOI: 10.1016/j.jshs.2021.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/11/2021] [Accepted: 05/07/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exercise is beneficial for muscle atrophy. Peroxisome proliferator-activated receptor gamma (PPARγ) and microRNA-29b (miR-29b) have been reported to be responsible for angiotensinⅡ (AngⅡ)-induced muscle atrophy. However, it is unclear whether exercise can protect AngⅡ-induced muscle atrophy by targeting PPARγ/miR-29b. METHODS Skeletal muscle atrophy in both the control group and the run group was established by AngⅡ infusion; after 1 week of exercise training, the mice were sacrificed, and muscle weight was determined. Myofiber size was measured by hematoxylin-eosin and wheat-germ agglutinin staining. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression level of muscle atrogenes, including F-box only protein 32 (FBXO32, also called Atrogin-1) and muscle-specific RING-finger 1 (MuRF-1), the phosphorylation level of protein kinase B (PKB, also called AKT)/forkhead box O3A (FOXO3A)/mammalian target of rapamycin (mTOR) pathway proteins, the expression level of PPARγ and apoptosis-related proteins, including B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cysteine-aspartic acid protease 3 (caspase-3), and cleaved-caspase-3, were determined by western blot. The expression level of miR-29b was checked by reverse-transcription quantitative polymerase chain reaction. A PPARγ inhibitor (T0070907) or adeno-associated virus serotype-8 (AAV8)-mediated miR-29b overexpression was used to demonstrate whether PPARγ activation or miR-29b inhibition mediates the beneficial effects of exercise in AngⅡ-induced muscle atrophy. RESULTS Exercise can significantly attenuate AngⅡ-induced muscle atrophy, which is demonstrated by increased skeletal muscle weight, cross-sectional area of myofiber, and activation of AKT/mTOR signaling and by decreased atrogenes expressions and apoptosis. In AngⅡ-induced muscle atrophy mice models, PPARγ was elevated whereas miR-29b was decreased by exercise. The protective effects of exercise in AngⅡ-induced muscle atrophy were inhibited by a PPARγ inhibitor (T0070907) or adeno-associated virus serotype-8 (AAV8)-mediated miR-29b overexpression. CONCLUSION Exercise attenuates AngⅡ-induced muscle atrophy by activation of PPARγ and suppression of miR-29b.
Collapse
Affiliation(s)
- Qi Liu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liyang Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuchun Liang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yuqing Cao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xinyue Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Gao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Fuloria S, Subramaniyan V, Meenakshi DU, Sekar M, Chakravarthi S, Kumar DH, Kumari U, Vanteddu VG, Patel TD, Narra K, Sharma PK, Fuloria NK. Etiopathophysiological role of the renin-angiotensin-aldosterone system in age-related muscular weakening: RAAS-independent beneficial role of ACE2 in muscle weakness. J Biochem Mol Toxicol 2022; 36:e23030. [PMID: 35253303 DOI: 10.1002/jbt.23030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
Aging is accompanied by major changes in body composition that can negatively affect functional status in older adults, including a progressive decrease in muscle mass, strength, and quality. The prevalence of sarcopenia has varied considerably, depending on the definition used and the population surveyed-a 2014 meta-analysis across several countries found estimates ranging from 1% to 29% for people aged 60 years or older, who live independently. The potentially relevant studies were retrieved from the ScienceDirect/Medline/PubMed/Public library of science/Mendeley/Springer link and Google Scholar. Multiple keywords were used for the literature search both alone and in combination. Some of the important keywords used for literature search were as follows: "Epidemiology of muscle weakness/muscle disorders," "Pathogenesis of RAAS in muscle weakness," "Role of Angiotensin 1-7/ACE-2/Mas R axis in muscle weakness," and "Correction pathophysiology of muscle weakness via ACE2." The renin-angiotensin system (RAAS), a major blood pressure regulatory system, is a candidate mediator that may promote aging-associated muscle weakness. Previously, studies explored the proof concept for RAAS inhibition as a therapeutic target. Furthermore, in RAAS, angiotensin II, and angiotensin-converting enzyme 2 (ACE2) have been reported to induce endoplasmic reticulum (ER) stress via glucose-regulated protein 78/eukaryotic translation initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4)/CHOP axis in the liver. In addition, other mitochondria and ER physical interactions contribute to skeletal muscle dysfunction. However, very few studies have investigated the relationship between RAAS and ER stress-associated pathophysiological events and ACE2-mediated biological consequences in muscle weakness. Thus, the study has been designed to investigate the RAAS-independent beneficial role of ACE2 in muscle weakness.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, Faculty of Medicine, MAHSA University, Jenjarom Selangor, Malaysia
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Srikumar Chakravarthi
- Faculty of Medicine, Bioscience and Nursing, Faculty of Medicine, MAHSA University, Jenjarom Selangor, Malaysia
| | - Darnal H Kumar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University, Johor, Johor Bahru, Malaysia
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Malaysia
| | | | | | | | | | - Neeraj K Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, India
| |
Collapse
|
15
|
Maruta H, Abe R, Yamashita H. Effect of Long-Term Supplementation with Acetic Acid on the Skeletal Muscle of Aging Sprague Dawley Rats. Int J Mol Sci 2022; 23:ijms23094691. [PMID: 35563082 PMCID: PMC9101554 DOI: 10.3390/ijms23094691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondrial function in skeletal muscle, which plays an essential role in oxidative capacity and physical activity, declines with aging. Acetic acid activates AMP-activated protein kinase (AMPK), which plays a key role in the regulation of whole-body energy by phosphorylating key metabolic enzymes in both biosynthetic and oxidative pathways and stimulates gene expression associated with slow-twitch fibers and mitochondria in skeletal muscle cells. In this study, we investigate whether long-term supplementation with acetic acid improves age-related changes in the skeletal muscle of aging rats in association with the activation of AMPK. Male Sprague Dawley (SD) rats were administered acetic acid orally from 37 to 56 weeks of age. Long-term supplementation with acetic acid decreased the expression of atrophy-related genes, such as atrogin-1, muscle RING-finger protein-1 (MuRF1), and transforming growth factor beta (TGF-β), activated AMPK, and affected the proliferation of mitochondria and type I fiber-related molecules in muscles. The findings suggest that acetic acid exhibits an anti-aging function in the skeletal muscles of aging rats.
Collapse
Affiliation(s)
- Hitomi Maruta
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
| | - Reina Abe
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
| | - Hiromi Yamashita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
- Correspondence: ; Tel.: +81-866-94-2150
| |
Collapse
|
16
|
Kong L, Chen S, Zeng X, Zhao L, Chen Z. Calpain inhibitors inhibit mitochondrial calpain activity to ameliorate apoptosis of cocultured myoblast. CHINESE J PHYSIOL 2022; 65:226-232. [DOI: 10.4103/0304-4920.359797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Angiotensin II inhibition: a potential treatment to slow the progression of sarcopenia. Clin Sci (Lond) 2021; 135:2503-2520. [PMID: 34751393 DOI: 10.1042/cs20210719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Sarcopenia is defined as the progressive and generalized loss of skeletal muscle mass and strength, which is associated with increased likelihood of adverse outcomes including falls, fractures, physical disability, and mortality. The etiology of sarcopenia has been postulated to be multifactorial with genetics, aging, immobility, nutritional deficiencies, inflammation, stress, and endocrine factors all contributing to the imbalance of muscle anabolism and catabolism. The prevalence of sarcopenia is estimated to range from 13 to 24% in adults over 60 years of age and up to 50% in persons aged 80 and older. As the population continues to age, the prevalence of sarcopenia continues to increase and is expected to affect 500 million people by the year 2050. Sarcopenia impacts the overall health of patients through limitations in functional status, increase in hospital readmissions, poorer hospital outcomes, and increase in overall mortality. Thus, there exists a need to prevent or reduce the occurrence of sarcopenia. Here, we explore the potential mechanisms and current studies regarding angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme (ACE) inhibitors on reducing the development of sarcopenia through the associated changes in cardiovascular function, renal function, muscle fiber composition, inflammation, endothelial dysfunction, metabolic efficiency, and mitochondrial function.
