1
|
Hao T, Ji G, Qian M, Li QX, Huang H, Deng S, Liu P, Deng W, Wei Y, He J, Wang S, Gao W, Li T, Cheng J, Tian J, Pan L, Gao F, Li Z, Zhao Q. Intracellular delivery of nitric oxide enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. SCIENCE ADVANCES 2023; 9:eadi9967. [PMID: 38019911 PMCID: PMC10686553 DOI: 10.1126/sciadv.adi9967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Cell therapy by autologous mesenchymal stem cells (MSCs) is a clinically acceptable strategy for treating various diseases. Unfortunately, the therapeutic efficacy is largely affected by the low quality of MSCs collected from patients. Here, we showed that the gene expression of MSCs from patients with diabetes was differentially regulated compared to that of MSCs from healthy controls. Then, MSCs were genetically engineered to catalyze an NO prodrug to release NO intracellularly. Compared to extracellular NO conversion, intracellular NO delivery effectively prolonged survival and enhanced the paracrine function of MSCs, as demonstrated by in vitro and in vivo assays. The enhanced therapeutic efficacy of engineered MSCs combined with intracellular NO delivery was further confirmed in mouse and rat models of myocardial infarction, and a clinically relevant cell administration paradigm through secondary thoracotomy has been attempted.
Collapse
Affiliation(s)
- Tian Hao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guangbo Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiu Xuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haoyan Huang
- Nankai University School of Medicine, Tianjin 300071, China
| | - Shiyu Deng
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Pei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiliang Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Shusen Wang
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University, Tianjin, China
| | - Tong Li
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University, Tianjin, China
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Mohindra P, Zhong JX, Fang Q, Cuylear DL, Huynh C, Qiu H, Gao D, Kharbikar BN, Huang X, Springer ML, Lee RJ, Desai TA. Local decorin delivery via hyaluronic acid microrods improves cardiac performance, ventricular remodeling after myocardial infarction. NPJ Regen Med 2023; 8:60. [PMID: 37872196 PMCID: PMC10593781 DOI: 10.1038/s41536-023-00336-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Heart failure (HF) remains a global public health burden and often results following myocardial infarction (MI). Following injury, cardiac fibrosis forms in the myocardium which greatly hinders cellular function, survival, and recruitment, thus severely limits tissue regeneration. Here, we leverage biophysical microstructural cues made of hyaluronic acid (HA) loaded with the anti-fibrotic proteoglycan decorin to more robustly attenuate cardiac fibrosis after acute myocardial injury. Microrods showed decorin incorporation throughout the entirety of the hydrogel structures and exhibited first-order release kinetics in vitro. Intramyocardial injections of saline (n = 5), microrods (n = 7), decorin microrods (n = 10), and free decorin (n = 4) were performed in male rat models of ischemia-reperfusion MI to evaluate therapeutic effects on cardiac remodeling and function. Echocardiographic analysis demonstrated that rats treated with decorin microrods (5.21% ± 4.29%) exhibited significantly increased change in ejection fraction (EF) at 8 weeks post-MI compared to rats treated with saline (-4.18% ± 2.78%, p < 0.001) and free decorin (-3.42% ± 1.86%, p < 0.01). Trends in reduced end diastolic volume were also identified in decorin microrod-treated groups compared to those treated with saline, microrods, and free decorin, indicating favorable ventricular remodeling. Quantitative analysis of histology and immunofluorescence staining showed that treatment with decorin microrods reduced cardiac fibrosis (p < 0.05) and cardiomyocyte hypertrophy (p < 0.05) at 8 weeks post-MI compared to saline control. Together, this work aims to contribute important knowledge to guide rationally designed biomaterial development that may be used to successfully treat cardiovascular diseases.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Justin X Zhong
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Qizhi Fang
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Darnell L Cuylear
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Cindy Huynh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Division of Vascular and Endovascular Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huiliang Qiu
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Dongwei Gao
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew L Springer
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Randall J Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Desai T, Mohindra P, Zhong J, Fang Q, Huynh C, Cuylear D, Qiu H, Gao D, Kharbikar B, Huang X, Springer M, Lee R. Local delivery of decorin via hyaluronic acid microrods improves cardiac performance and ventricular remodeling after myocardial infarction. RESEARCH SQUARE 2023:rs.3.rs-2501087. [PMID: 36798333 PMCID: PMC9934754 DOI: 10.21203/rs.3.rs-2501087/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Heart failure (HF) is a global public health burden and associated with significant morbidity and mortality. HF can result as a complication following myocardial infarction (MI), with cardiac fibrosis forming in the myocardium as a response to injury. The dense, avascular scar tissue that develops in the myocardium after injury following MI creates an inhospitable microenvironment that hinders cellular function, survival, and recruitment, thus severely limiting tissue regeneration. We have previously demonstrated the ability of hyaluronic acid (HA) polymer microrods to modulate fibroblast phenotype using discrete biophysical cues and to improve cardiac outcomes after implantation in rodent models of ischemia-reperfusion MI injury. Here, we developed a dual-pronged biochemical and biophysical therapeutic strategy leveraging bioactive microrods to more robustly attenuate cardiac fibrosis after acute myocardial injury. Incorporation of the anti-fibrotic proteoglycan decorin within microrods led to sustained release of decorin over one month in vitro and after implantation, resulted in marked improvement in cardiac function and ventricular remodeling, along with decreased fibrosis and cardiomyocyte hypertrophy. Together, this body of work aims to contribute important knowledge to help develop rationally designed engineered biomaterials that may be used to successfully treat cardiovascular diseases.
Collapse
Affiliation(s)
- Tejal Desai
- University of California, San Francisco & Brown University
| | - Priya Mohindra
- University of California, Berkeley & University of California, San Francisco
| | - Justin Zhong
- University of California, Berkeley & University of California, San Francisco
| | | | - Cindy Huynh
- Brigham and Women's Hospital, Harvard Medical School
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Mallick R, Gurzeler E, Toivanen PI, Nieminen T, Ylä-Herttuala S. Novel Designed Proteolytically Resistant VEGF-B186R127S Promotes Angiogenesis in Mouse Heart by Recruiting Endothelial Progenitor Cells. Front Bioeng Biotechnol 2022; 10:907538. [PMID: 35992336 PMCID: PMC9385986 DOI: 10.3389/fbioe.2022.907538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Previous studies have indicated that vascular endothelial growth factor B186 (VEGF-B186) supports coronary vascular growth in normal and ischemic myocardium. However, previous studies also indicated that induction of ventricular arrhythmias is a severe side effect preventing the use of VEGF-B186 in cardiac gene therapy, possibly mediated by binding to neuropilin 1 (NRP1). We have designed a novel VEGF-B186 variant, VEGF-B186R127S, which is resistant to proteolytic processing and unable to bind to NRP1. Here, we studied its effects on mouse heart to explore the mechanism of VEGF-B186-induced vascular growth along with its effects on cardiac performance. Methods: Following the characterization of VEGF-B186R127S, we performed ultrasound-guided adenoviral VEGF-B186R127S gene transfers into the murine heart. Vascular growth and heart functions were analyzed using immunohistochemistry, RT-PCR, electrocardiogram and ultrasound examinations. Endothelial progenitor cells (EPCs) were isolated from the circulating blood and characterized. Also, in vitro experiments were carried out in cardiac endothelial cells with adenoviral vectors. Results: The proteolytically resistant VEGF-B186R127S significantly induced vascular growth in mouse heart. Interestingly, VEGF-B186R127S gene transfer increased the number of circulating EPCs that secreted VEGF-A. Other proangiogenic factors were also present in plasma and heart tissue after the VEGF-B186R127S gene transfer. Importantly, VEGF-B186R127S gene transfer did not cause any side effects, such as arrhythmias. Conclusion: VEGF-B186R127S induces vascular growth in mouse heart by recruiting EPCs. VEGF-B186R127S is a novel therapeutic agent for cardiac therapeutic angiogenesis to rescue myocardial tissue after an ischemic insult.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Gurzeler
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pyry I. Toivanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- *Correspondence: Seppo Ylä-Herttuala,
| |
Collapse
|
5
|
Echocardiography-guided percutaneous left ventricular intracavitary injection as a cell delivery approach in infarcted mice. Mol Cell Biochem 2021; 476:2135-2148. [PMID: 33547546 DOI: 10.1007/s11010-021-04077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 12/31/2022]
Abstract
In the field of cell therapy for heart disease, a new paradigm of repeated dosing of cells has recently emerged. However, the lack of a repeatable cell delivery method in preclinical studies in rodents is a major obstacle to investigating this paradigm. We have established and standardized a method of echocardiography-guided percutaneous left ventricular intracavitary injection (echo-guided LV injection) as a cell delivery approach in infarcted mice. Here, we describe the method in detail and address several important issues regarding it. First, by integrating anatomical and echocardiographic considerations, we have established strategies to determine a safe anatomical window for injection in infarcted mice. Second, we summarize our experience with this method (734 injections). The overall survival rate was 91.4%. Third, we examined the efficacy of this cell delivery approach. Compared with vehicle treatment, cardiac mesenchymal cells (CMCs) delivered via this method improved cardiac function assessed both echocardiographically and hemodynamically. Furthermore, repeated injections of CMCs via this method yielded greater cardiac function improvement than single-dose administration. Echo-guided LV injection is a feasible, reproducible, relatively less invasive and effective delivery method for cell therapy in murine models of heart disease. It is an important approach that could move the field of cell therapy forward, especially with regard to repeated cell administrations.
