1
|
Li J, Huang N, Zhang X, Sun C, Chen J, Wei Q. Changes of collagen content in lung tissues of plateau yak and its mechanism of adaptation to hypoxia. PeerJ 2024; 12:e18250. [PMID: 39372716 PMCID: PMC11451445 DOI: 10.7717/peerj.18250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Collagen is crucial for tissue structure, functional maintenance, and cellular processes such as proliferation and differentiation. However, the specific changes in collagen expression and its associated genes in the lung tissues of yaks at high altitudes and their relationship with environmental adaptation remain poorly understood. Studying differences in the content of collagen fibers and gene expression between yaks at high (4,500 m) and low (2,600 m) altitudes, as well as between cattle at low altitudes (2,600 m). Using Masson staining, we found that the collagen fiber content in the lung tissues of yaks at low altitude was significantly higher compared to yaks at high altitude and cattle at the same altitude (P < 0.05). It was revealed through transcriptomic analyses that genes differentially expressed between high and low altitude yaks, as well as between low altitude yaks and cattle, were notably enriched in pathways related to cell adhesion, collagen synthesis, focal adhesion, and ECM-receptor interactions. Specifically, genes involved in mesenchymal collagen synthesis (e.g., COL1A1, COL1A2, COL3A1), basement membrane collagen synthesis (e.g., COL4A1, COL4A2, COL4A4, COL4A6), and peripheral collagen synthesis (e.g., COL5A1, COL6A1, COL6A2, COL6A3) were significantly upregulated in the lung tissues of yaks at low altitude compared to their high altitude counterparts and cattle (P < 0.05). In conclusion, yaks at lower altitudes exhibit increased collagen synthesis by upregulating collagen gene expression, which contributes to maintaining alveolar stability and septal flexibility. Conversely, the expression of collagen genes in yak lung tissues was down-regulated with the increase in altitude, and it was speculated that the decrease in collagen may be used to constrain the function of elastic fibers that are more abundant at high altitude, so as to enable them to adapt to the harsh environment with hypoxia and high altitude. This adaptation mechanism highlights the role of collagen in environmental acclimatization and contributes to our understanding of how altitude and species influence collagen-related physiological processes in yaks.
Collapse
Affiliation(s)
- Jingyi Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Nating Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Xun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Ci Sun
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
2
|
Rojas MG, Pereira-Simon S, Zigmond ZM, Varona Santos J, Perla M, Santos Falcon N, Stoyell-Conti FF, Salama A, Yang X, Long X, Duque JC, Salman LH, Tabbara M, Martinez L, Vazquez-Padron RI. Single-Cell Analyses Offer Insights into the Different Remodeling Programs of Arteries and Veins. Cells 2024; 13:793. [PMID: 38786017 PMCID: PMC11119253 DOI: 10.3390/cells13100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Arteries and veins develop different types of occlusive diseases and respond differently to injury. The biological reasons for this discrepancy are not well understood, which is a limiting factor for the development of vein-targeted therapies. This study contrasts human peripheral arteries and veins at the single-cell level, with a focus on cell populations with remodeling potential. Upper arm arteries (brachial) and veins (basilic/cephalic) from 30 organ donors were compared using a combination of bulk and single-cell RNA sequencing, proteomics, flow cytometry, and histology. The cellular atlases of six arteries and veins demonstrated a 7.8× higher proportion of contractile smooth muscle cells (SMCs) in arteries and a trend toward more modulated SMCs. In contrast, veins showed a higher abundance of endothelial cells, pericytes, and macrophages, as well as an increasing trend in fibroblasts. Activated fibroblasts had similar proportions in both types of vessels but with significant differences in gene expression. Modulated SMCs and activated fibroblasts were characterized by the upregulation of MYH10, FN1, COL8A1, and ITGA10. Activated fibroblasts also expressed F2R, POSTN, and COMP and were confirmed by F2R/CD90 flow cytometry. Activated fibroblasts from veins were the top producers of collagens among all fibroblast populations from both types of vessels. Venous fibroblasts were also highly angiogenic, proinflammatory, and hyper-responders to reactive oxygen species. Differences in wall structure further explain the significant contribution of fibroblast populations to remodeling in veins. Fibroblasts are almost exclusively located outside the external elastic lamina in arteries, while widely distributed throughout the venous wall. In line with the above, ECM-targeted proteomics confirmed a higher abundance of fibrillar collagens in veins vs. more basement ECM components in arteries. The distinct cellular compositions and transcriptional programs of reparative populations in arteries and veins may explain differences in acute and chronic wall remodeling between vessels. This information may be relevant for the development of antistenotic therapies.