Collapse
|
18
|
Ciccarelli M, Dawson D, Falcao-Pires I, Giacca M, Hamdani N, Heymans S, Hooghiemstra A, Leeuwis A, Hermkens D, Tocchetti CG, van der Velden J, Zacchigna S, Thum T. Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovasc Res 2021; 117:2416-2433. [PMID: 33483724 PMCID: PMC8562335 DOI: 10.1093/cvr/cvab009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Heart failure-either with reduced or preserved ejection fraction (HFrEF/HFpEF)-is a clinical syndrome of multifactorial and gender-dependent aetiology, indicating the insufficiency of the heart to pump blood adequately to maintain blood flow to meet the body's needs. Typical symptoms commonly include shortness of breath, excessive fatigue with impaired exercise capacity, and peripheral oedema, thereby alluding to the fact that heart failure is a syndrome that affects multiple organ systems. Patients suffering from progressed heart failure have a very limited life expectancy, lower than that of numerous cancer types. In this position paper, we provide an overview regarding interactions between the heart and other organ systems, the clinical evidence, underlying mechanisms, potential available or yet-to-establish animal models to study such interactions and finally discuss potential new drug interventions to be developed in the future. Our working group suggests that more experimental research is required to understand the individual molecular mechanisms underlying heart failure and reinforces the urgency for tailored therapeutic interventions that target not only the heart but also other related affected organ systems to effectively treat heart failure as a clinical syndrome that affects and involves multiple organs.
Collapse
Affiliation(s)
- Michele Ciccarelli
- University of Salerno, Department of Medicine, Surgery and Dentistry, Via S. Allende 1, 84081, Baronissi(Salerno), Italy
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2DZ, UK
| | - Inês Falcao-Pires
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Mauro Giacca
- King’s College London, Molecular Medicine Laboratory, 125 Caldharbour Lane, London WC2R2LS, United Kingdom
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34129 Trieste, Italy
| | - Nazha Hamdani
- Department of Clinical Pharmacology and Molecular Cardiology, Institute of Physiology, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Stéphane Heymans
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Bus 911, 3000 Leuven, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
- ICIN-Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Astrid Hooghiemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands
- Department of Medical Humanities, Amsterdam Public Health Research Institute, Amsterdam UMC, Location VUmc, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands
| | - Annebet Leeuwis
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands
| | - Dorien Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1118, 1081HZ Amsterdam, the Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34129 Trieste, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nicolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
19
|
Takeshita H, Yamamoto K, Mogi M, Wang Y, Nozato Y, Fujimoto T, Yokoyama S, Hongyo K, Nakagami F, Akasaka H, Takami Y, Takeya Y, Sugimoto K, Horiuchi M, Rakugi H. Double Deletion of Angiotensin II Type 2 and Mas Receptors Accelerates Aging-Related Muscle Weakness in Male Mice. J Am Heart Assoc 2021; 10:e021030. [PMID: 34212761 PMCID: PMC8403326 DOI: 10.1161/jaha.120.021030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Background The activation of AT2 (angiotensin II type 2 receptor ) and Mas receptor by angiotensin II and angiotensin-(1-7), respectively, is the primary process that counteracts activation of the canonical renin-angiotensin system (RAS). Although inhibition of canonical RAS could delay the progression of physiological aging, we recently reported that deletion of Mas had no impact on the aging process in mice. Here, we used male mice with a deletion of only AT2 or a double deletion of AT2 and Mas to clarify whether these receptors contribute to the aging process in a complementary manner, primarily by focusing on aging-related muscle weakness. Methods and Results Serial changes in grip strength of these mice up to 24 months of age showed that AT2/Mas knockout mice, but not AT2 knockout mice, had significantly weaker grip strength than wild-type mice from the age of 18 months. AT2/Mas knockout mice exhibited larger sizes, but smaller numbers and increased frequency of central nucleation (a marker of aged muscle) of single skeletal muscle fibers than AT2 knockout mice. Canonical RAS-associated genes, inflammation-associated genes, and senescence-associated genes were highly expressed in skeletal muscles of AT2/Mas knockout mice. Muscle angiotensin II content increased in AT2/Mas knockout mice. Conclusions Double deletion of AT2 and Mas in mice exaggerated aging-associated muscle weakness, accompanied by signatures of activated RAS, inflammation, and aging in skeletal muscles. Because aging-associated phenotypes were absent in single deletions of the receptors, AT2 and Mas could complement each other in preventing local activation of RAS during aging.
Collapse
MESH Headings
- Age Factors
- Animals
- Fibrosis
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Hand Strength
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Strength/genetics
- Muscle Weakness/genetics
- Muscle Weakness/metabolism
- Muscle Weakness/pathology
- Muscle Weakness/physiopathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Phenotype
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Renin-Angiotensin System/genetics
- Mice
Collapse
Affiliation(s)
- Hikari Takeshita
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Koichi Yamamoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Masaki Mogi
- Department of PharmacologyEhime University Graduate School of MedicineEhimeJapan
| | - Yu Wang
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichi Nozato
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Taku Fujimoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Serina Yokoyama
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Kazuhiro Hongyo
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Futoshi Nakagami
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Hiroshi Akasaka
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichi Takami
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yasushi Takeya
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Ken Sugimoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and PharmacologyEhime University Graduate School of MedicineEhimeJapan
| | - Hiromi Rakugi
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
20
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
21
|
Zeng X, Zhao L, Chen S, Li X. Inhibition of mitochondrial and cytosolic calpain attenuates atrophy in myotubes co-cultured with colon carcinoma cells. Oncol Lett 2020; 21:124. [PMID: 33552245 DOI: 10.3892/ol.2020.12385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer cachexia is a life-threatening syndrome characterized by muscle atrophy. Cancer cachectic muscle atrophy (CCMA) is associated with mitochondrial injury. Mitochondrial calpains have been reported to induce mitochondrial injury in mouse cardiomyocytes and pulmonary smooth muscle. In the present study, the presence of calpain in the mitochondria of skeletal muscle and its potential role in CCMA were investigated. Transwell plates were used to develop a myotube-carcinoma cell co-culture model to simulate the cancer cachexia environment in vitro. The calpain inhibitors, calpastatin (CAST) and calpeptin (CAPT), were used to inhibit calpain activity in myotubes during co-culture. Calpain-1, calpain-2 and CAST were found to be present in mouse myotube mitochondria. Co-culture activated calpain in both cytoplasm and mitochondria, which caused myotube atrophy. CAST and CAPT treatment prevented calpain activation in both cytoplasm and mitochondria, which inhibited myotube atrophy during co-culture. Additionally, CAST and CAPT treatment increased mitochondrial complex I activity, decreased mitochondrial permeability transition pore opening and improved mitochondrial membrane potential in myotubes during co-culture. In addition, CAST and CAPT treatment increased AKT/mTOR activity, inhibited FoxO3a activity and decreased atrogin-1 content in myotubes during co-culture. The present findings provide new insights to understand the mechanism of CCMA and further help the development of focused approaches to treat CCMA by manipulating the mitochondrial and cytosolic calpain activity.