Collapse
|
6
|
Awang-Junaidi AH, Singh J, Honaramooz A. Regeneration of testis tissue after ectopic implantation of porcine testis cell aggregates in mice: improved consistency of outcomes and in situ monitoring. Reprod Fertil Dev 2021; 32:594-609. [PMID: 32051087 DOI: 10.1071/rd19043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Ectopic implantation of donor testis cell aggregates in recipient mice results in de novo formation or regeneration of testis tissue and, as such, provides a unique invivo model for the study of testis development. However, currently the results are inconsistent and the efficiency of the model remains low. This study was designed to: (1) examine several factors that can potentially improve the consistency and efficiency of this model and (2) explore the use of ultrasound biomicroscopy (UBM) for the non-invasive invivo evaluation of implants. Testis cell aggregates, containing ~40% gonocytes, from 1-week-old donor piglets were implanted under the back skin of immunodeficient mice through skin incisions using gel matrices or through subcutaneous injection without using gel matrices. The addition of gel matrices led to inconsistent tissue development; gelatin had the greatest development, followed by collagen, whereas agarose resulted in poor development. The results also depended on the implanted cell numbers since implants with 100×106 cells were larger than those with 50×106 cells. The injection approach for cell implantation was less invasive and resulted in more consistent and efficient testis tissue development. UBM provided promising results as a means of non-invasive monitoring of implants.
Collapse
Affiliation(s)
- Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada; and Present address: Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada; and Corresponding author.
| |
Collapse
|
7
|
Chandy M, Wu JC. Molecular Imaging of Stem Cell Therapy in Ischemic Cardiomyopathy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Abstract
Interleukin-15 is a pleotropic factor, capable of modulating metabolism, survival, proliferation, and differentiation in many different cell types. The rationale behind this study relates to previous work demonstrating that IL-15 is a major factor present in stem cell extracts, which protects cardiomyocytes subjected to hypoxic stress in vitro. The objective of this current study was to assess whether administration of IL-15 peptide will also show protective effects in vivo. The data indicate that administration of IL-15 reduces cell death, increases vascularity, decreases scar size, and significantly improves left ventricular ejection fraction in a mouse model of myocardial infarction.
Collapse
|
9
|
Wang X, Chacon LI, Derakhshandeh R, Rodriguez HJ, Han DD, Kostyushev DS, Henry TD, Traverse JH, Moyé L, Simari RD, Taylor DA, Springer ML. Impaired therapeutic efficacy of bone marrow cells from post-myocardial infarction patients in the TIME and LateTIME clinical trials. PLoS One 2020; 15:e0237401. [PMID: 32841277 PMCID: PMC7446972 DOI: 10.1371/journal.pone.0237401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023] Open
Abstract
Implantation of bone marrow-derived cells (BMCs) into mouse hearts post-myocardial infarction (MI) limits cardiac functional decline. However, clinical trials of post-MI BMC therapy have yielded conflicting results. While most laboratory experiments use healthy BMC donor mice, clinical trials use post-MI autologous BMCs. Post-MI mouse BMCs are therapeutically impaired, due to inflammatory changes in BMC composition. Thus, therapeutic efficacy of the BMCs progressively worsens after MI but recovers as donor inflammatory response resolves. The availability of post-MI patient BM mononuclear cells (MNCs) from the TIME and LateTIME clinical trials enabled us to test if human post-MI MNCs undergo a similar period of impaired efficacy. We hypothesized that MNCs from TIME trial patients would be less therapeutic than healthy human donor MNCs when implanted into post-MI mouse hearts, and that therapeutic properties would be restored in MNCs from LateTIME trial patients. Post-MI SCID mice received MNCs from healthy donors, TIME patients, or LateTIME patients. Cardiac function improved considerably in the healthy donor group, but neither the TIME nor LateTIME group showed therapeutic effect. Conclusion: post-MI human MNCs lack therapeutic benefits possessed by healthy MNCs, which may partially explain why BMC clinical trials have been less successful than mouse studies.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | | | - Ronak Derakhshandeh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Hilda J. Rodriguez
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States of America
| | - Daniel D. Han
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Dmitry S. Kostyushev
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Timothy D. Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH, United States of America
| | - Jay H. Traverse
- Minneapolis Heart Institute Foundation, Minneapolis, MN, United States of America
| | - Lem Moyé
- University of Texas Health School of Public Health, Houston, TX, United States of America
| | - Robert D. Simari
- Kansas University Medical Center, Kansas City, KS, United States of America
| | - Doris A. Taylor
- Texas Heart Institute, Houston, TX, United States of America
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
10
|
Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. Front Physiol 2020; 11:661. [PMID: 32612540 PMCID: PMC7308558 DOI: 10.3389/fphys.2020.00661] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is unique among the four TIMPs due to its extracellular matrix (ECM)-binding property and broad range of inhibitory substrates that includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAM with thrombospondin motifs (ADAMTSs). In addition to its metalloproteinase-inhibitory function, TIMP3 can interact with proteins in the extracellular space resulting in its multifarious functions. TIMP3 mRNA has a long 3' untranslated region (UTR) which is a target for numerous microRNAs. TIMP3 levels are reduced in various cardiovascular diseases, and studies have shown that TIMP3 replenishment ameliorates the disease, suggesting a therapeutic potential for TIMP3 in cardiovascular diseases. While significant efforts have been made in identifying the effector targets of TIMP3, the regulatory mechanism for the expression of this multi-functional TIMP has been less explored. Here, we provide an overview of TIMP3 gene structure, transcriptional and post-transcriptional regulators (transcription factors and microRNAs), protein structure and partners, its role in cardiovascular pathology and its application as therapy, while also drawing reference from TIMP3 function in other diseases.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Abstract
Regenerative medicine with the use of stem cells has appeared as a potential therapeutic alternative for many disease states. Despite initial enthusiasm, there has been relatively slow transition to clinical trials. In large part, numerous questions remain regarding the viability, biology and efficacy of transplanted stem cells in the living subject. The critical issues highlighted the importance of developing tools to assess these questions. Advances in molecular biology and imaging have allowed the successful non-invasive monitoring of transplanted stem cells in the living subject. Over the years these methodologies have been updated to assess not only the viability but also the biology of transplanted stem cells. In this review, different imaging strategies to study the viability and biology of transplanted stem cells are presented. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph C. Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Medicine (Cardiology), Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Bio-Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
12
|
Moore C, Chen F, Wang J, Jokerst JV. Listening for the therapeutic window: Advances in drug delivery utilizing photoacoustic imaging. Adv Drug Deliv Rev 2019; 144:78-89. [PMID: 31295522 PMCID: PMC6745251 DOI: 10.1016/j.addr.2019.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
The preclinical landscape of photoacoustic imaging has experienced tremendous growth in the past decade. This non-invasive imaging modality augments the spatiotemporal capabilities of ultrasound with optical contrast. While it has principally been investigated for diagnostic applications, many recent reports have described theranostic delivery systems and drug monitoring strategies using photoacoustics. Here, we provide an overview of the progress to date while highlighting work in three specific areas: theranostic nanoparticles, real-time drug monitoring, and stem cell ("living drug") tracking. Additionally, we discuss the challenges that remain to be addressed in this burgeoning field.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Fang Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, United States
| | - Junxin Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
13
|
An S, Wang X, Ruck MA, Rodriguez HJ, Kostyushev DS, Varga M, Luu E, Derakhshandeh R, Suchkov SV, Kogan SC, Hermiston ML, Springer ML. Age-Related Impaired Efficacy of Bone Marrow Cell Therapy for Myocardial Infarction Reflects a Decrease in B Lymphocytes. Mol Ther 2018; 26:1685-1693. [PMID: 29914756 DOI: 10.1016/j.ymthe.2018.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Treatment of myocardial infarction (MI) with bone marrow cells (BMCs) improves post-MI cardiac function in rodents. However, clinical trials of BMC therapy have been less effective. While most rodent experiments use young healthy donors, patients undergoing autologous cell therapy are older and post-MI. We previously demonstrated that BMCs from aged and post-MI donor mice are therapeutically impaired, and that donor MI induces inflammatory changes in BMC composition including reduced levels of B lymphocytes. Here, we hypothesized that B cell alterations in bone marrow account for the reduced therapeutic potential of post-MI and aged donor BMCs. Injection of BMCs from increasingly aged donor mice resulted in progressively poorer cardiac function and larger infarct size. Flow cytometry revealed fewer B cells in aged donor bone marrow. Therapeutic efficacy of young healthy donor BMCs was reduced by depletion of B cells. Implantation of intact or lysed B cells improved cardiac function, whereas intact or lysed T cells provided only minor benefit. We conclude that B cells play an important paracrine role in effective BMC therapy for MI. Reduction of bone marrow B cells because of age or MI may partially explain why clinical autologous cell therapy has not matched the success of rodent experiments.
