1
|
Lee RHC, Wu CYC, Citadin CT, Couto E Silva A, Possoit HE, Clemons GA, Acosta CH, de la Llama VA, Neumann JT, Lin HW. Activation of Neuropeptide Y2 Receptor Can Inhibit Global Cerebral Ischemia-Induced Brain Injury. Neuromolecular Med 2022; 24:97-112. [PMID: 34019239 PMCID: PMC8606017 DOI: 10.1007/s12017-021-08665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
Cardiopulmonary arrest (CA) can greatly impact a patient's life, causing long-term disability and death. Although multi-faceted treatment strategies against CA have improved survival rates, the prognosis of CA remains poor. We previously reported asphyxial cardiac arrest (ACA) can cause excessive activation of the sympathetic nervous system (SNS) in the brain, which contributes to cerebral blood flow (CBF) derangements such as hypoperfusion and, consequently, neurological deficits. Here, we report excessive activation of the SNS can cause enhanced neuropeptide Y levels. In fact, mRNA and protein levels of neuropeptide Y (NPY, a 36-amino acid neuropeptide) in the hippocampus were elevated after ACA-induced SNS activation, resulting in a reduced blood supply to the brain. Post-treatment with peptide YY3-36 (PYY3-36), a pre-synaptic NPY2 receptor agonist, after ACA inhibited NPY release and restored brain circulation. Moreover, PYY3-36 decreased neuroinflammatory cytokines, alleviated mitochondrial dysfunction, and improved neuronal survival and neurological outcomes. Overall, NPY is detrimental during/after ACA, but attenuation of NPY release via PYY3-36 affords neuroprotection. The consequences of PYY3-36 inhibit ACA-induced 1) hypoperfusion, 2) neuroinflammation, 3) mitochondrial dysfunction, 4) neuronal cell death, and 5) neurological deficits. The present study provides novel insights to further our understanding of NPY's role in ischemic brain injury.
Collapse
Affiliation(s)
- Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alexandre Couto E Silva
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Harlee E Possoit
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Christina H Acosta
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria A de la Llama
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA.
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA.
| |
Collapse
|
2
|
Kim WJ, Dacey M, Samarage HM, Zarrin D, Goel K, Chan C, Qi X, Wang A, Shivkumar K, Ardell J, Colby G. Sympathetic nervous system hyperactivity results in potent cerebral hypoperfusion in swine. Auton Neurosci 2022; 241:102987. [DOI: 10.1016/j.autneu.2022.102987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
3
|
Chun-Kai H, Hsi-Hsien C, Shang-Jen C, Shei-Dei Stephen Y, Kuo-Feng H. Methyl palmitate modulates the nicotine-induced increase in basilar arterial blood flow. Microcirculation 2021; 28:e12686. [PMID: 33595915 DOI: 10.1111/micc.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
Methyl palmitate (MP) is a fatty acid methyl ester. Our recent study indicated that adrenergic nerve-dependent functional sympathetic-sensory nerve interactions were abolished by MP in mesenteric arteries. However, the effect of MP on perivascular nerves and cerebral blood flow remains unclear. In this study, the increase in basilar arterial blood flow (BABF) after the topical application of nicotinic acetylcholine receptor agonists was measured using laser Doppler flowmetry in anesthetized rats. The choline (a selective α7-nicotinic acetylcholine receptor agonist)-induced increase in BABF was abolished by tetrodotoxin (a neurotoxin), NG -nitro-L-arginine (a nonselective NO synthase inhibitor), α-bungarotoxin (a selective α7-nicotinic acetylcholine receptor inhibitor), and chronic sympathetic denervation. In addition, the nicotine (a nicotinic acetylcholine receptor agonist)-induced increase in BABF was inhibited by MP in a concentration-dependent manner. The acetylcholine-induced increase in BABF was not affected by MP. The myography results revealed that nicotine-induced vasorelaxation was significantly inhibited by MP, but was reversed by chelerythrine (a protein kinase C inhibitor). MP-induced vasodilation was significantly greater in BA rings without endothelium compared to those with endothelium. Meanwhile, MP did not affect baseline BABF. Our results indicate that MP acts as a neuromodulator in the cerebral circulation where it activates the PKC pathway and causes a diminished nicotine-induced increase in blood flow in the brainstem, and that the vasorelaxation effect of MP may play a minor role.