Collapse
Affiliation(s)
- Xianliang Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Li Zhao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Sizeng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Xiantao Li
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
22
|
Armstrong VS, Fitzgerald LW, Bathe OF. Cancer-Associated Muscle Wasting-Candidate Mechanisms and Molecular Pathways. Int J Mol Sci 2020; 21:ijms21239268. [PMID: 33291708 PMCID: PMC7729509 DOI: 10.3390/ijms21239268] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Excessive muscle loss is commonly observed in cancer patients and its association with poor prognosis has been well-established. Cancer-associated sarcopenia differs from age-related wasting in that it is not responsive to nutritional intervention and exercise. This is related to its unique pathogenesis, a result of diverse and interconnected mechanisms including inflammation, disordered metabolism, proteolysis and autophagy. There is a growing body of evidence that suggests that the tumor is the driver of muscle wasting by its elaboration of mediators that influence each of these pro-sarcopenic pathways. In this review, evidence for these tumor-derived factors and putative mechanisms for inducing muscle wasting will be reviewed. Potential targets for future research and therapeutic interventions will also be reviewed.
Collapse
Affiliation(s)
- Victoria S. Armstrong
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Liam W. Fitzgerald
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Oliver F. Bathe
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Departments of Surgery and Oncology, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: ; Tel.: +1-403-521-3275
| |
Collapse
|
23
|
Zhang H, Chi M, Chen L, Sun X, Wan L, Yang Q, Guo C. Linalool Prevents Cisplatin Induced Muscle Atrophy by Regulating IGF-1/Akt/FoxO Pathway. Front Pharmacol 2020; 11:598166. [PMID: 33390985 PMCID: PMC7774296 DOI: 10.3389/fphar.2020.598166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is an important feature of cancer cachexia, which can be induced by chemotherapy, and affects the survival and quality of life of cancer patients seriously. No specific drugs for cancer cachexia have been applied in clinical practice. This study explored the therapeutic effect of linalool (LIN) on cisplatin (DDP) induced skeletal muscle atrophy. In vivo, LIN can improve skeletal muscle weight loss, anorexia, muscle strength decline and other cachexia symptoms caused by cisplatin treatment in a Lewis lung cancer tumor bearing mouse model, and cause no adverse effects on the anti-tumour effect. LIN treatment decreased the expression of muscle RING-finger protein-1 (MuRF1) and Atrogin1(MAFbx) in muscle, and the activation of insulin-like growth factor-1 (IGF-1)/protein kinase B (Akt)/forkhead box O (FoxO) pathway was observed. In vitro, LIN alleviated DDP induced C2C12 myotube atrophy, and IGF-1 receptor inhibitor Picropodophyllin (PIC), which had no adverse effect on C2C12 myotube cells, could reverse the protective effect of LIN. These results indicate that LIN down-regulates the expression of Atrogin1 and MuRF1 through the IGF-1/Akt/FoxO pathway, alleviating DDP-induced muscle atrophy and improving cachexia symptoms. LIN has the potential to be developed as a drug against cancer cachexia.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyi Chi
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Zeng X, Chen P, Zhao L, Chen S. Acylated and unacylated ghrelin relieve cancer cachexia in mice through multiple mechanisms. CHINESE J PHYSIOL 2020; 63:195-203. [PMID: 33109785 DOI: 10.4103/cjp.cjp_59_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cancer cachexia is a wasting syndrome resulting from decreased protein synthesis and increased protein degradation. Calpain-dependent cleavage of myofilament is the initial step of myofilament degradation and plays a critical role in muscle atrophy. Ghrelin is a multifunctional hormone known to improve protein synthesis and inhibit protein degradation. However, its mechanism of action is not fully understood. Here we investigated whether acylated ghrelin (AG) and unacylated ghrelin (UnAG) could protect against cancer cachexia in mice bearing CT26 colorectal adenocarcinoma. We found for the first time that both AG and UnAG could inhibit calpain activity in skeletal muscle of cancer cachectic mice. AG and UnAG also improved tumor-free body weight, grip strength, muscle mass, epididymal fat mass, and nutritional state in tumor-bearing (TB) mice. Moreover, AG and UnAG reduced serum tumor necrosis factor-± concentration, increased Akt activity, and downregulated atrogin-1 expression in TB mice. Our results may contribute to the development of an AG/UnAG-based therapy for cancer cachexia.
Collapse
Affiliation(s)
- Xianliang Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Li Zhao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Sizeng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
25
|
Krysztofiak H, Wleklik M, Migaj J, Dudek M, Uchmanowicz I, Lisiak M, Kubielas G, Straburzyńska-Migaj E, Lesiak M, Kałużna-Oleksy M. Cardiac Cachexia: A Well-Known but Challenging Complication of Heart Failure. Clin Interv Aging 2020; 15:2041-2051. [PMID: 33173285 PMCID: PMC7646468 DOI: 10.2147/cia.s273967] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a common complication of various cardiac diseases, and its incidence constantly increases. This is caused mainly by aging of populations and improvement in the treatment of coronary artery disease. As HF patients age, they tend to develop comorbidities, creating new problems for health-care professionals. Sarcopenia, defined as the loss of muscle mass and function, and cachexia, defined as weight loss due to an underlying illness, are muscle wasting disorders of particular relevance in the heart failure population, but they go mostly unrecognized. The coexistence of chronic HF and metabolic disorders facilitates the development of cachexia. Cachexia, in turn, significantly worsens a patient’s prognosis and quality of life. The mechanisms underlying cachexia have not been explained yet and require further research. Understanding its background is crucial in the development of treatment strategies to prevent and treat tissue wasting. There are currently no specific European guidelines or recommended therapy for cachexia treatment in HF (“cardiac cachexia”).
Collapse
Affiliation(s)
- Helena Krysztofiak
- 1st Department of Cardiology, University of Medical Sciences in Poznan, Poznan, Poland
| | - Marta Wleklik
- Department of Clinical Nursing, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Migaj
- 1st Department of Cardiology, University of Medical Sciences in Poznan, Poznan, Poland.,Poznan University of Medical Sciences Hospital of Lord's Transfiguration, Poznan, Poland
| | - Magdalena Dudek
- 1st Department of Cardiology, University of Medical Sciences in Poznan, Poznan, Poland.,Poznan University of Medical Sciences Hospital of Lord's Transfiguration, Poznan, Poland
| | | | - Magdalena Lisiak
- Department of Clinical Nursing, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Kubielas
- Department of Clinical Nursing, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Straburzyńska-Migaj
- 1st Department of Cardiology, University of Medical Sciences in Poznan, Poznan, Poland.,Poznan University of Medical Sciences Hospital of Lord's Transfiguration, Poznan, Poland
| | - Maciej Lesiak
- 1st Department of Cardiology, University of Medical Sciences in Poznan, Poznan, Poland.,Poznan University of Medical Sciences Hospital of Lord's Transfiguration, Poznan, Poland
| | - Marta Kałużna-Oleksy
- 1st Department of Cardiology, University of Medical Sciences in Poznan, Poznan, Poland.,Poznan University of Medical Sciences Hospital of Lord's Transfiguration, Poznan, Poland
| |
Collapse
|
26
|
Carbone S, Billingsley HE, Rodriguez-Miguelez P, Kirkman DL, Garten R, Franco RL, Lee DC, Lavie CJ. Lean Mass Abnormalities in Heart Failure: The Role of Sarcopenia, Sarcopenic Obesity, and Cachexia. Curr Probl Cardiol 2020; 45:100417. [PMID: 31036371 PMCID: PMC11146283 DOI: 10.1016/j.cpcardiol.2019.03.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
The role of body composition in patients with heart failure (HF) has been receiving much attention in the last few years. Particularly, reduced lean mass (LM), the best surrogate for skeletal muscle mass, is independently associated with abnormal cardiorespiratory fitness (CRF) and muscle strength, ultimately leading to reduced quality of life and worse prognosis. While in the past, reduced CRF in patients with HF was thought to result exclusively from cardiac dysfunction leading to reduced cardiac output at peak exercise, current evidence supports the concept that abnormalities in LM may also play a critical role. Abnormalities in the LM body composition compartment are associated with the development of sarcopenia, sarcopenic obesity, and cachexia. Such conditions have been implicated in the pathophysiology and progression of HF. However, identification of such conditions remains challenging, as universal definitions for sarcopenia, sarcopenic obesity, and cachexia are lacking. In this review article, we describe the most common body composition abnormalities related to the LM compartment, including skeletal and respiratory muscle mass abnormalities, and the consequences of such anomalies on CRF and muscle strength in patients with HF. Finally, we discuss the potential nonpharmacologic therapeutic strategies such as exercise training (ie, aerobic exercise and resistance exercise) and dietary interventions (ie, dietary supplementation and dietary patterns) that have been implemented to target body composition, with a focus on HF.