Collapse
Affiliation(s)
- Songtao An
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Cardiology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xiaoyin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melissa A Ruck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hilda J Rodriguez
- Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dmitry S Kostyushev
- Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Monika Varga
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emmy Luu
- Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ronak Derakhshandeh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sergey V Suchkov
- Center for Personalized Medicine, Sechenov University, Moscow, Russia; Department for Translational Medicine, Moscow Engineering Physical Institute, Moscow, Russia
| | - Scott C Kogan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle L Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew L Springer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Maeda K, Seymour R, Ruel M, Suuronen EJ. Echocardiography-Guided Intramyocardial Injection Method in a Murine Model. Methods Mol Biol 2018; 1553:217-225. [PMID: 28229419 DOI: 10.1007/978-1-4939-6756-8_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac regenerative therapy has received attention as a potentially revolutionary approach for treating the damaged heart. The mouse model of myocardial infarction (MI) remains one of the most common tools for the evaluation of such new therapies. Typically, intramyocardial administration of cells or biomaterials in mice is performed by an open-chest surgical procedure, but less invasive delivery methods are becoming available. Echocardiography-based transthoracic myocardial injection is one such minimally invasive approach that can reliably deliver therapeutics to the target site with limited complications and quick recovery for the animal following the procedure. Here, we will describe the method of echocardiography-guided intramyocardial injection in a mouse MI model.
Collapse
Affiliation(s)
- Kay Maeda
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Rick Seymour
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Marc Ruel
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
15
|
Giraldo A, Talavera López J, Fernandez-Del-Palacio MJ, García-Nicolás O, Seva J, Brooks G, Moraleda JM. Percutaneous Contrast Echocardiography-guided Intramyocardial Injection and Cell Delivery in a Large Preclinical Model. J Vis Exp 2018:56699. [PMID: 29443073 PMCID: PMC5908667 DOI: 10.3791/56699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cell and gene therapy are exciting and promising strategies for the purpose of cardiac regeneration in the setting of heart failure with reduced ejection fraction (HFrEF). Before they can be considered for use, and implemented in humans, extensive preclinical studies are required in large animal models to evaluate the safety, efficacy, and fate of the injectate (e.g., stem cells) once delivered into the myocardium. Small rodent models offer advantages (e.g., cost effectiveness, amenability for genetic manipulation); however, given inherent limitations of these models, the findings in these rarely translate into the clinic. Conversely, large animal models such as rabbits, have advantages (e.g., similar cardiac electrophysiology compared to humans and other large animals), whilst retaining a good cost-effective balance. Here, we demonstrate how to perform a percutaneous contrast echocardiography-guided intramyocardial injection (IMI) technique, which is minimally invasive, safe, well tolerated, and very effective in the targeted delivery of injectates, including cells, into several locations within the myocardium of a rabbit model. For the implementation of this technique, we also have taken advantage of a widely available clinical echocardiography system. After putting in practice the protocol described here, a researcher with basic ultrasound knowledge will become competent in the performance of this versatile and minimally invasive technique for routine use in experiments, aimed at hypothesis testing of the capabilities of cardiac regenerative therapeutics in the rabbit model. Once competency is achieved, the whole procedure can be performed within 25 min after anaesthetizing the rabbit.
Collapse
Affiliation(s)
- Alejandro Giraldo
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading;
| | - Jesús Talavera López
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Murcia;
| | | | - Obdulio García-Nicolás
- Institute of Virology and Immunology (IVI); Departamento de Anatomía y Anatomía Comparada, Facultad de Veterinaria, Universidad de Murcia
| | - Juan Seva
- Departamento de Anatomía y Anatomía Comparada, Facultad de Veterinaria, Universidad de Murcia
| | - Gavin Brooks
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading
| | - José María Moraleda
- Unidad de Trasplante Hematopoyético y Terapia Celular, Departamento de Hematología, Hospital Universitario Virgen de la Arrixaca, IMIB, Universidad de Murcia
| |
Collapse
|
16
|
Fromholtz A, Balter ML, Chen AI, Leipheimer JM, Shrirao A, Maguire TJ, Yarmush ML. Design and Evaluation of a Robotic Device for Automated Tail Vein Cannulations in Rodent Models. J Med Device 2017; 11:0410081-410087. [PMID: 29230256 DOI: 10.1115/1.4038011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/14/2017] [Indexed: 11/08/2022] Open
Abstract
Preclinical testing in rodent models is a ubiquitous part of modern biomedical research and commonly involves accessing the venous bloodstream for blood sampling and drug delivery. Manual tail vein cannulation is a time-consuming process and requires significant skill and training, particularly since improperly inserted needles can affect the experimental results and study outcomes. In this paper, we present a miniaturized, robotic medical device for automated, image-guided tail vein cannulations in rodent models. The device is composed of an actuated three degrees-of-freedom (DOFs) needle manipulator, three-dimensional (3D) near-infrared (NIR) stereo cameras, and an animal holding platform. Evaluating the system through a series of workspace simulations and free-space positioning tests, the device exhibited a sufficient work volume for the needle insertion task and submillimeter accuracy over the calibration targets. The results indicate that the device is capable of cannulating tail veins in rodent models as small as 0.3 mm in diameter, the smallest diameter vein required to target.
Collapse
Affiliation(s)
- Alex Fromholtz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Max L Balter
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Alvin I Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Josh M Leipheimer
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Anil Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Timothy J Maguire
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Martin L Yarmush
- Paul and Mary Monroe Distinguished Professor Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| |
Collapse
|
17
|
Gravett M, Cepek J, Fenster A. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions. Med Phys 2017; 44:5544-5555. [PMID: 28849592 DOI: 10.1002/mp.12534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. METHODS Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. RESULTS The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion. The system was mechanically calibrated and the mean image-guided needle targeting and needle trajectory accuracies were quantified in an image-guided tissue mimicking phantom experiment to be 178 ± 54 μm and 0.27 ± 0.65°, respectively. CONCLUSIONS An MR image-guided system for in-bore needle deliveries to soft tissue targets in small animal models has been developed. The results of the needle targeting accuracy experiments in phantoms indicate that this system has the potential to deliver needles to the smallest soft tissue structures relevant in preclinical studies, at a wide variety of needle trajectories. Future work in the form of a fully-automated needle driver with precise depth control would benefit this system in terms of its applicability to a wider range of animal models and organ targets.
Collapse
Affiliation(s)
- Matthew Gravett
- Robarts Research Institute, London, ON, N6A 5B7, Canada.,Biomedical Engineering, Western University, London, ON, N6A 5B9, Canada
| | - Jeremy Cepek
- Robarts Research Institute, London, ON, N6A 5B7, Canada.,Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Aaron Fenster
- Robarts Research Institute, London, ON, N6A 5B7, Canada.,Biomedical Engineering, Western University, London, ON, N6A 5B9, Canada
| |
Collapse
|
18
|
Speidel A, Stuckey DJ, Chow LW, Jackson LH, Noseda M, Abreu Paiva M, Schneider MD, Stevens MM. Multimodal Hydrogel-Based Platform To Deliver and Monitor Cardiac Progenitor/Stem Cell Engraftment. ACS CENTRAL SCIENCE 2017; 3:338-348. [PMID: 28470052 PMCID: PMC5408339 DOI: 10.1021/acscentsci.7b00039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 05/17/2023]
Abstract
Retention and survival of transplanted cells are major limitations to the efficacy of regenerative medicine, with short-term paracrine signals being the principal mechanism underlying current cell therapies for heart repair. Consequently, even improvements in short-term durability may have a potential impact on cardiac cell grafting. We have developed a multimodal hydrogel-based platform comprised of a poly(ethylene glycol) network cross-linked with bioactive peptides functionalized with Gd(III) in order to monitor the localization and retention of the hydrogel in vivo by magnetic resonance imaging. In this study, we have tailored the material for cardiac applications through the inclusion of a heparin-binding peptide (HBP) sequence in the cross-linker design and formulated the gel to display mechanical properties resembling those of cardiac tissue. Luciferase-expressing cardiac stem cells (CSC-Luc2) encapsulated within these gels maintained their metabolic activity for up to 14 days in vitro. Encapsulation in the HBP hydrogels improved CSC-Luc2 retention in the mouse myocardium and hind limbs at 3 days by 6.5- and 12- fold, respectively. Thus, this novel heparin-binding based, Gd(III)-tagged hydrogel and CSC-Luc2 platform system demonstrates a tailored, in vivo detectable theranostic cell delivery system that can be implemented to monitor and assess the transplanted material and cell retention.
Collapse
Affiliation(s)
- Alessondra
T. Speidel
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Daniel J. Stuckey
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
- Centre
for
Advanced Biomedical Imaging (CABI), University
College London, London WC1E 6DD, United Kingdom
| | - Lesley W. Chow
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Laurence H. Jackson
- Centre
for
Advanced Biomedical Imaging (CABI), University
College London, London WC1E 6DD, United Kingdom
| | - Michela Noseda
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Marta Abreu Paiva
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Michael D. Schneider
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
19
|
Deddens JC, Feyen DA, Zwetsloot PP, Brans MA, Siddiqi S, van Laake LW, Doevendans PA, Sluijter JP. Targeting chronic cardiac remodeling with cardiac progenitor cells in a murine model of ischemia/reperfusion injury. PLoS One 2017; 12:e0173657. [PMID: 28319168 PMCID: PMC5358772 DOI: 10.1371/journal.pone.0173657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Translational failure for cardiovascular disease is a substantial problem involving both high research costs and an ongoing lack of novel treatment modalities. Despite the progress already made, cell therapy for chronic heart failure in the clinical setting is still hampered by poor translation. We used a murine model of chronic ischemia/reperfusion injury to examine the effect of minimally invasive application of cardiac progenitor cells (CPC) in cardiac remodeling and to improve clinical translation. METHODS 28 days after the induction of I/R injury, mice were randomized to receive either CPC (0.5 million) or vehicle by echo-guided intra-myocardial injection. To determine retention, CPC were localized in vivo by bioluminescence imaging (BLI) two days after injection. Cardiac function was assessed by 3D echocardiography and speckle tracking analysis to quantify left ventricular geometry and regional myocardial deformation. RESULTS BLI demonstrated successful injection of CPC (18/23), which were mainly located along the needle track in the anterior/septal wall. Although CPC treatment did not result in overall restoration of cardiac function, a relative preservation of the left ventricular end-diastolic volume was observed at 4 weeks follow-up compared to vehicle control (+5.3 ± 2.1 μl vs. +10.8 ± 1.5 μl). This difference was reflected in an increased strain rate (+16%) in CPC treated mice. CONCLUSIONS CPC transplantation can be adequately studied in chronic cardiac remodeling using this study set-up and by that provide a translatable murine model facilitating advances in research for new therapeutic approaches to ultimately improve therapy for chronic heart failure.