Collapse
Affiliation(s)
- Miguel G. Rojas
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Simone Pereira-Simon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | | | - Javier Varona Santos
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Mikael Perla
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Nieves Santos Falcon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Filipe F. Stoyell-Conti
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Alghidak Salama
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiaochun Long
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Juan C. Duque
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Loay H. Salman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY 12208, USA
| | - Marwan Tabbara
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Laisel Martinez
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Roberto I. Vazquez-Padron
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
- Bruce W. Carter Veterans Affairs Medical Center, Miami, FL 33125, USA;
| |
Collapse
|
3
|
Bazzi MS, Balouchzadeh R, Pavey SN, Quirk JD, Yanagisawa H, Vedula V, Wagenseil JE, Barocas VH. Experimental and Mouse-Specific Computational Models of the Fbln4 SMKO Mouse to Identify Potential Biomarkers for Ascending Thoracic Aortic Aneurysm. Cardiovasc Eng Technol 2022; 13:558-572. [PMID: 35064559 PMCID: PMC9304450 DOI: 10.1007/s13239-021-00600-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE To use computational methods to explore geometric, mechanical, and fluidic biomarkers that could correlate with mouse lifespan in the Fbln4SMKO mouse. Mouse lifespan was used as a surrogate for risk of a severe cardiovascular event in cases of ascending thoracic aortic aneurysm. METHODS Image-based, mouse-specific fluid-structure-interaction models were developed for Fbln4SMKO mice (n = 10) at ages two and six months. The results of the simulations were used to quantify potential biofluidic biomarkers, complementing the geometrical biomarkers obtained directly from the images. RESULTS Comparing the different geometrical and biofluidic biomarkers to the mouse lifespan, it was found that mean oscillatory shear index (OSImin) and minimum time-averaged wall shear stress (TAWSSmin) at six months showed the largest correlation with lifespan (r2 = 0.70, 0.56), with both correlations being positive (i.e., mice with high OSImean and high TAWSSmin tended to live longer). When change between two and six months was considered, the change in TAWSSmin showed a much stronger correlation than OSImean (r2 = 0.75 vs. 0.24), and the correlation was negative (i.e., mice with increasing TAWSSmin over this period tended to live less long). CONCLUSION The results highlight potential biomarkers of ATAA outcomes that can be obtained through noninvasive imaging and computational simulations, and they illustrate the potential synergy between small-animal and computational models.
Collapse
Affiliation(s)
- Marisa S Bazzi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ramin Balouchzadeh
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - Shawn N Pavey
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Siddiqui HB, Dogru S, Lashkarinia SS, Pekkan K. Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development. J Cardiovasc Dev Dis 2022; 9:jcdd9020064. [PMID: 35200717 PMCID: PMC8876703 DOI: 10.3390/jcdd9020064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
During embryonic development, changes in the cardiovascular microstructure and material properties are essential for an integrated biomechanical understanding. This knowledge also enables realistic predictive computational tools, specifically targeting the formation of congenital heart defects. Material characterization of cardiovascular embryonic tissue at consequent embryonic stages is critical to understand growth, remodeling, and hemodynamic functions. Two biomechanical loading modes, which are wall shear stress and blood pressure, are associated with distinct molecular pathways and govern vascular morphology through microstructural remodeling. Dynamic embryonic tissues have complex signaling networks integrated with mechanical factors such as stress, strain, and stiffness. While the multiscale interplay between the mechanical loading modes and microstructural changes has been studied in animal models, mechanical characterization of early embryonic cardiovascular tissue is challenging due to the miniature sample sizes and active/passive vascular components. Accordingly, this comparative review focuses on the embryonic material characterization of developing cardiovascular systems and attempts to classify it for different species and embryonic timepoints. Key cardiovascular components including the great vessels, ventricles, heart valves, and the umbilical cord arteries are covered. A state-of-the-art review of experimental techniques for embryonic material characterization is provided along with the two novel methods developed to measure the residual and von Mises stress distributions in avian embryonic vessels noninvasively, for the first time in the literature. As attempted in this review, the compilation of embryonic mechanical properties will also contribute to our understanding of the mature cardiovascular system and possibly lead to new microstructural and genetic interventions to correct abnormal development.