Collapse
|
27
|
Gonzalez A, Orozco-Aguilar J, Achiardi O, Simon F, Cabello-Verrugio C. SARS-CoV-2/Renin-Angiotensin System: Deciphering the Clues for a Couple with Potentially Harmful Effects on Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21217904. [PMID: 33114359 PMCID: PMC7663203 DOI: 10.3390/ijms21217904] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has produced significant health emergencies worldwide, resulting in the declaration by the World Health Organization of the coronavirus disease 2019 (COVID-19) pandemic. Acute respiratory syndrome seems to be the most common manifestation of COVID-19. A high proportion of patients require intensive care unit admission and mechanical ventilation (MV) to survive. It has been well established that angiotensin-converting enzyme type 2 (ACE2) is the primary cellular receptor for SARS-CoV-2. ACE2 belongs to the renin–angiotensin system (RAS), composed of several peptides, such as angiotensin II (Ang II) and angiotensin (1-7) (Ang-(1-7)). Both peptides regulate muscle mass and function. It has been described that SARS-CoV-2 infection, by direct and indirect mechanisms, affects a broad range of organ systems. In the skeletal muscle, through unbalanced RAS activity, SARS-CoV-2 could induce severe consequences such as loss of muscle mass, strength, and physical function, which will delay and interfere with the recovery process of patients with COVID-19. This article discusses the relationship between RAS, SARS-CoV-2, skeletal muscle, and the potentially harmful consequences for skeletal muscle in patients currently infected with and recovering from COVID-19.
Collapse
Affiliation(s)
- Andrea Gonzalez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (A.G.); (J.O.-A.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile;
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (A.G.); (J.O.-A.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile;
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Oscar Achiardi
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile;
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8370146, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (A.G.); (J.O.-A.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile;
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Correspondence: ; Tel./Fax: +56-227-703-665
| |
Collapse
|
28
|
Peris-Moreno D, Taillandier D, Polge C. MuRF1/TRIM63, Master Regulator of Muscle Mass. Int J Mol Sci 2020; 21:ijms21186663. [PMID: 32933049 PMCID: PMC7555135 DOI: 10.3390/ijms21186663] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The E3 ubiquitin ligase MuRF1/TRIM63 was identified 20 years ago and suspected to play important roles during skeletal muscle atrophy. Since then, numerous studies have been conducted to decipher the roles, molecular mechanisms and regulation of this enzyme. This revealed that MuRF1 is an important player in the skeletal muscle atrophy process occurring during catabolic states, making MuRF1 a prime candidate for pharmacological treatments against muscle wasting. Indeed, muscle wasting is an associated event of several diseases (e.g., cancer, sepsis, diabetes, renal failure, etc.) and negatively impacts the prognosis of patients, which has stimulated the search for MuRF1 inhibitory molecules. However, studies on MuRF1 cardiac functions revealed that MuRF1 is also cardioprotective, revealing a yin and yang role of MuRF1, being detrimental in skeletal muscle and beneficial in the heart. This review discusses data obtained on MuRF1, both in skeletal and cardiac muscles, over the past 20 years, regarding the structure, the regulation, the location and the different functions identified, and the first inhibitors reported, and aim to draw the picture of what is known about MuRF1. The review also discusses important MuRF1 characteristics to consider for the design of future drugs to maintain skeletal muscle mass in patients with different pathologies.
Collapse
|
29
|
Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020; 9:cells9091970. [PMID: 32858949 PMCID: PMC7564605 DOI: 10.3390/cells9091970] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a key growth factor that regulates both anabolic and catabolic pathways in skeletal muscle. IGF-1 increases skeletal muscle protein synthesis via PI3K/Akt/mTOR and PI3K/Akt/GSK3β pathways. PI3K/Akt can also inhibit FoxOs and suppress transcription of E3 ubiquitin ligases that regulate ubiquitin proteasome system (UPS)-mediated protein degradation. Autophagy is likely inhibited by IGF-1 via mTOR and FoxO signaling, although the contribution of autophagy regulation in IGF-1-mediated inhibition of skeletal muscle atrophy remains to be determined. Evidence has suggested that IGF-1/Akt can inhibit muscle atrophy-inducing cytokine and myostatin signaling via inhibition of the NF-κΒ and Smad pathways, respectively. Several miRNAs have been found to regulate IGF-1 signaling in skeletal muscle, and these miRs are likely regulated in different pathological conditions and contribute to the development of muscle atrophy. IGF-1 also potentiates skeletal muscle regeneration via activation of skeletal muscle stem (satellite) cells, which may contribute to muscle hypertrophy and/or inhibit atrophy. Importantly, IGF-1 levels and IGF-1R downstream signaling are suppressed in many chronic disease conditions and likely result in muscle atrophy via the combined effects of altered protein synthesis, UPS activity, autophagy, and muscle regeneration.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| | - Patrice Delafontaine
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| |
Collapse
|
30
|
Yang Y, Sadri H, Prehn C, Adamski J, Rehage J, Dänicke S, von Soosten D, Metges CC, Ghaffari MH, Sauerwein H. Proteasome activity and expression of mammalian target of rapamycin signaling factors in skeletal muscle of dairy cows supplemented with conjugated linoleic acids during early lactation. J Dairy Sci 2020; 103:2829-2846. [PMID: 31954574 DOI: 10.3168/jds.2019-17244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis via its main downstream effectors, ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E binding protein (4EBP1). The ubiquitin-proteasome system (UPS) is the main proteolytic pathway in muscle, and the muscle-specific ligases tripartite motif containing 63 (TRIM63; also called muscle-specific ring-finger protein 1, MuRF-1) and F-box only protein 32 (FBXO32; also called atrogin-1) are important components of the UPS. We investigated 20S proteasome activity and mRNA expression of key components of mTOR signaling and UPS in skeletal muscle of dairy cows during late gestation and early lactation and tested the effects of dietary supplementation (from d 1 in milk) with conjugated linoleic acids (sCLA; 100 g/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). Blood and muscle tissue (semitendinosus) samples were collected on d -21, 1, 21, and 70 relative to parturition. Dry matter intake increased with time of lactation in both groups. It was lower in sCLA than in CTR on d 21, which resulted in a reduced calculated metabolizable protein balance. Most serum and muscle concentrations of AA followed time-related changes but were unaffected by CLA supplementation. In both groups, serum and muscle 3-methylhistidine (3-MH) concentrations and the ratio of 3-MH:creatinine increased from d -21 to d 1, followed by a decline on d 21. The mRNA abundance of MTOR on d 21 and 70 was greater in sCLA than in CTR. The abundance of 4EBP1 mRNA did not differ between groups but was upregulated in both on d 1. The mRNA abundance of S6K1 on d 70 was greater in CTR than in sCLA, but remained unchanged over time in both groups. The mRNA abundance of FBXO32 (encoding atrogin-1) on d 21 was greater in sCLA than in CTR. The mRNA abundance of TRIM63 (also known as MuRF1) showed a similar pattern as FBXO32 in both groups: an increase from d -21 to d 1, followed by a decline. The mRNA for the α (BCKDHA) and β (BCKDHB) polypeptide of branched-chain α-keto acid dehydrogenase was elevated in sCLA and CTR cows on d 21, respectively, suggesting a role of CLA in determining the metabolic fate of branched-chain AA. For the mTOR protein, no group differences were observed. The abundance of S6K1 protein was greater across all time points in sCLA versus CTR. The antepartum 20S proteasome activity in muscle was elevated in both groups compared with postpartum, probably reflecting the start of protein mobilization before parturition. Plasma insulin concentrations decreased in both groups postpartum but to a greater extent in CTR than in sCLA, resulting in greater insulin concentrations in sCLA than in CTR. Thus, the greater abundance of MTOR mRNA and S6K1 protein in sCLA compared with CTR might be mediated by the greater plasma insulin postpartum. The upregulation of MTOR mRNA in sCLA cows on d 21, despite greater FBXO32 mRNA abundance, may reflect a simultaneous activation of both anabolic and catabolic signaling pathways, likely resulting in greater protein turnover.