Collapse
Affiliation(s)
- Hsu Chun-Kai
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, New Taipei, Taiwan
| | - Chang Hsi-Hsien
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, New Taipei, Taiwan
| | - Chang Shang-Jen
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, New Taipei, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yang Shei-Dei Stephen
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, New Taipei, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, New Taipei, Taiwan
| | - Huang Kuo-Feng
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, New Taipei, Taiwan
| |
Collapse
|
4
|
Li Y, Luo D, Chen X, Li J, Yan L, Li T, Zhao Y, Liu, H, Ji X, Ma X. Involvement of Arachidonic Acid Metabolites Pathway and Nicotinic Acetylcholine Receptors (nAChRs) on Nicotine-induced Contractions (or Relaxations) in the Basilar Artery. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2017.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Lee RH, Couto E Silva A, Lerner FM, Wilkins CS, Valido SE, Klein DD, Wu CY, Neumann JT, Della-Morte D, Koslow SH, Minagar A, Lin HW. Interruption of perivascular sympathetic nerves of cerebral arteries offers neuroprotection against ischemia. Am J Physiol Heart Circ Physiol 2016; 312:H182-H188. [PMID: 27864234 DOI: 10.1152/ajpheart.00482.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022]
Abstract
Sympathetic nervous system activity is increased after cardiopulmonary arrest, resulting in vasoconstrictor release from the perivascular sympathetic nerves of cerebral arteries. However, the pathophysiological function of the perivascular sympathetic nerves in the ischemic brain remains unclear. A rat model of global cerebral ischemia (asphyxial cardiac arrest, ACA) was used to investigate perivascular sympathetic nerves of cerebral arteries via bilateral decentralization (preganglionic lesion) of the superior cervical ganglion (SCG). Decentralization of the SCG 5 days before ACA alleviated hypoperfusion and afforded hippocampal neuroprotection and improved functional outcomes. These studies can provide further insights into the functional mechanism(s) of the sympathetic nervous system during ischemia. NEW & NOTEWORTHY Interruption of the perivascular sympathetic nerves can alleviate CA-induced hypoperfusion and neuronal cell death in the CA1 region of the hippocampus to enhance functional learning and memory.
Collapse
Affiliation(s)
- Reggie H Lee
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Alexandre Couto E Silva
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Francesca M Lerner
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Carl S Wilkins
- Florida International University Herbert Wertheim College of Medicine, Miami, Florida
| | - Stephen E Valido
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Daniel D Klein
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Celeste Y Wu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia
| | - David Della-Morte
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Systems Medicine, University of Rome Tor Vergata; and.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Stephen H Koslow
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Hung Wen Lin
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida; .,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
6
|
Ogunjirin AE, Fortunak JM, Brown LL, Xiao Y, Dávila-García MI. Competition, Selectivity and Efficacy of Analogs of A-84543 for Nicotinic Acetylcholine Receptors with Repositioning of Pyridine Nitrogen. Neurochem Res 2015; 40:2131-42. [PMID: 26508288 PMCID: PMC4741274 DOI: 10.1007/s11064-015-1705-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a crucial role in a number of clinically relevant mental and neurological pathways, as well as autonomic and immune functions. The development of subtype-selective ligands for nAChRs therefore is potentially useful for targeted therapeutic management of conditions where nAChRs are involved. We tested if selectivity for a particular nAChR subtype can be achieved through small structural modifications of a lead compound containing the nicotinic pharmacophore by changing the distance between the electronegative elements. For this purpose, analogs of A-84543 were designed, synthesized and characterized as potentially new nAChR subtype-selective ligands. Compounds were tested for their binding properties in rat cerebral cortical tissue homogenates, and subtype-selectivity was determined using stably transfected HEK cells expressing different nAChR subtypes. All compounds synthesized were found to competitively displace [(3)H]-epibatidine ([(3)H]EB) from the nAChR binding site. Of all the analogues, H-11MNH showed highest affinity for nAChRs compared to a ~ fivefold to tenfold lower affinity of A-84543. All other compounds had affinities >10,000 nM. Both A-84543 and H-11MNH have highest affinity for α2β2 and α4β2 nAChRs and show moderate affinity for β4- and α7-containing receptors. H-11MNH was found to be a full agonist with high potency at α3β4, while A-84543 is a partial agonist with low potency. Based on their unique pharmacological binding properties we suggest that A-84543 and its desmethylpyrrolidine analog can be useful as pharmacological ligands for studying nAChRs if selective pharmacological and/or genetic tools are used to mask the function of other receptors subtypes.