Collapse
Affiliation(s)
- Janine C. Deddens
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
| | - Dries A. Feyen
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter-Paul Zwetsloot
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maike A. Brans
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda W. van Laake
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost P. Sluijter
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Yrineo AA, Adelsperger AR, Durkes AC, Distasi MR, Voytik-Harbin SL, Murphy MP, Goergen CJ. Murine ultrasound-guided transabdominal para-aortic injections of self-assembling type I collagen oligomers. J Control Release 2017; 249:53-62. [PMID: 28126527 DOI: 10.1016/j.jconrel.2016.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 01/13/2023]
Abstract
Abdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the human condition have been developed and are now widely used to investigate AAA pathogenesis. Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently being evaluated with these animal models, but more minimally invasive strategies for delivery could improve their clinical translation. The purpose of this study was to investigate the use of self-assembling type I collagen oligomers as an injectable therapeutic delivery vehicle in mice. Here we show the success and reliability of a para-aortic, ultrasound-guided technique for injecting quickly-polymerizing collagen oligomer solutions into mice to form a collagen-fibril matrix at body temperature. A commonly used infrarenal mouse AAA model was used to determine the target location of these collagen injections. Ultrasound-guided, closed-abdominal injections supported consistent delivery of collagen to the area surrounding the infrarenal abdominal aorta halfway between the right renal artery and aortic trifurcation into the iliac and tail arteries. This minimally invasive approach yielded outcomes similar to open-abdominal injections into the same region. Histological analysis on tissue removed on day 14 post-operatively showed minimal in vivo degradation of the self-assembled fibrillar collagen and the majority of implants experienced minimal inflammation and cell invasion, further confirming this material's potential as a method for delivering therapeutics. Finally, we showed that the typical length and position of this infrarenal AAA model was statistically similar to the length and targeted location of the injected collagen, increasing its feasibility as a localized therapeutic delivery vehicle. Future preclinical and clinical studies are needed to determine if specific therapeutics incorporated into the self-assembling type I collagen matrix described here can be delivered near the aorta and locally limit AAA expansion.
Collapse
Affiliation(s)
- Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Amelia R Adelsperger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Abigail C Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Matthew R Distasi
- IU Health Center for Aortic Disease, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Michael P Murphy
- IU Health Center for Aortic Disease, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
21
|
Ye J, Yeghiazarians Y. Cardiac stem cell therapy: Have we put too much hype in which cell type to use? Heart Fail Rev 2016; 20:613-9. [PMID: 26024953 DOI: 10.1007/s10741-015-9494-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Injection of various stem cells has been tested with the hopes of improving cardiac function after a myocardial infarction (MI). However, there is continued controversy as to which cell type is best for repair. Due to technical differences in cell isolation, processing, delivery, and cardiac functional assessment by various investigators, it has been difficult to directly compare the results of different cells. Using same techniques to evaluate the efficacy of different cell types, we have separately delivered bone marrow cells (BMCs), cardiospheres (CSs), CS-derived Sca-1(+)/CD45(-) cells, human embryonic stem cell-derived cardiomyocytes, and BMC extract into infarcted murine myocardium and found that all of these treatments reduce infarct size and improve cardiac function post-MI similarly without one regimen being superior to another. The beneficial effects appear to be via paracrine influences. Different progenitors lead to improved cardiac function post-MI, but it is premature to hype any specific cell type at this time.
Collapse
Affiliation(s)
- Jianqin Ye
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | | |
Collapse
|
22
|
Chen Q, Varga M, Wang X, Haddad DJ, An S, Medzikovic L, Derakhshandeh R, Kostyushev DS, Zhang Y, Clifford BT, Luu E, Danforth OM, Rafikov R, Gong W, Black SM, Suchkov SV, Fineman JR, Heiss C, Aschbacher K, Yeghiazarians Y, Springer ML. Overexpression of Nitric Oxide Synthase Restores Circulating Angiogenic Cell Function in Patients With Coronary Artery Disease: Implications for Autologous Cell Therapy for Myocardial Infarction. J Am Heart Assoc 2016; 5:e002257. [PMID: 26738788 PMCID: PMC4859354 DOI: 10.1161/jaha.115.002257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/25/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Circulating angiogenic cells (CACs) are peripheral blood cells whose functional capacity inversely correlates with cardiovascular risk and that have therapeutic benefits in animal models of cardiovascular disease. However, donor age and disease state influence the efficacy of autologous cell therapy. We sought to determine whether age or coronary artery disease (CAD) impairs the therapeutic potential of CACs for myocardial infarction (MI) and whether the use of ex vivo gene therapy to overexpress endothelial nitric oxide (NO) synthase (eNOS) overcomes these defects. METHODS AND RESULTS We recruited 40 volunteers varying by sex, age (< or ≥45 years), and CAD and subjected their CACs to well-established functional tests. Age and CAD were associated with reduced CAC intrinsic migration (but not specific response to vascular endothelial growth factor, adherence of CACs to endothelial tubes, eNOS mRNA and protein levels, and NO production. To determine how CAC function influences therapeutic potential, we injected the 2 most functional and the 2 least functional CAC isolates into mouse hearts post MI. The high-function isolates substantially improved cardiac function, whereas the low-function isolates led to cardiac function only slightly better than vehicle control. Transduction of the worst isolate with eNOS cDNA adenovirus increased NO production, migration, and cardiac function of post-MI mice implanted with the CACs. Transduction of the best isolate with eNOS small interfering RNA adenovirus reduced all of these capabilities. CONCLUSIONS Age and CAD impair multiple functions of CACs and limit therapeutic potential for the treatment of MI. eNOS gene therapy in CACs from older donors or those with CAD has the potential to improve autologous cell therapy outcomes.
Collapse
Affiliation(s)
- Qiumei Chen
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Monika Varga
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Xiaoyin Wang
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Daniel J. Haddad
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Songtao An
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Lejla Medzikovic
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Ronak Derakhshandeh
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | | | - Yan Zhang
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Brian T. Clifford
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Emmy Luu
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Olivia M. Danforth
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | | | - Wenhui Gong
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCA
| | | | | | - Jeffrey R. Fineman
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCA
| | - Christian Heiss
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Kirstin Aschbacher
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCA
| | - Yerem Yeghiazarians
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
- Eli & Edythe Broad Institute of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoCA
| | - Matthew L. Springer
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
- Eli & Edythe Broad Institute of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoCA
| |
Collapse
|
23
|
Ye J, Gaur M, Zhang Y, Sievers RE, Woods BJ, Aurigui J, Bernstein HS, Yeghiazarians Y. Treatment with hESC-Derived Myocardial Precursors Improves Cardiac Function after a Myocardial Infarction. PLoS One 2015; 10:e0131123. [PMID: 26230835 PMCID: PMC4521814 DOI: 10.1371/journal.pone.0131123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023] Open
Abstract
Background We previously reported the generation of a reporter line of human embryonic stem cells (hESCs) with enhanced green fluorescent protein (eGFP) expression driven by the α-myosin heavy chain (αMHC) promoter. The GFP+/αMHC+ cells derived from this cell line behave as multipotent, human myocardial precursors (hMPs) in vitro. In this study, we evaluated the therapeutic effects of GFP+/αMHC+ cells isolated from the reporter line in a mouse model of myocardial infarction (MI). Methods MI was generated in immunodeficient mice. hMPs were injected into murine infarcted hearts under ultrasound guidance at 3 days post-MI. Human fetal skin fibroblasts (hFFs) were injected as control. Cardiac function was evaluated by echocardiography. Infarct size, angiogenesis, apoptosis, cell fate, and teratoma formation were analyzed by immunohistochemical staining. Results Compared with control, hMPs resulted in improvement of cardiac function post-MI with smaller infarct size, induced endogenous angiogenesis, and reduced apoptosis of host cardiomyocytes at the peri-infarct zone at 28 days post-MI. Conclusion Intramyocardial injection of hMPs improved cardiac function post-MI. The engraftment rate of these cells in the myocardium post-MI was low, suggesting that the majority of effect occurs via paracrine mechanisms.