Collapse
Affiliation(s)
- Y Yang
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - C Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - J Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - J Rehage
- University for Veterinary Medicine, Foundation, Clinic for Cattle, 30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), 38116 Braunschweig, Germany
| | - D von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), 38116 Braunschweig, Germany
| | - C C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
31
|
Different effects of the deletion of angiotensin converting enzyme 2 and chronic activation of the renin-angiotensin system on muscle weakness in middle-aged mice. Hypertens Res 2019; 43:296-304. [PMID: 31853045 DOI: 10.1038/s41440-019-0375-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Inhibition of the renin-angiotensin system (RAS) has been shown to alleviate muscle atrophy both under pathological conditions and during physiological aging. We recently reported that the deletion of angiotensin converting enzyme 2 (ACE2), which converts Angiotensin II to Angiotensin-(1-7) in mice, leads to the early manifestation of aging-associated muscle weakness along with the increased expression of p16INK4a, a senescence-associated gene, and increased central nuclei in the tibialis anterior (TA) muscle in middle age. As ACE2 is multifunctional and functions beyond its role in the RAS, we investigated whether activation of the RAS primarily contributes to muscle weakness in ACE2 knockout (KO) mice by comparing these mice to Tsukuba hypertensive (TH) mice that overproduce human angiotensin II. The grip strength of young (6 months) and middle-aged (15 months) TH mice was consistently lower than that of wild-type mice at the same ages. Middle-aged TH mice were continuously lean with extremely reduced adiposity. Central nuclei in the gastrocnemius (GM) muscle were increased in ACE2KO mice, while no apparent morphological change was observed in the GM muscles of TH mice. Increased expression of p16INK4a along with alterations in the expression of several sarcopenia-associated genes were observed in the GM muscles of ACE2KO mice but not TH mice. These findings suggest that chronic overactivation of the RAS does not primarily contribute to the early aging phenotypes of skeletal muscle in ACE2KO mice.
Collapse
|
32
|
Ghaffari MH, Schuh K, Dusel G, Frieten D, Koch C, Prehn C, Adamski J, Sauerwein H, Sadri H. Mammalian target of rapamycin signaling and ubiquitin-proteasome-related gene expression in skeletal muscle of dairy cows with high or normal body condition score around calving. J Dairy Sci 2019; 102:11544-11560. [PMID: 31587900 DOI: 10.3168/jds.2019-17130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
The objective of the current study was to investigate the effects of overconditioning around calving on gene expression of key components of the mammalian target of rapamycin (mTOR) pathway and ubiquitin-proteasome system (UPS) in skeletal muscle as well as the AA profiles in both serum and muscle of periparturient cows. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to either a high body condition group (HBCS; n = 19) or a normal body condition group (NBCS; n = 19) and were fed different diets until dry-off (d -49 relative to calving) to amplify the difference. The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg). At dry-off, the NBCS cows (parity: 2.42 ± 1.84; body weight: 665 ± 64 kg) had a body condition score (BCS) <3.5 and backfat thickness (BFT) <1.2 cm, whereas the HBCS cows (parity: 3.37 ± 1.67; body weight: 720 ± 57 kg) had a BCS >3.75 and BFT >1.4 cm. During the dry period and the subsequent lactation, both groups were fed identical diets but maintained the BCS and BFT differences. Blood samples and skeletal muscle biopsies (semitendinosus) were repeatedly (d -49, +3, +21, and +84 relative to calving) collected for assessing the concentrations of free AA and the mRNA abundance of various components of mTOR and UPS. The differences in BCS and BFT were maintained throughout the study. The circulating concentrations of most AA with the exception of Gly, Gln, Met, and Phe increased in early lactation in both groups. The serum concentrations of Ala (d +21 and +84) and Orn (d +84) were lower in HBCS cows than in NBCS cows, but those of Gly, His, Leu, Val, Lys, Met, and Orn on d -49 and Ile on d +21 were greater in HBCS cows than in NBCS cows. The serum concentrations of 3-methylhistidine, creatinine, and 3-methylhistidine:creatinine ratio increased after calving (d +3) but did not differ between the groups. The muscle concentrations of all AA (except for Cys) remained unchanged over time and did not differ between groups. The muscle concentrations of Cys were greater on d -49 but tended to be lower on d +21 in HBCS cows than in NBCS cows. On d +21, mTOR and eukaryotic translation initiation factor 4E binding protein 1 mRNA abundance was greater in HBCS cows than in NBCS cows, whereas ribosomal protein S6 kinase 1 was not different between the groups. The mRNA abundance of ubiquitin-activating enzyme 1 (d +21), ubiquitin-conjugating enzyme 1 (d +21), atrogin-1 (d +21), and ring finger protein-1 (d +3) enzymes was greater in HBCS cows than in NBCS cows, whereas ubiquitin-conjugating enzyme 2 was not different between the groups. The increased mRNA abundance of key components of mTOR signaling and of muscle-specific ligases of HBCS cows may indicate a simultaneous activation of anabolic and catabolic processes and thus increased muscle protein turnover, likely as a part of the adaptive response to prevent excessive loss of skeletal muscle mass during early lactation.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - K Schuh
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - G Dusel
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - D Frieten
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - C Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - J Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan 85350, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran.
| |
Collapse
|
33
|
Winslow MA, Hall SE. Muscle wasting: A review of exercise, classical and non-classical RAS axes. J Cell Mol Med 2019; 23:5836-5845. [PMID: 31273946 PMCID: PMC6714228 DOI: 10.1111/jcmm.14412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
This review identifies how the classical/non‐classical renin‐angiotensin system (RAS) and exercise influence muscle wasting. The classical RAS axis enhances muscle loss through the interaction with NADPH oxidase (NOX), ubiquitin proteasome system (UPS), protein synthesis and fibrosis pathways. The mainstream hypothesis identifies reactive oxygen species (ROS) as the key pathway in muscle, this review recognizes alternative pathways that lead to an increase in muscle wasting through the classical RAS axis. In addition, pathways in which the non‐classical RAS axis and exercise inhibit the classical RAS axis are also explored. The non‐classical RAS axis and exercise have a significant negative impact on ROS production and protein synthesis. The non‐classical RAS axis has been identified in this review to directly affect protein synthesis pathways not by altering the pre‐existing intracellular ROS level, further supporting the idea that muscle wasting caused by the classical RAS system is not entirely due to ROS production. Exercise has been identified to modify the RAS axes making it a therapeutic option.