Collapse
Affiliation(s)
- Adebowale E Ogunjirin
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| | - Joseph M Fortunak
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - LaVerne L Brown
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Martha I Dávila-García
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA.
| |
Collapse
|
7
|
Wu CYC, Lee RHC, Chen PY, Tsai APY, Chen MF, Kuo JS, Lee TJF. L-type calcium channels in sympathetic α3β2-nAChR-mediated cerebral nitrergic neurogenic vasodilation. Acta Physiol (Oxf) 2014; 211:544-58. [PMID: 24825168 DOI: 10.1111/apha.12315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/22/2013] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
AIM Nicotine stimulation of α3β2-nicotinic acetylcholine receptors (α3β2-nAChRs) located on sympathetic nerves innervating basilar arteries causes calcium-dependent noradrenaline release, leading to activation of parasympathetic nitrergic nerves and dilation of basilar arteries. This study aimed to investigate the major subtype of calcium channels located on cerebral peri-vascular sympathetic nerves, which is involved in nicotine-induced α3β2-nAChR-mediated nitrergic vasodilation in basilar arteries. METHODS Nicotine- and transmural nerve stimulation (TNS)-induced dilation of isolated porcine basilar arteries was examined using in vitro tissue bath. Nicotine-induced calcium influx, nicotine-induced noradrenaline release and nicotine-induced inward currents were evaluated in rat superior cervical ganglion (SCG) neurones, peri-vascular sympathetic nerves of porcine basilar arteries and α3β2-nAChRs-expressing oocytes respectively. mRNA and protein expression of Cav 1.2 and Cav 1.3 channels were detected by RT-PCR, Western blotting and immunohistochemistry. RESULTS Nicotine-induced vasodilation was not affected by ω-agatoxin TK (selective P/Q-type calcium channel blocker) or ω-conotoxin GVIA (N-type calcium channel blocker). The vasodilation, however, was inhibited by nicardipine (L-type calcium channel blocker) in concentrations which did not affect TNS-induced vasodilation, suggesting the specific blockade. Nicardipine concentration-dependently inhibited nicotine-induced calcium influx in rat SCG neurones and reduced nicotine-induced noradrenaline release from peri-vascular sympathetic nerves of porcine basilar arteries. Nicardipine (10 μm), which significantly blocked nicotine-induced vasorelaxation by 70%, did not appreciably affect nicotine-induced inward currents in α3β2-nAChRs-expressing oocytes. Furthermore, the mRNAs and proteins of Cav 1.2 and Cav 1.3 channels were expressed in porcine SCG and peri-vascular nerve terminals. CONCLUSION The sympathetic neuronal calcium influx through L-type calcium channels is modulated by α3β2-nAChRs. This calcium influx causes noradrenaline release, initiating sympathetic-parasympathetic (axo-axonal) interaction-induced nitrergic dilation of porcine basilar arteries.