Collapse
Affiliation(s)
- Jianqin Ye
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Meenakshi Gaur
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Yan Zhang
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Richard E. Sievers
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Brandon J. Woods
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Julian Aurigui
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Harold S. Bernstein
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, 94143, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Yerem Yeghiazarians
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, 94143, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, 94143, United States of America
- * E-mail:
| |
Collapse
|
24
|
Yu J, Wu YK, Gu Y, Fang Q, Sievers R, Ding CH, Olgin JE, Lee RJ. Immuno-modification of enhancing stem cells targeting for myocardial repair. J Cell Mol Med 2015; 19:1483-91. [PMID: 25904069 PMCID: PMC4511347 DOI: 10.1111/jcmm.12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/20/2014] [Indexed: 02/05/2023] Open
Abstract
Despite the controversy in mechanism, rodent and clinical studies have demonstrated beneficial effects of stem/progenitor cell therapy after myocardial infarction (MI). In a rat ischaemic reperfusion MI model, we investigated the effects of immunomodification of CD 34+ cells on heart function and myocardial conduction. Bispecific antibody (BiAb), consisting of an anti-myosin light chain antibody and anti-CD45 antibody, injected intravenously was used to direct human CD34+ cells to injured myocardium. Results were compared to echocardiography guided intramyocardial (IM) injection of CD34+ cells and PBS injected intravenously. Treatment was administered 2 days post MI. Echocardiography was performed at 5 weeks and 3 months which demonstrated LV dilatation prevention and fractional shortening improvement in both the BiAb and IM injection approaches, with BiAb achieving better results. Histological analyses demonstrated a decrease in infarct size and increase in arteriogenesis in both BiAb and IM injection. Electrophysiological properties were studied 5 weeks after treatments by optical mapping. Conduction velocity (CV), action potential duration (APD) and rise time were significantly altered in the MI area. The BiAb treated group demonstrated a more normalized activation pattern of conduction and normalization of CV at shorter pacing cycle lengths. The ventricular tachycardia inducibility was lowest in the BiAb treatment group. Intravenous administration of BiAb offers an effective means of stem cell delivery for myocardial repair post-acute MI. Such non-invasive approach was shown to offer a distinct advantage to more invasive direct IM delivery.
Collapse
Affiliation(s)
- Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yuan-Kun Wu
- Department of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yiping Gu
- Division of Cardiology, Department of Medicine, University of California San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Qizhi Fang
- Division of Cardiology, Department of Medicine, University of California San Francisco, CA, USA
| | - Richard Sievers
- Division of Cardiology, Department of Medicine, University of California San Francisco, CA, USA
| | - Chun-Hua Ding
- Division of Cardiology, Department of Medicine, University of California San Francisco, CA, USA
| | - Jeffrey E Olgin
- Division of Cardiology, Department of Medicine, University of California San Francisco, CA, USA
| | - Randall J Lee
- Division of Cardiology, Department of Medicine, University of California San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Poggioli T, Sarathchandra P, Rosenthal N, Santini MP. Intramyocardial cell delivery: observations in murine hearts. J Vis Exp 2014:e51064. [PMID: 24513973 DOI: 10.3791/51064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Collapse
|
26
|
Salamon J, Peldschus K. Ultrasound-guided intracardial injection and in vivo magnetic resonance imaging of single cells in mice as a paradigm for hematogenous metastases. Methods Mol Biol 2014; 1070:203-11. [PMID: 24092442 DOI: 10.1007/978-1-4614-8244-4_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) has become an important technique for noninvasive cell tracking in preclinical research. Following appropriate cell labeling MRI can be used to detect larger cell cohorts and also single cells in vivo in mice. Cell distribution to different organs such as brain, liver, spleen, and kidneys can be visualized, semi-quantified, and followed over time. Thus, the fate of single tumor cells and their eventual development to solid metastases could be investigated. Mesenchymal stromal cells can be used as a paradigm for metastasizing tumor cells. We have demonstrated a strategy for magnetic and fluorescent co-labeling of mesenchymal stromal cells (MSC), ultrasound-guided intracardial cell injection with efficient systemic cell delivery, and high-resolution MRI for repetitive visualization of disseminated co-labeled MSC on a single-cell level in vivo in mice. Furthermore, the fluorescent labeling of cells enabled effective histopathological validation.
Collapse
Affiliation(s)
- Johannes Salamon
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
27
|
The effect of a peptide-modified thermo-reversible methylcellulose on wound healing and LV function in a chronic myocardial infarction rodent model. Biomaterials 2013; 34:8869-77. [DOI: 10.1016/j.biomaterials.2013.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/08/2013] [Indexed: 11/23/2022]
|
28
|
Bax JS, Waring CSR, Sherebrin S, Stapleton S, Hudson TJ, Jaffray DA, Lacefield JC, Fenster A. 3D image-guided robotic needle positioning system for small animal interventions. Med Phys 2013; 40:011909. [PMID: 23298100 DOI: 10.1118/1.4771958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE This paper presents the design of a micro-CT guided small animal robotic needle positioning system. In order to simplify the robotic design and maintain a small targeting error, a novel implementation of the remote center of motion is used in the system. The system has been developed with the objective of achieving a mean targeting error of <200 μm while maintaining a high degree of user friendliness. METHODS The robot is compact enough to operate within a 25 cm diameter micro-CT bore. Small animals can be imaged and an intervention performed without the need to transport the animal from one workspace to another. Not requiring transport of the animal reduces opportunities for targets to shift from their localized position in the image and simplifies the workflow of interventions. An improved method of needle calibration is presented that better characterizes the calibration using the position of the needle tip in photographs rather than the needle axis. A calibration fixture was also introduced, which dramatically reduces the time requirements of calibration while maintaining calibration accuracy. Two registration modes have been developed to correspond the robot coordinate system with the coordinate system of the micro-CT scanner. The two registration modes offer a balance between the time required to complete a registration and the overall registration accuracy. The development of slow high accuracy and fast low accuracy registration modes provides users with a degree of flexibility in selecting a registration mode best suited for their application. RESULTS The target registration error (TRE) of the higher accuracy primary registration was TRE(primary) = 31 ± 12 μm. The error in the lower accuracy combined registration was TRE(combined) = 139 ± 63 μm. Both registration modes are therefore suitable for small-animal needle interventions. The targeting accuracy of the robotic system was characterized using targeting experiments in tissue-mimicking gelatin phantoms. The results of the targeting experiments were combined with the known calibration and needle deflection errors to provide a more meaningful measure of the needle positioning accuracy of the system. The combined targeting errors of the system were 149 ± 41 μm and 218 ± 38 μm using the primary and combined registrations, respectively. Finally, pilot in vivo experiments were successfully completed to demonstrate the performance of the system in a biomedical application. CONCLUSIONS The device was able to achieve the desired performance with an error of <200 μm and improved repeatability when compared to other designs. The device expands the capabilities of image-guided interventions for preclinical biomedical applications.
Collapse
Affiliation(s)
- Jeffrey S Bax
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The feasibility and safety of transendocardial gene injection in canine using a multifunctional intracardiac echocardiography catheter. Int J Cardiol 2013; 165:488-93. [DOI: 10.1016/j.ijcard.2011.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 11/22/2022]
|
30
|
Fang Q, Mok PY, Thomas AE, Haddad DJ, Saini SA, Clifford BT, Kapasi NK, Danforth OM, Usui M, Ye W, Luu E, Sharma R, Bartel MJ, Pathmanabhan JA, Ang AAS, Sievers RE, Lee RJ, Springer ML. Pleiotrophin gene therapy for peripheral ischemia: evaluation of full-length and truncated gene variants. PLoS One 2013; 8:e61413. [PMID: 23630585 PMCID: PMC3632611 DOI: 10.1371/journal.pone.0061413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/10/2013] [Indexed: 11/19/2022] Open
Abstract
Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.
Collapse
Affiliation(s)
- Qizhi Fang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Pamela Y. Mok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Anila E. Thomas
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel J. Haddad
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Shereen A. Saini
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Brian T. Clifford
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Neel K. Kapasi
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Olivia M. Danforth
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Minako Usui
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Weisheng Ye
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Emmy Luu
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Rikki Sharma
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Maya J. Bartel
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeremy A. Pathmanabhan
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Andrew A. S. Ang
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Richard E. Sievers
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
| | - Randall J. Lee
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Division of Cardiology, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
31
|
Approach to assessing myocardial perfusion in rats using static [13N]-ammonia images and a small-animal PET. Mol Imaging Biol 2013; 14:541-5. [PMID: 22278106 DOI: 10.1007/s11307-011-0538-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE Semi-quantitative, static positron emission tomography (PET) has been used to perform an initial approach to the assessment of [13N]-ammonia perfusion studies aimed to elucidating the effect of injecting human embryonic stem cell-derived (hES) hemangioblasts on infarcted rat hearts. PROCEDURES Female NIH nude rats underwent occlusion of the left anterior descending coronary artery for 30 min before reperfusion. Either one million hES-derived hemangioblasts (n = 5) or control media (n = 4) were injected into the site of the infarct 1 day post-myocardial infarction (MI) under high-resolution echocardiography guidance. PET imaging was performed 6 weeks after MI induction, and uptake polar maps were created by sampling the left ventricle at equidistant slices from the base to the apex and measuring the average myocardium value at three contiguous voxels to minimize partial volume effects. Statistical comparison between treatment and control groups was done with a Mann-Whitney U test. RESULTS Myocardium uptake ratios for treated and untreated subjects show statistically significant difference (98% certainty). CONCLUSIONS The straightforward procedure described here (similar to those commonly used in clinical routine) was sufficient to yield statistically significant perfusion differences between the treated and untreated animals despite the small sample size.