Collapse
Affiliation(s)
- Mark A Winslow
- Department of Kinesiology, Boise State University, Boise, Idaho
| | | |
Collapse
|
34
|
Silva KAS, Ghiarone T, Schreiber K, Grant D, White T, Frisard MI, Sukhanov S, Chandrasekar B, Delafontaine P, Yoshida T. Angiotensin II suppresses autophagy and disrupts ultrastructural morphology and function of mitochondria in mouse skeletal muscle. J Appl Physiol (1985) 2019; 126:1550-1562. [PMID: 30946636 DOI: 10.1152/japplphysiol.00898.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiotensin II (ANG II)-induced skeletal muscle wasting is characterized by activation of the ubiquitin-proteasome system. However, the potential involvement of proteolytic system macroautophagy/autophagy in this wasting process remains elusive. Autophagy is precisely regulated to maintain cell survival and homeostasis; thus its dysregulation (i.e., overactivation or persistent suppression) could lead to detrimental outcomes in skeletal muscle. Here we show that infusion of ANG II for 7 days in male FVB mice suppressed autophagy in skeletal muscle. ANG II blunted microtubule-associated protein 1 light chain 3B (LC3B)-I-to-LC3B-II conversion (an autophagosome marker), increased p62/SQSTM1 (an autophagy cargo receptor) protein expression, and decreased the number of autophagic vacuoles. ANG II inhibited UNC-51-like kinase 1 via inhibition of 5'-AMP-activated kinase and activation of mechanistic target of rapamycin complex 1, leading to reduced phosphorylation of beclin-1Ser14 and Autophagy-related protein 14Ser29, suggesting that ANG II impairs autophagosome formation in skeletal muscle. In line with ANG II-mediated suppression of autophagy, ANG II promoted accumulation of abnormal/damaged mitochondria, characterized by swelling and disorganized cristae and matrix dissolution, with associated increase in PTEN-induced kinase 1 protein expression. ANG II also reduced mitochondrial respiration, indicative of mitochondrial dysfunction. Together, these results demonstrate that ANG II reduces autophagic activity and disrupts mitochondrial ultrastructure and function, likely contributing to skeletal muscle wasting. Therefore, strategies that activate autophagy in skeletal muscle have the potential to prevent or blunt ANG II-induced skeletal muscle wasting in chronic diseases. NEW & NOTEWORTHY Our study identified a novel mechanism whereby angiotensin II (ANG II) impairs mitochondrial energy metabolism in skeletal muscle. ANG II suppressed autophagosome formation by inhibiting the UNC-51-like kinase 1(ULK1)-beclin-1 axis, resulting in accumulation of abnormal/damaged and dysfunctional mitochondria and reduced mitochondrial respiratory capacity. Therapeutic strategies that activate the ULK1-beclin-1 axis have the potential to delay or reverse skeletal muscle wasting in chronic diseases characterized by increased systemic ANG II levels.
Collapse
Affiliation(s)
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Kathy Schreiber
- Cell and Immunobiology Core, University of Missouri , Columbia, Missouri
| | - DeAna Grant
- Electron Microcopy Core Facility, University of Missouri , Columbia, Missouri
| | - Tommi White
- Electron Microcopy Core Facility, University of Missouri , Columbia, Missouri.,Department of Biochemistry, University of Missouri , Columbia, Missouri
| | - Madlyn I Frisard
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Sergiy Sukhanov
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine , Columbia, Missouri
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine , Columbia, Missouri
| | - Patrice Delafontaine
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine , Columbia, Missouri
| | - Tadashi Yoshida
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine , Columbia, Missouri
| |
Collapse
|
35
|
Zheng D, Su Z, Zhang Y, Ni R, Fan GC, Robbins J, Song LS, Li J, Peng T. Calpain-2 promotes MKP-1 expression protecting cardiomyocytes in both in vitro and in vivo mouse models of doxorubicin-induced cardiotoxicity. Arch Toxicol 2019; 93:1051-1065. [DOI: 10.1007/s00204-019-02405-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
|
36
|
Huang K, Hu S, Cheng K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv Healthc Mater 2019; 8:e1801011. [PMID: 30548836 PMCID: PMC6368830 DOI: 10.1002/adhm.201801011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI), caused by coronary heart disease (CHD), remains one of the most common causes of death in the United States. Over the last few decades, scientists have invested considerable resources on the study and development of cell therapies for myocardial regeneration after MI. However, due to a number of limitations, they are not yet readily available for clinical applications. Mounting evidence supports the theory that paracrine products are the main contributors to the regenerative effects attributed to these cell therapies. The next generation of cell-based MI therapies will identify and isolate cell products and derivatives, integrate them with biocompatible materials and technologies, and use them for the regeneration of damaged myocardial tissue. This review discusses the progress made thus far in pursuit of this new generation of cell therapies. Their fundamental regenerative mechanisms, their potential to combine with other therapeutic products, and their role in shaping new clinical approaches for heart tissue engineering, are addressed.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
- Pharmacoengineeirng and Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
37
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 719] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
38
|
Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci (Lond) 2018; 132:1487-1507. [PMID: 30037837 DOI: 10.1042/cs20180276] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Overactivation of the renin-angiotensin (Ang) system (RAS) increases the classical arm (Ang-converting enzyme (ACE)/Ang II/Ang type 1 receptor (AT1R)) to the detriment of the protective arm (ACE2/Ang 1-7/Mas receptor (MasR)). The components of the RAS are present locally in white adipose tissue (WAT) and skeletal muscle, which act co-operatively, through specific mediators, in response to pathophysiological changes. In WAT, up-regulation of the classical arm promotes lipogenesis and reduces lipolysis and adipogenesis, leading to adipocyte hypertrophy and lipid storage, which are related to insulin resistance and increased inflammation. In skeletal muscle, the classical arm promotes protein degradation and increases the inflammatory status and oxidative stress, leading to muscle wasting. Conversely, the protective arm plays a counter-regulatory role by opposing the effect of Ang II. The accumulation of adipose tissue and muscle mass loss is associated with a higher risk of morbidity and mortality, which could be related, in part, to overactivation of the RAS. On the other hand, exercise training (ExT) shifts the balance of the RAS towards the protective arm, promoting the inhibition of the classical arm in parallel with the stimulation of the protective arm. Thus, fat mobilization and maintenance of muscle mass and function are facilitated. However, the mechanisms underlying exercise-induced changes in the RAS remain unclear. In this review, we present the RAS as a key mechanism of WAT and skeletal muscle metabolic dysfunction. Furthermore, we discuss the interaction between the RAS and exercise and the possible underlying mechanisms of the health-related aspects of ExT.
Collapse
|
39
|
Zeng X, Chen S, Yang Y, Ke Z. Acylated and unacylated ghrelin inhibit atrophy in myotubes co-cultured with colon carcinoma cells. Oncotarget 2017; 8:72872-72885. [PMID: 29069832 PMCID: PMC5641175 DOI: 10.18632/oncotarget.20531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a result of increased protein degradation and decreased protein synthesis. The multifunctional circulating hormone ghrelin promotes synthesis and inhibits degradation of muscle protein, but its mechanism of action is not fully understood. Here, we investigated whether co-culturing C2C12 myotubes with CT26 colon carcinoma cells induces myotube atrophy, and whether acylated ghrelin (AG) and unacylated ghrelin (UnAG) had anti-atrophic effects. We found that co-culture induced myotube atrophy and increased tumor necrosis factor-alpha (TNF-α) and myostatin concentrations in the culture medium. Moreover, co-culture down-regulated myogenin and MyoD expression, inhibited the Akt signaling, up-regulated ubiquitin E3 ligase expression, and activated the calpain system and autophagy in myotubes. Both AG and UnAG inhibited these changes. Our study describes a novel in vitro model that can be employed to investigate cancer cachexia, and our findings suggest a possible use for AG and UnAG in treating cancer cachexia.