Collapse
Affiliation(s)
- C. Y.-C. Wu
- Institute of Pharmacology & Toxicology; Tzu Chi University; Hualien Taiwan
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
| | - R. H.-C. Lee
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
- Institute of Medical Sciences; College of Medicine; Tzu Chi University; Hualien Taiwan
| | - P.-Y. Chen
- Institute of Pharmacology & Toxicology; Tzu Chi University; Hualien Taiwan
- Department of Medical Research; Buddhist Tzu Chi General Hospital; Hualien Taiwan
| | - A. P.-Y. Tsai
- Institute of Pharmacology & Toxicology; Tzu Chi University; Hualien Taiwan
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
| | - M.-F. Chen
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
- Department of Medical Research; Buddhist Tzu Chi General Hospital; Hualien Taiwan
| | - J.-S. Kuo
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
- Institute of Medical Sciences; College of Medicine; Tzu Chi University; Hualien Taiwan
| | - T. J.-F. Lee
- Institute of Pharmacology & Toxicology; Tzu Chi University; Hualien Taiwan
- Center for Vascular Medicine; College of Life Sciences; Tzu Chi University; Hualien Taiwan
- Institute of Medical Sciences; College of Medicine; Tzu Chi University; Hualien Taiwan
- Department of Medical Research; Buddhist Tzu Chi General Hospital; Hualien Taiwan
- Department of Life Sciences; Tzu Chi University; Hualien Taiwan. Department of Pharmacology; Southern Illinois University School of Medicine; Springfield IL USA
| |
Collapse
|
8
|
Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries. PLoS One 2012; 7:e40326. [PMID: 22792283 PMCID: PMC3390354 DOI: 10.1371/journal.pone.0040326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
Abstract
Memantine, an NMDA receptor antagonist used for treatment of Alzheimer’s disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer’s disease.
Collapse
|
9
|
Lee TJF, Chang HH, Lee HC, Chen PY, Lee YC, Kuo JS, Chen MF. Axo-axonal interaction in autonomic regulation of the cerebral circulation. Acta Physiol (Oxf) 2011; 203:25-35. [PMID: 21159131 DOI: 10.1111/j.1748-1716.2010.02231.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Noradrenaline (NE) and acetylcholine (ACh) released from the sympathetic and parasympathetic neurones in cerebral blood vessels were suggested initially to be the respective vasoconstricting and dilating transmitters. Both substances, however, are extremely weak post-synaptic transmitters. Compelling evidence indicates that nitric oxide (NO) which is co-released with ACh from same parasympathetic nerves is the major transmitter for cerebral vasodilation, and its release is inhibited by ACh. NE released from the sympathetic nerve, acting on presynaptic β2-adrenoceptors located on the neighbouring parasympathetic nitrergic nerves, however, facilitates NO release with enhanced vasodilation. This axo-axonal interaction mediating NE transmission is supported by close apposition between sympathetic and parasympathetic nerve terminals, and has been shown in vivo at the base of the brain and the cortical cerebral circulation. This result reveals the physiological need for increased regional cerebral blood flow in 'fight-or-flight response' during acute stress. Furthermore, α7- and α3β2-nicotinic ACh receptors (nAChRs) on sympathetic nerve terminals mediate release of NE, leading to cerebral nitrergic vasodilation. α7-nAChR-mediated but not α3β2-nAChR-mediated cerebral nitrergic vasodilation is blocked by β-amyloid peptides (Aβs). This may provide an explanation for cerebral hypoperfusion seen in patients with Alzheimer's disease. α7- and α3β2-nAChR-mediated nitrergic vasodilation is blocked by cholinesterase inhibitors (ChEIs) which are widely used for treating Alzheimer's disease, leading to possible cerebral hypoperfusion. This may contribute to the limitation of clinical use of ChEIs. ChEI blockade of nAChR-mediated dilation like that by Aβs is prevented by statins pretreatment, suggesting that efficacy of ChEIs may be improved by concurrent use of statins.
Collapse
Affiliation(s)
- T J F Lee
- College of Life Sciences, Institute of Life Science, Tzu Chi University, Hualien, Taiwan.
| | | | | | | | | | | | | |
Collapse
|