Collapse
|
32
|
Minimally invasive closed-chest ultrasound-guided substance delivery into the pericardial space in mice. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:227-38. [PMID: 23250337 PMCID: PMC3570759 DOI: 10.1007/s00210-012-0815-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Organ-directed gene transfer remains an attractive method for both gaining a better understanding of heart disease and for cardiac therapy. However, virally mediated transfer of gene products into cardiac cells requires prolonged exposure of the myocardium to the viral substrate. Pericardial injection of viral vectors has been proposed and used with some success to achieve myocardial transfection and may be a suitable approach for transfection of atrial myocardium. Indeed, such an organ-specific method would be particularly useful to reverse phenotypes in young and adult genetically altered murine models of cardiac disease. We therefore sought to develop a minimally invasive technique for pericardial injection of substances in mice. Pericardial access in anaesthetised, spontaneously breathing mice was achieved using continuous high-resolution ultrasound guidance. We could demonstrate adequate delivery of injected substances into the murine pericardium. Atrial epicardial and myocardial cells were transfected in approximately one third of mice injected with enhanced green fluorescent protein-expressing adenovirus. Cellular expression rates within individual murine atria were limited to a maximum of 20 %; therefore, expression efficiency needs to be further improved. Minimally invasive, ultrasound-guided injection of viral material appears a technically challenging yet feasible method for selective transfection of atrial epi- and myocardium. This pericardial injection method may be useful in the evaluation of potential genetic interventions aimed at rescuing atrial phenotypes in transgenic mouse models.
Collapse
|
33
|
Khan M, Mohsin S, Avitabile D, Siddiqi S, Nguyen J, Wallach K, Quijada P, McGregor M, Gude N, Alvarez R, Tilley DG, Koch WJ, Sussman MA. β-Adrenergic regulation of cardiac progenitor cell death versus survival and proliferation. Circ Res 2012; 112:476-86. [PMID: 23243208 DOI: 10.1161/circresaha.112.280735] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Short-term β-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term β-adrenergic drive on CPC survival and proliferation are unknown. OBJECTIVE We sought to determine the relationship between β-adrenergic activity and regulation of CPC function. METHODS AND RESULTS Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein-coupled receptor kinase 2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs CPC proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. CONCLUSIONS β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors.
Collapse
Affiliation(s)
- Mohsin Khan
- San Diego Heart Research Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Koskenvuo JW, Sievers RE, Zhang Y, Angeli FS, Lee B, Shih H, Ye J, Boyle AJ, Yeghiazarians Y. Fractionation of mouse bone-marrow cells limits functional efficacy in non-reperfused mouse model of acute myocardial infarction. Ann Med 2012; 44:829-35. [PMID: 22494088 DOI: 10.3109/07853890.2012.672026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Clinical trials of bone-marrow (BM)-derived cells for therapy after acute myocardial infarct (MI) have been controversial. The most commonly used cells for these trials have been mononuclear cells (MNC), obtained by fractionation of BM cells (BMCs) via different protocols. In this study, we performed a head-to-head comparison of: 1) whole BMC; 2) fractionated BM (fBM) using the commonly used Ficoll protocol; 3) the extract derived from the fBM (fBM extract) versus 4) saline (HBSS) control for treatment of acute MI. METHODS In total, 155 male C57BL/6J (10-12-week old) mice were included. Echocardiography was performed at baseline and 2 days after permanent ligation of the left anterior descending artery to induce MI. Echocardiography and histology were employed to measure outcome at 28 days post-MI. RESULTS Whole BMC therapy improved left ventricular ejection fraction (LVEF) post-MI, but fBM or fBM extract was not beneficial compared to control (change of LVEF of 4.9% ±4.6% (P = 0.02), -0.4% ±5.8% (P = 0.86), -2.0% ±6.2% (P = 0.97) versus -1.4% ±5.3%, respectively). The histological infarct size or numbers of arterioles or capillaries at infarct or border zone did not differ between the groups. CONCLUSIONS Clinical studies should be performed to test whether whole BMC therapy translates into better outcome also after human MI.
Collapse
Affiliation(s)
- Juha W Koskenvuo
- Division of Cardiology, Department of Medicine, University of California , San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Toivonen R, Koskenvuo J, Merentie M, Söderström M, Ylä-Herttuala S, Savontaus M. Intracardiac injection of a capsid-modified Ad5/35 results in decreased heart toxicity when compared to standard Ad5. Virol J 2012. [PMID: 23190872 PMCID: PMC3546865 DOI: 10.1186/1743-422x-9-296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Clinical gene therapy trials for cardiovascular diseases have demonstrated the crucial role of efficient gene delivery and transfection technologies in achieving clinically relevant results. We hypothesized that the use of tropism-modified adenoviruses would improve transduction efficacy and to this end we analyzed the transduction efficiency and toxicity of standard Ad5 and tropism-modified Ad5/35 in combination with ultrasound-guided intramyocardial gene delivery. METHODS Ultrasound-guided intracardiac injections were used to deliver 1 × 10(10) pfu/ml Ad5-lacZ and Ad5/35-lacZ vectors into mouse left ventricle wall. Since Ad5/35 uses human CD46 as its primary receptor, we used transgenic hCD46Ge mice expressing human CD46 at levels comparable to man. Mice were sacrificed 6 or 14 days post-injection and immunohistochemistry and X-gal staining were used to detect transgene and viral receptor expression. Virus-induced cardiac toxicity was evaluated by a pathologist. RESULTS The intramyocardial injection was well tolerated and both Ad5-lacZ and Ad5/35-lacZ were able to give robust transgene expression after a single injection. Interestingly, while Ad5-lacZ was able to generate greater transgene expression than Ad5/35-lacZ, it also evoked more severe tissue damage with large areas of interstitial inflammatory cell infiltration and myocyte necrosis. CONCLUSIONS Ultrasound-guided intramyocardial injection is an effective and safe way to deliver vectors to the heart. The observed severe tissue damage of Ad5-lacZ greatly undermines the efficient transgene expression and suggests that Ad5/35 capsid modification can result in safer adenoviral vectors for cardiovascular gene therapy, although at the cost of some vector transduction efficacy.
Collapse
Affiliation(s)
- Raine Toivonen
- Turku Centre for biotechnology, University of Turku, Tykistökatu 6B 5th floor, Turku, FIN-20520, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Karam JP, Muscari C, Montero-Menei CN. Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 2012; 33:5683-95. [PMID: 22594970 DOI: 10.1016/j.biomaterials.2012.04.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 04/08/2012] [Indexed: 12/18/2022]
Abstract
An increasing number of studies in cardiac cell therapy have provided encouraging results for cardiac repair. Adult stem cells may overcome ethical and availability concerns, with the additional advantages, in some cases, to allow autologous grafts to be performed. However, the major problems of cell survival, cell fate determination and engraftment after transplantation, still remain. Tissue-engineering strategies combining scaffolds and cells have been developed and have to be adapted for each type of application to enhance stem cell function. Scaffold properties required for cardiac cell therapy are here discussed. New tissue engineering advances that may be implemented in combination with adult stem cells for myocardial infarction therapy are also presented. Biomaterials not only provide a 3D support for the cells but may also mimic the structural architecture of the heart. Using hydrogels or particulate systems, the biophysical and biochemical microenvironments of transplanted cells can also be controlled. Advances in biomaterial engineering have permitted the development of sophisticated drug-releasing materials with a biomimetic 3D support that allow a better control of the microenvironment of transplanted cells.
Collapse
|
37
|
Angeli FS, Zhang Y, Sievers R, Jun K, Yim S, Boyle A, Yeghiazarians Y. Injection of human bone marrow and mononuclear cell extract into infarcted mouse hearts results in functional improvement. Open Cardiovasc Med J 2012; 6:38-43. [PMID: 22550548 PMCID: PMC3339429 DOI: 10.2174/1874192401206010038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/23/2012] [Accepted: 02/13/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We have previously shown that mouse whole bone marrow cell (BMC) extract results in improvement of cardiac function and decreases scar size in a mouse model of myocardial infarction (MI), in the absence of intact cells. It is not clear if these results are translatable to extracts from human BMC (hBMC) or mononuclear cells (hMNC), which would have significant clinical implications. METHODS Male C57BL/6J (10-12 weeks old) mice were included in this study. MI was created by permanent ligation of the left anterior descending artery. Animals were randomized into three groups to receive ultrasound-guided myocardial injections with either hBMCs extract (n=6), hMNCs extract (n=8) or control with 0.5% bovine serum albumin (BSA) (n=7). Cardiac function was assessed by echocardiography at baseline, 2 and 28 days post-MI. Infarct size and vascularity was assessed at 28 days post-MI. RESULTS hBMC and hMNC extract preserve cardiac function and result in smaller scar size post-MI when compared with the control group. CONCLUSIONS The current study for the first time reports that hBMC and hMNC extracts improve cardiac function post-MI in a mouse MI model. Further studies are necessary to fully address the potential clinical benefits of these therapies.