Collapse
Affiliation(s)
- Xianliang Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Sizeng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yang Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Zhao Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
40
|
Abstract
Heart failure represents a systemic disease with profound effects on multiple peripheral tissues including skeletal muscle. Within the context of heart failure, perturbations in skeletal muscle physiology, structure, and function strongly contribute to exercise intolerance and the morbidity of this devastating disease. There is growing evidence that chronic heart failure imparts specific pathological changes within skeletal muscle beds resulting in muscle dysfunction and tissue atrophy. Mechanistically, systemic and local inflammatory responses drive critical aspects of this pathology. In this review, we will discuss pathological mechanisms that drive skeletal muscle inflammation and highlight emerging roles for distinct innate immune subsets that reside within damage muscle tissue focusing on the recently described embryonic and monocyte-derived macrophage lineages. Within this context, we will discuss how immune mechanisms can be differentially targeted to stimulate skeletal muscle inflammation, catabolism, fiber atrophy, and regeneration.
Collapse
Affiliation(s)
- Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine St. Louis, St. Louis, MO, 63110, USA.
- Department of Immunology and Pathology, Washington University School of Medicine St. Louis, St. Louis, MO, 63110, USA.
| | - Oscar L Sierra
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA
| |
Collapse
|
41
|
Zempo H, Isobe M, Naito H. Link between blood flow and muscle protein metabolism in elderly adults. ACTA ACUST UNITED AC 2017. [DOI: 10.7600/jpfsm.6.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hirofumi Zempo
- Japan Society for the Promotion of Science
- Graduate School of Health and Sports Science, Juntendo University
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University
| |
Collapse
|
42
|
Yoshida T, Delafontaine P. An Intronic Enhancer Element Regulates Angiotensin II Type 2 Receptor Expression during Satellite Cell Differentiation, and Its Activity Is Suppressed in Congestive Heart Failure. J Biol Chem 2016; 291:25578-25590. [PMID: 27756842 DOI: 10.1074/jbc.m116.752501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with advanced congestive heart failure (CHF) or chronic kidney disease often have increased angiotensin II (Ang II) levels and cachexia. We previously demonstrated that Ang II, via its type 1 receptor, causes muscle protein breakdown and apoptosis and inhibits satellite cell (SC) proliferation and muscle regeneration, likely contributing to cachexia in CHF and chronic kidney disease. In contrast, Ang II, via its type 2 receptor (AT2R) expression, is robustly induced during SC differentiation, and it potentiates muscle regeneration. To understand the mechanisms regulating AT2R expression and its potential role in muscle regeneration in chronic diseases, we used a mouse model of CHF and found that muscle regeneration was markedly reduced and that this was accompanied by blunted increase of AT2R expression. We performed AT2R promoter reporter analysis during satellite cell differentiation and found that the 70 bp upstream of the AT2R transcription start site contain a core promoter region, and regions upstream of 70 bp to 3 kbp are dispensable for AT2R induction. Instead, AT2R intron 2 acts as a transcriptional enhancer during SC differentiation. Further deletion/mutation analysis revealed that multiple transcription factor binding sites in the +286/+690 region within intron 2 coordinately regulate AT2R transcription. Importantly, +286/+690 enhancer activity was suppressed in CHF mouse skeletal muscle, suggesting that AT2R expression is suppressed in CHF via inhibition of AT2R intronic enhancer activity, leading to lowered muscle regeneration. Thus targeting intron 2 enhancer element could lead to the development of a novel intervention to increase AT2R expression in SCs and potentiate skeletal muscle regenerative capacity in chronic diseases.
Collapse
Affiliation(s)
- Tadashi Yoshida
- From the Department of Medicine and Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Patrice Delafontaine
- From the Department of Medicine and Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| |
Collapse
|
43
|
Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 2016; 311:C392-403. [DOI: 10.1152/ajpcell.00125.2016] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 01/02/2023]
Abstract
Muscle atrophy complicates many diseases as well as aging, and its presence predicts both decreased quality of life and survival. Much work has been conducted to define the molecular mechanisms involved in maintaining protein homeostasis in muscle. To date, the ubiquitin proteasome system (UPS) has been shown to play an important role in mediating muscle wasting. In this review, we have collated the enzymes in the UPS whose roles in muscle wasting have been confirmed through loss-of-function studies. We have integrated information on their mechanisms of action to create a model of how they work together to produce muscle atrophy. These enzymes are involved in promoting myofibrillar disassembly and degradation, activation of autophagy, inhibition of myogenesis as well as in modulating the signaling pathways that control these processes. Many anabolic and catabolic signaling pathways are involved in regulating these UPS genes, but none appear to coordinately regulate a large number of these genes. A number of catabolic signaling pathways appear to instead function by inhibition of the insulin/IGF-I/protein kinase B anabolic pathway. This pathway is a critical determinant of muscle mass, since it can suppress key ubiquitin ligases and autophagy, activate protein synthesis, and promote myogenesis through its downstream mediators such as forkhead box O, mammalian target of rapamycin, and GSK3β, respectively. Although much progress has been made, a more complete inventory of the UPS genes involved in mediating muscle atrophy, their mechanisms of action, and their regulation will be useful for identifying novel therapeutic approaches to this important clinical problem.
Collapse
Affiliation(s)
- Philippe A. Bilodeau
- Department of Medicine, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; and
| | - Erin S. Coyne
- Department of Biochemistry, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Simon S. Wing
- Department of Medicine, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; and
- Department of Biochemistry, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 2016; 98:218-230. [PMID: 26738803 DOI: 10.1016/j.freeradbiomed.2015.12.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/30/2015] [Accepted: 12/25/2015] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored.
Collapse
Affiliation(s)
- Oren Rom
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel.
| | - Abraham Z Reznick
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel
| |
Collapse
|
45
|
Abstract
The skeletal muscle mass is known to be controlled by the balance between protein synthesis and degradation. The fractional rate of protein synthesis has been reported to decrease age-dependently from 1 to 4 weeks of age in the chicken breast muscle (pectoralis major muscle). On the other hand, age-dependent change of the fractional protein degradation rate was reported to be less in the skeletal muscle of chickens. These findings suggest that protein synthesis is age-dependently downregulated in chicken muscle. We herein investigated the age-dependent changes in protein synthesis or proteolysis-related factors in the breast muscle of 7, 14, 28, and 49-day old broiler chickens. IGF-1 mRNA level, phosphorylation rate of Akt, and phospho-S6 content were coordinately decreased in an age-dependent manner, suggesting that IGF-1-stimulated protein synthesis is downregulated with age in chicken breast muscle. In contrast, atrogin-1, one of the proteolysis-related factors, gradually increased with age at mRNA levels. However, plasma Nτ-methylhistidine concentration, an indicator of skeletal muscle proteolysis, did not coordinately change with atrogin-1 mRNA levels. Taken together, our results suggest that the IGF-1/Akt/S6 signaling pathway is age-dependently downregulated in the chicken breast muscle.