Collapse
Affiliation(s)
- Hummaira Banu Siddiqui
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
| | - Sedat Dogru
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Seyedeh Samaneh Lashkarinia
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Bioengineering, Imperial College London, London SW7 2BX, UK
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Correspondence: ; Tel.: +90-(533)-356-3595
| |
Collapse
|
5
|
Passive biaxial mechanical behavior of newborn mouse aorta with and without elastin. J Mech Behav Biomed Mater 2022; 126:105021. [PMID: 34864571 PMCID: PMC9808670 DOI: 10.1016/j.jmbbm.2021.105021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 02/03/2023]
Abstract
Aortic wall material properties are needed for computational models and for comparisons across developmental and disease states. There has been abundant work in comparing aortic material properties across disease states, but limited work across developmental states. We performed passive biaxial mechanical testing on newborn mouse aorta with (Eln+/+) and without (Eln-/-) elastin. Elastin provides elasticity to the aortic wall and is necessary for survival beyond birth in the mouse. Mechanically functional elastin is challenging to create in vitro and so Eln-/- aorta can be a comparison for tissue engineered arteries with limited elastin amounts. We found that a traditional arterial strain energy function provided reasonable fits to newborn mouse aorta and generally predicted lower material constants in Eln-/- compared to Eln+/+ aorta. At physiologic pressures, the circumferential stresses and moduli trended lower in Eln-/- compared to Eln+/+ aorta. Increased blood pressure in Eln-/- mice helps to alleviate the differences in stresses and moduli. Increased blood pressure also serves to partially offload stresses in the isotropic compared to the anisotropic component of the wall. The baseline material parameters can be used in computational models of growth and remodeling to improve understanding of developmental mechanobiology and tissue engineering strategies.
Collapse
|
6
|
Kim J, Cocciolone AJ, Staiculescu MC, Mecham RP, Wagenseil JE. Captopril treatment during development alleviates mechanically induced aortic remodeling in newborn elastin knockout mice. Biomech Model Mechanobiol 2019; 19:99-112. [PMID: 31270728 DOI: 10.1007/s10237-019-01198-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Deposition of elastin and collagen in the aorta correlates with increases in blood pressure and flow during development, suggesting that the aorta adjusts its mechanical properties in response to hemodynamic stresses. Elastin knockout (Eln-/-) mice have high blood pressure and pathological remodeling of the aorta and die soon after birth. We hypothesized that decreasing blood pressure in Eln-/- mice during development may reduce hemodynamic stresses and alleviate pathological remodeling of the aorta. We treated Eln+/+ and Eln-/- mice with the anti-hypertensive medication captopril throughout embryonic development and then evaluated left ventricular (LV) pressure and aortic remodeling at birth. We found that captopril treatment decreased Eln-/- LV pressure to values near Eln+/+ mice and alleviated the wall thickening and changes in mechanical behavior observed in untreated Eln-/- aorta. The changes in thickness and mechanical behavior in captopril-treated Eln-/- aorta were not due to alterations in measured elastin or collagen amounts, but may have been caused by alterations in smooth muscle cell (SMC) properties. We used a constitutive model to understand how changes in stress contributions of each wall component could explain the observed changes in composite mechanical behavior. Our modeling results show that alterations in the collagen natural configuration and SMC properties in the absence of elastin may explain untreated Eln-/- aortic behavior and that partial rescue of the SMC properties may account for captopril-treated Eln-/- aortic behavior.