Collapse
Affiliation(s)
- Franca S Angeli
- Division of Cardiology, Department of Medicine, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang X, Takagawa J, Lam VC, Haddad DJ, Tobler DL, Mok PY, Zhang Y, Clifford BT, Pinnamaneni K, Saini SA, Su R, Bartel MJ, Sievers RE, Carbone L, Kogan S, Yeghiazarians Y, Hermiston M, Springer ML. Donor myocardial infarction impairs the therapeutic potential of bone marrow cells by an interleukin-1-mediated inflammatory response. Sci Transl Med 2012; 3:100ra90. [PMID: 21918107 DOI: 10.1126/scitranslmed.3002814] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Delivery of bone marrow cells (BMCs) to the heart has substantially improved cardiac function in most rodent models of myocardial infarction (MI), but clinical trials of BMC therapy have led to only modest improvements. Rodent models typically involve intramyocardial injection of BMCs from distinct donor individuals who are healthy. In contrast, autologous BMCs from individuals after MI are used for clinical trials. Using BMCs from donor mice after MI, we discovered that recent MI impaired BMC therapeutic efficacy. MI led to myocardial inflammation and an increased inflammatory state in the bone marrow, changing the BMC composition and reducing their efficacy. Injection of a general anti-inflammatory drug or a specific interleukin-1 inhibitor to donor mice after MI prevented this impairment. Our findings offer an explanation of why human trials have not matched the success of rodent experiments and suggest potential strategies to improve the success of clinical autologous BMC therapy.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ye J, Boyle A, Shih H, Sievers RE, Zhang Y, Prasad M, Su H, Zhou Y, Grossman W, Bernstein HS, Yeghiazarians Y. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS One 2012; 7:e30329. [PMID: 22272337 PMCID: PMC3260268 DOI: 10.1371/journal.pone.0030329] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 12/13/2011] [Indexed: 12/28/2022] Open
Abstract
Background Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI). However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs) have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. Methodology/Principal Finding Using “middle aged” mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1+CD45- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1) in Sca-1+CD45- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1+CD45- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. Conclusions/Significance These studies demonstrate that cloned Sca-1+CD45- cells derived from CSs from infarcted “middle aged” hearts are enriched for second heart field (i.e., Isl-1+) precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.
Collapse
Affiliation(s)
- Jianqin Ye
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Andrew Boyle
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Henry Shih
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Richard E. Sievers
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Megha Prasad
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Hua Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Yan Zhou
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - William Grossman
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Harold S. Bernstein
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Yerem Yeghiazarians
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Yeghiazarians Y, Gaur M, Zhang Y, Sievers RE, Ritner C, Prasad M, Boyle A, Bernstein HS. Myocardial improvement with human embryonic stem cell-derived cardiomyocytes enriched by p38MAPK inhibition. Cytotherapy 2011; 14:223-31. [PMID: 22040108 DOI: 10.3109/14653249.2011.623690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AIMS We have shown previously that inhibition of the p38 mitogen-activated protein kinase (p38MAPK) directs the differentiation of human embryonic stem cell (hESC)-derived cardiomyocytes (hCM). We investigated the therapeutic benefits of intramyocardial injection of hCM differentiated from hESC by p38MAPK inhibition using closed-chest ultrasound-guided injection at a clinically relevant time post-myocardial infarction (MI) in a mouse model. METHODS MI was induced in mice and the animals treated at day 3 with: (a) hCM, (b) human fetal fibroblasts (hFF) as cell control, or (c) medium control (n = 10 animals/group). Left ventricular ejection fraction (LVEF) was evaluated post-MI prior to therapy, and at days 28 and 60 post-cell therapy. Hearts were analyzed at day 60 for infarct size, angiogenesis, cell fate and teratoma formation. RESULTS LVEF was improved in the hCM-treated animals compared with both hFF and medium control-treated animals at day 28 (39.03 ± 1.79% versus 27.89 ± 1.27%, P < 0.05, versus 32.90 ± 1.46%, P < 0.05, respectively), with sustained benefit until day 60. hCM therapy resulted in significantly smaller scar size, increased capillary bed area, increased number of arterioles, less native cardiomyocyte (CM) apoptosis, and increased CM proliferation compared with the other two groups. These benefits were achieved despite a very low retention rate of the injected cells at day 60, as assessed by immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR). Therapy with hCM did not result in intramyocardial teratoma formation at day 60. CONCLUSIONS This study demonstrates that hCM derived from p38MAPK-treated hESC have encouraging therapeutic potential.
Collapse
Affiliation(s)
- Yerem Yeghiazarians
- Department of Medicine, University of California, San Francisco, California 94143-1346, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging. J Biomed Biotechnol 2011; 2012:519238. [PMID: 22163379 PMCID: PMC3202139 DOI: 10.1155/2012/519238] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/12/2011] [Indexed: 02/04/2023] Open
Abstract
Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research.
Collapse
|
42
|
Timing of bone marrow cell therapy is more important than repeated injections after myocardial infarction. Cardiovasc Pathol 2011; 20:204-12. [DOI: 10.1016/j.carpath.2010.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 06/01/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023] Open
|
43
|
Virag JAI, Lust RM. Coronary artery ligation and intramyocardial injection in a murine model of infarction. J Vis Exp 2011:2581. [PMID: 21673649 PMCID: PMC3197029 DOI: 10.3791/2581] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mouse models are a valuable tool for studying acute injury and chronic remodeling of the myocardium in vivo. With the advent of genetic modifications to the whole organism or the myocardium and an array of biological and/or synthetic materials, there is great potential for any combination of these to assuage the extent of acute ischemic injury and impede the onset of heart failure pursuant to myocardial remodeling. Here we present the methods and materials used to reliably perform this microsurgery and the modifications involved for temporary (with reperfusion) or permanent coronary artery occlusion studies as well as intramyocardial injections. The effects on the heart that can be seen during the procedure and at the termination of the experiment in addition to histological evaluation will verify efficacy. Briefly, surgical preparation involves anesthetizing the mice, removing the fur on the chest, and then disinfecting the surgical area. Intratracheal intubation is achieved by transesophageal illumination using a fiber optic light. The tubing is then connected to a ventilator. An incision made on the chest exposes the pectoral muscles which will be cut to view the ribs. For ischemia/reperfusion studies, a 1 cm piece of PE tubing placed over the heart is used to tie the ligature to so that occlusion/reperfusion can be customized. For intramyocardial injections, a Hamilton syringe with sterile 30gauge beveled needle is used. When the myocardial manipulations are complete, the rib cage, the pectoral muscles, and the skin are closed sequentially. Line block analgesia is effected by 0.25% marcaine in sterile saline which is applied to muscle layer prior to closure of the skin. The mice are given a subcutaneous injection of saline and placed in a warming chamber until they are sternally recumbent. They are then returned to the vivarium and housed under standard conditions until the time of tissue collection. At the time of sacrifice, the mice are anesthetized, the heart is arrested in diastole with KCl or BDM, rinsed with saline, and immersed in fixative. Subsequently, routine procedures for processing, embedding, sectioning, and histological staining are performed. Nonsurgical intubation of a mouse and the microsurgical manipulations described make this a technically challenging model to learn and achieve reproducibility. These procedures, combined with the difficulty in performing consistent manipulations of the ligature for timed occlusion(s) and reperfusion or intramyocardial injections, can also affect the survival rate so optimization and consistency are critical.
Collapse
Affiliation(s)
- Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University, USA.
| | | |
Collapse
|
44
|
Gaur M, Ritner C, Sievers R, Pedersen A, Prasad M, Bernstein HS, Yeghiazarians Y. Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes. Cytotherapy 2011; 12:807-17. [PMID: 20586669 DOI: 10.3109/14653249.2010.491821] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Heart failure therapy with human embryonic stem cell (hESC)-derived cardiomyocytes (hCM) has been limited by the low rate of spontaneous hCM differentiation. As others have shown that p38 mitogen-activated protein kinase (p38MAPK) directs neurogenesis from mouse embryonic stem cells, we investigated whether the p38MAPK inhibitor, SB203580, might influence hCM differentiation. METHODS We treated differentiating hESC with SB203580 at specific time-points, and used flow cytometry, immunocytochemistry, quantitative real-time (RT)-polymerase chain reaction (PCR), teratoma formation and transmission electron microscopy to evaluate cardiomyocyte formation. RESULTS We observed that the addition of inhibitor resulted in 2.1-fold enrichment of spontaneously beating human embryoid bodies (hEB) at 21 days of differentiation, and that 25% of treated cells expressed cardiac-specific α-myosin heavy chain. This effect was dependent on the stage of differentiation at which the inhibitor was introduced. Immunostaining and teratoma formation assays demonstrated that the inhibitor did not affect hESC pluripotency; however, treated hESC gave rise to hCM exhibiting increased expression of sarcomeric proteins, including cardiac troponin T, myosin light chain and α-myosin heavy chain. This was consistent with significantly increased numbers of myofibrillar bundles and the appearance of nascent Z-bodies at earlier time-points in treated hCM. Treated hEB also demonstrated a normal karyotype by array comparative genomic hybridization and viability in vivo following injection into mouse myocardium. CONCLUSIONS These studies demonstrate that p38MAPK inhibition accelerates directed hCM differentiation from hESC, and that this effect is developmental stage-specific. The use of this inhibitor should improve our ability to generate hESC-derived hCM for cell-based therapy.