Collapse
|
46
|
Sigurta' A, Zambelli V, Bellani G. Renin-angiotensin system in ventilator-induced diaphragmatic dysfunction: Potential protective role of Angiotensin (1-7). Med Hypotheses 2016; 94:132-7. [PMID: 27515219 DOI: 10.1016/j.mehy.2016.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022]
Abstract
Ventilator-induced diaphragmatic dysfunction is a feared complication of mechanical ventilation that adversely affects the outcome of intensive care patients. Human and animal studies demonstrate atrophy and ultrastructural alteration of diaphragmatic muscular fibers attributable to increased oxidative stress, depression of the anabolic pathway regulated by Insulin-like growing factor 1 and increased proteolysis. The renin-angiotensin system, through its main peptide Angiotensin II, plays a major role in skeletal muscle diseases, mainly increasing oxidative stress and inducing insulin resistance, atrophy and fibrosis. Conversely, its counter-regulatory peptide Angiotensin (1-7) has a protective role in these processes. Recent data on rodent models show that renin-angiotensin system is activated after mechanical ventilation and that infusion of Angiotensin II induces diaphragmatic skeletal muscle atrophy. Given: (A) common pathways shared by ventilator-induced diaphragmatic dysfunction and skeletal muscle pathology induced by renin-angiotensin system, (B) evidences of an involvement of renin-angiotensin system in diaphragm atrophy and dysfunction, we hypothesize that renin-angiotensin system plays an important role in ventilator-induced diaphragmatic dysfunction, while Angiotensin (1-7) can have a protective effect on this pathological process. The activation of renin-angiotensin system in ventilator-induced diaphragmatic dysfunction can be demonstrated by quantification of its main components in the diaphragm of ventilated humans or animals. The infusion of Angiotensin (1-7) in an established rodent model of ventilator-induced diaphragmatic dysfunction can be used to test its potential protective role, that can be further confirmed with the infusion of Angiotensin (1-7) antagonists like A-779. Verifying this hypothesis can help in understanding the processes involved in ventilator-induced diaphragmatic dysfunction pathophysiology and open new possibilities for its prevention and treatment.
Collapse
Affiliation(s)
- Anna Sigurta'
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Emergency, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
47
|
Loprinzi PD, Loenneke JP. The effects of antihypertensive medications on physical function. Prev Med Rep 2016; 3:264-9. [PMID: 27419024 PMCID: PMC4929186 DOI: 10.1016/j.pmedr.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/28/2016] [Accepted: 03/11/2016] [Indexed: 11/16/2022] Open
Abstract
Objective Limited research has examined the effects of antihypertensive medication use and physical function. These studies provided mixed findings while employing a convenience sample and limiting their examination to few indices of physical function and few classes of antihypertensive medications. The purpose of this study was to examine whether several antihypertensive medication classes were associated with several measures of physical function in a national sample of U.S. middle-to-older age adults. Methods Data from the 1999–2002 and 2011–2012 NHANES were used. Antihypertensive medication use was assessed from an interviewer, and included angiotensin converting enzyme (ACE) inhibitors, peripherally-acting antiadrenergic agents and centrally-acting antiadrenergic agents. Physical function-related parameters included objectively-measured lower extremity isokinetic knee extensor strength (IKES), objectively-measured grip strength, laboratory-assessed walking performance (8 and 20 ft walk tests) and self-reported physical activity engagement. Results Those on ACE inhibitors had a 37% reduced odds (OR = 0.63, 95% CI: 0.48–0.83, P = .002) of engaging in moderate-to-vigorous physical activity, had reduced knee extensor strength (β = − 15.4, 95% CI: − 27.2 to − 3.4, P = .01) and took longer to complete the 20 ft (β = .42, 95% CI: 0.02–0.81, P = .04) and 8 ft walking tests (β = .22, 95% CI: 0.05–0.39, P = .01). Those on peripherally-acting antiadrenergic agents had reduced grip strength (β = − 4.8, 95% CI: − 9.1 to − 0.5, P = .02). Conclusions Antihypertensive medication use, particularly ACE inhibitors, is associated with various measures of reduced physical function. Clinicians are encouraged to monitor the long-term mobility function of their patients on antihypertensive medications. A national sample was employed. Numerous physical function parameters were evaluated. Antihypertensive medication use was associated with reduced physical function.
Collapse
Affiliation(s)
- Paul D. Loprinzi
- Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, MS, United States
- Corresponding author at: Physical Activity Epidemiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, 229 Turner Center, MS 38677, United States.Physical Activity Epidemiology LaboratoryDepartment of Health, Exercise Science, and Recreation ManagementThe University of Mississippi229 Turner CenterMS38677United States
| | - Jeremy P. Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, MS, United States
| |
Collapse
|
48
|
Mueller TC, Bachmann J, Prokopchuk O, Friess H, Martignoni ME. Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia--can findings from animal models be translated to humans? BMC Cancer 2016; 16:75. [PMID: 26856534 PMCID: PMC4746781 DOI: 10.1186/s12885-016-2121-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Background Cachexia is a multi-factorial, systemic syndrome that especially affects patients with cancer of the gastrointestinal tract, and leads to reduced treatment response, survival and quality of life. The most important clinical feature of cachexia is the excessive wasting of skeletal muscle mass. Currently, an effective treatment is still lacking and the search for therapeutic targets continues. Even though a substantial number of animal studies have contributed to a better understanding of the underlying mechanisms of the loss of skeletal muscle mass, subsequent clinical trials of potential new drugs have not yet yielded any effective treatment for cancer cachexia. Therefore, we questioned to which degree findings from animal studies can be translated to humans in clinical practice and research. Discussion A substantial amount of animal studies on the molecular mechanisms of muscle wasting in cancer cachexia has been conducted in recent years. This extensive review of the literature showed that most of their observations could not be consistently reproduced in studies on human skeletal muscle samples. However, studies on human material are scarce and limited in patient numbers and homogeneity. Therefore, their results have to be interpreted critically. Summary More research is needed on human tissue samples to clarify the signaling pathways that lead to skeletal muscle loss, and to confirm pre-selected drug targets from animal models in clinical trials. In addition, improved diagnostic tools and standardized clinical criteria for cancer cachexia are needed to conduct standardized, randomized controlled trials of potential drug candidates in the future.
Collapse
Affiliation(s)
- Tara C Mueller
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany.
| | - Jeannine Bachmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Olga Prokopchuk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Marc E Martignoni
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| |
Collapse
|
49
|
Morales MG, Abrigo J, Acuña MJ, Santos RA, Bader M, Brandan E, Simon F, Olguin H, Cabrera D, Cabello-Verrugio C. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Dis Model Mech 2016; 9:441-9. [PMID: 26851244 PMCID: PMC4852504 DOI: 10.1242/dmm.023390] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/02/2016] [Indexed: 12/30/2022] Open
Abstract
Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophyin vivousing unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy.
Collapse
Affiliation(s)
- María Gabriela Morales
- Laboratory of Biology and Molecular Physiopathology, Department of Biological Sciences, Faculty of Biological Sciences & Faculty of Medicine, Universidad Andrés Bello, Santiago 8370146, Chile Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Johanna Abrigo
- Laboratory of Biology and Molecular Physiopathology, Department of Biological Sciences, Faculty of Biological Sciences & Faculty of Medicine, Universidad Andrés Bello, Santiago 8370146, Chile Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - María José Acuña
- Center for Cell Regulation and Pathology (CRCP), Center for Regeneration and Aging (CARE), Laboratory of Cell Differentiation and Pathology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Santiago 8331150, Chile
| | - Robson A Santos
- National Institute in Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch 13125, Germany National Institute in Science and Technology in Nanobiopharmaceutics, Belo Horizonte 31270-901, Brazil
| | - Enrique Brandan
- Center for Cell Regulation and Pathology (CRCP), Center for Regeneration and Aging (CARE), Laboratory of Cell Differentiation and Pathology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Santiago 8331150, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Biological Sciences & Faculty of Medicine, Universidad Andrés Bello, Santiago 8370146, Chile Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Hugo Olguin
- Laboratory of Tissue Repair and Adult Stem Cells, Department of Cell and Molecular Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Santiago 8331150, Chile
| | - Daniel Cabrera
- Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago 8370993, Chile Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Biology and Molecular Physiopathology, Department of Biological Sciences, Faculty of Biological Sciences & Faculty of Medicine, Universidad Andrés Bello, Santiago 8370146, Chile Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
50
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|