Collapse
Affiliation(s)
- Meenakshi Gaur
- Department of Medicine, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Moran CM, Pye SD, Ellis W, Janeczko A, Morris KD, McNeilly AS, Fraser HM. A comparison of the imaging performance of high resolution ultrasound scanners for preclinical imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:493-501. [PMID: 21256667 PMCID: PMC3183231 DOI: 10.1016/j.ultrasmedbio.2010.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 11/05/2010] [Accepted: 11/22/2010] [Indexed: 05/05/2023]
Abstract
Nine ultrasound transducers from six ultrasound scanners were assessed for their utility for preclinical ultrasound imaging. The transducers were: L8-16, L10-22 (Diasus; Dynamic Imaging Ltd., Livingston, UK); L17-5, L15-7io (iU22; Philips, Seattle, WA, USA), HFL38/13-6 (MicroMaxx; Sonosite Inc., Bothell, WA, USA); il3Lv (Vivid 5; GE, Fairfield, CT, USA), RMV 704 (Vevo 770; Visualsonics Inc., Toronto, Canada) and MS550S, MS550D (Vevo 2100; Visualsonics Inc.). A quantitative analysis of the ultrasound images from all nine transducers employed measurements of the resolution integral as an indication of the versatility and technology of the ultrasound scanners. Two other parameters derived from the resolution integral, the characteristic resolution and depth of field, were used to characterise imaging performance. Six of these transducers were also assessed qualitatively by ultrasonically scanning 59 female common marmosets (Callithrix jacchus) yielding a total of 215 scans. The quantitative measurements for each of the transducers were consistent with the results obtained in the qualitative in vivo assessment. Over a 0-10 mm imaging depth, the values of the resolution integral, characteristic resolution and depth of field, measured using the Edinburgh Pipe Phantom, ranged in magnitude from 7-72, 93-930 μm and 3.3-9.2 mm respectively. The largest resolution integrals were obtained using the Vevo 770 and Vevo 2100 scanners. The Edinburgh Pipe Phantom provides a quantitative method of characterising the imaging performance of preclinical imaging scanners.
Collapse
Affiliation(s)
- Carmel M Moran
- Medical Physics, Centre for Cardiovascular Sciences, The Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang X, Takagawa J, Haddad DJ, Pinnamaneni K, Zhang Y, Sievers RE, Grossman W, Yeghiazarians Y, Springer ML. Advanced Donor Age Impairs Bone Marrow Cell Therapeutic Efficacy for Cardiac Disease. ACTA ACUST UNITED AC 2011; S3. [PMID: 22675670 DOI: 10.4172/2157-7552.s3-002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic results of clinical autologous bone marrow cell (BMC) therapy trials for cardiac disease have been modest compared to results of BMC implantation into rodent hearts post-myocardial infarction (MI). In clinical trials, autologous BMCs are typically harvested from older patients who have recently suffered an MI. In contrast, experimental studies in rodent models typically utilize donor BMCs isolated from young, healthy, inbred mice that are not the recipients. Using unfractionated BMCs from donor mice at ages of young, middle-aged, and old, we discovered that recipient left ventricular function post-MI was significantly improved by young donor BMC implantation but was only preserved by middle-aged donor BMCs. Notably, old donor BMCs did not slow the decline in recipient post-MI cardiac function, suggesting BMC impairment by advanced donor age. Furthermore, we also show here that BMCs that are therapeutically impaired by donor age can be further impaired by concurrent donor MI. In conclusion, our findings suggest that therapeutic impairment of BMCs by advanced age is one of the important factors that can limit the success of clinical autologous BMC-based therapy.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Waspe AC, McErlain DD, Pitelka V, Holdsworth DW, Lacefield JC, Fenster A. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions. Med Phys 2010; 37:1647-59. [PMID: 20443486 DOI: 10.1118/1.3312520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. METHODS An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. RESULTS Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. CONCLUSIONS The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.
Collapse
Affiliation(s)
- Adam C Waspe
- Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5K8, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
Yeghiazarians Y, Khan M, Angeli FS, Zhang Y, Jahn S, Prasad M, Mirsky R, Shih H, Minasi P, Boyle A, Grossman W. Cytokine combination therapy with long-acting erythropoietin and granulocyte colony stimulating factor improves cardiac function but is not superior than monotherapy in a mouse model of acute myocardial infarction. J Card Fail 2010; 16:669-78. [PMID: 20670846 DOI: 10.1016/j.cardfail.2010.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND Erythropoietin (EPO) and granulocyte colony stimulating factor (GCSF) are potential novel therapies after myocardial infarction (MI). We first established the optimal and clinically applicable dosages of these drugs in mobilizing hematopoietic stem cells (HSC), and then tested the efficacy of monotherapy and combination therapy post-MI. METHODS AND RESULTS Optimal doses were established in enhanced green fluorescent protein (eGFP) + chimeric mice (n = 30). Next, mice underwent MI and randomized into 4 groups (n = 18/group): 1) GCSF; 2) EPO; 3) EPO+GCSF; and 4) control. Left ventricular (LV) function was analyzed pre-MI, at 4 hours and at 28 days post-MI. Histological assessment of infarct size, blood vessels, apoptotic cardiomyocytes, and engraftment of eGFP+ mobilized cells were analyzed at day 28. LV function in the control group continued to deteriorate, whereas all treatments showed stabilization. The treatment groups resulted in less scarring, increased numbers of mobilized cells to the infarct border zone (BZ), and a reduction in the number of apoptotic cardiomyocytes. Both EPO groups had significantly more capillaries and arterioles at the BZ. CONCLUSION We have established the optimal doses for EPO and GCSF in mobilizing HSC from the bone marrow and demonstrated that therapy with these agents, either as monotherapy or combination therapy, led to improvement of cardiac function post-MI. Combination therapy does not seem to have additive benefit over monotherapy in this model.
Collapse
Affiliation(s)
- Yerem Yeghiazarians
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California 94143-0103, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 2010; 464:917-21. [PMID: 20228789 DOI: 10.1038/nature08945] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 01/14/2010] [Indexed: 12/19/2022]
Abstract
The vascular endothelial growth factors (VEGFs) are major angiogenic regulators and are involved in several aspects of endothelial cell physiology. However, the detailed role of VEGF-B in blood vessel function has remained unclear. Here we show that VEGF-B has an unexpected role in endothelial targeting of lipids to peripheral tissues. Dietary lipids present in circulation have to be transported through the vascular endothelium to be metabolized by tissue cells, a mechanism that is poorly understood. Bioinformatic analysis showed that Vegfb was tightly co-expressed with nuclear-encoded mitochondrial genes across a large variety of physiological conditions in mice, pointing to a role for VEGF-B in metabolism. VEGF-B specifically controlled endothelial uptake of fatty acids via transcriptional regulation of vascular fatty acid transport proteins. As a consequence, Vegfb(-/-) mice showed less uptake and accumulation of lipids in muscle, heart and brown adipose tissue, and instead shunted lipids to white adipose tissue. This regulation was mediated by VEGF receptor 1 and neuropilin 1 expressed by the endothelium. The co-expression of VEGF-B and mitochondrial proteins introduces a novel regulatory mechanism, whereby endothelial lipid uptake and mitochondrial lipid use are tightly coordinated. The involvement of VEGF-B in lipid uptake may open up the possibility for novel strategies to modulate pathological lipid accumulation in diabetes, obesity and cardiovascular diseases.
Collapse
|
50
|
Huusko J, Merentie M, Dijkstra MH, Ryhänen MM, Karvinen H, Rissanen TT, Vanwildemeersch M, Hedman M, Lipponen J, Heinonen SE, Eriksson U, Shibuya M, Ylä-Herttuala S. The effects of VEGF-R1 and VEGF-R2 ligands on angiogenic responses and left ventricular function in mice. Cardiovasc Res 2009; 86:122-30. [PMID: 19955220 DOI: 10.1093/cvr/cvp382] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Vascular endothelial growth factors (VEGFs) and their receptors (VEGF-Rs) are among the most powerful factors regulating vascular growth. However, it has remained unknown whether stimulation of VEGF-R1, VEGF-R2 or both of the receptors produces the best angiogenic responses in myocardium. The aim of this study was to compare the VEGF-R1-specific ligand VEGF-B(186), VEGF-R2-specific ligand VEGF-E and VEGF-A(165,) which stimulates both receptors, regarding their effects on angiogenesis and left ventricular function in mice. METHODS AND RESULTS High-resolution echocardiography was used to guide the closed-chest injections of adenoviral (Ad) vectors expressing VEGF-B(186,) VEGF-E, and VEGF-A(165) into the anterior wall of the left ventricle in C57Bl/6J mice. Angiogenic and functional effects were analysed using histology, ultrasound and perfusion analyses 6 (D6) and 14 (D14) days after the Ad injection. AdVEGF-A(165) induced a strong angiogenic response seen as an enlargement of myocardial capillaries whereas angiogenesis induced by AdVEGF-B(186) and AdVEGF-E seemed more physiological. The increase in the capillary area was accompanied with an increase in myocardial perfusion at D6 after the gene injection. AdVEGF-A(165) and AdVEGF-E induced endothelial-specific proliferation whereas AdVEGF-B(186) mostly induced proliferation of cardiomyocytes. AdVEGF-A(165) induced more pronounced tissue damage than AdVEGF-B(186) and AdVEGF-E. Left ventricular function measured as ejection fraction did not change during the follow-up. AdVEGF-A(165) increased both VEGF-R1 and VEGF-R2 protein expression whereas AdVEGF-B(186) and AdVEGF-E did not affect endogenous receptor expression levels. CONCLUSION AdVEGF-B(186) and AdVEGF-E are equally potent in inducing therapeutic angiogenesis in mouse myocardium and produce less side effects than AdVEGF-A(165).
Collapse
Affiliation(s)
- Jenni Huusko
- Department of Biotechnology and Molecular Medicine, AI Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|