Collapse
Affiliation(s)
- Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA
| | - Austin J Cocciolone
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Marius C Staiculescu
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA.
| |
Collapse
|
7
|
Chen X, Yang Y, Chang T, Xu B, Wei H. Comparative Transcriptome Analysis of Unusual Localized Skin Laxity in Sika Deer ( Cervus nippon). DNA Cell Biol 2019; 38:670-677. [PMID: 31188027 DOI: 10.1089/dna.2019.4730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cutis laxa represents a heterogeneous group of rare, inherited, or acquired connective tissue disorders with the common feature of loose and redundant skin with decreased elasticity. The skin of affected deer showed abnormal collagen fiber morphology. To identify the differentially expressed genes of the unusual localized skin laxity in sika deer, we performed transcriptome analysis in the affected and control sika deer. The transcriptome analysis showed 700 genes with significant differential expression in the affected skin as compared with normal skin. Pathway analysis revealed an enrichment of genes involved in tumor necrosis factor signaling, the extracellular matrix-receptor interaction, platelet activation, and Huntington's disease. A gene network was constructed, and the hub nodes such as PTGS2, THBS1, COL1A1, FOS, and NOS3 were found through PPI network analysis, which may contributed to the unusual localized skin laxity in sika deer. Abnormal expression patterns of genes during the development of the affected sika deer were successfully uncovered in the present study, which provides a reference for revealing the related mechanism underlying cutis laxa in sika deer and human beings.
Collapse
Affiliation(s)
- Xiumin Chen
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yifeng Yang
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| | - Tong Chang
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Baozeng Xu
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| | - Haijun Wei
- 1 Institute of Special Animals and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,2 Key Laboratory of Molecular Biology in Special Economic Animals, Changchun, China
| |
Collapse
|
8
|
Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biol 2019; 85-86:160-172. [PMID: 30880160 DOI: 10.1016/j.matbio.2019.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
Elastic fibers are major components of the extracellular matrix (ECM) in the aorta and support a life-long cycling of stretch and recoil. Elastic fibers are formed from mid-gestation throughout early postnatal development and the synthesis is regulated at multiple steps, including coacervation, deposition, cross-linking, and assembly of insoluble elastin onto microfibril scaffolds. To date, more than 30 molecules have been shown to associate with elastic fibers and some of them play a critical role in the formation and maintenance of elastic fibers in vivo. Because the aorta is subjected to high pressure from the left ventricle, elasticity of the aorta provides the Windkessel effect and maintains stable blood flow to distal organs throughout the cardiac cycle. Disruption of elastic fibers due to congenital defects, inflammation, or aging dramatically reduces aortic elasticity and affects overall vessel mechanics. Another important component in the aorta is the vascular smooth muscle cells (SMCs). Elastic fibers and SMCs alternate to create a highly organized medial layer within the aortic wall. The physical connections between elastic fibers and SMCs form the elastin-contractile units and maintain cytoskeletal organization and proper responses of SMCs to mechanical strain. In this review, we revisit the components of elastic fibers and their roles in elastogenesis and how a loss of each component affects biomechanics of the aorta. Finally, we discuss the significance of elastin-contractile units in the maintenance of SMC function based on knowledge obtained from mouse models of human disease.
Collapse
|
9
|
Staiculescu MC, Cocciolone AJ, Procknow JD, Kim J, Wagenseil JE. Comparative gene array analyses of severe elastic fiber defects in late embryonic and newborn mouse aorta. Physiol Genomics 2018; 50:988-1001. [PMID: 30312140 PMCID: PMC6293116 DOI: 10.1152/physiolgenomics.00080.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
Elastic fibers provide reversible elasticity to the large arteries and are assembled during development when hemodynamic forces are increasing. Mutations in elastic fiber genes are associated with cardiovascular disease. Mice lacking expression of the elastic fiber genes elastin ( Eln-/-), fibulin-4 ( Efemp2-/-), or lysyl oxidase ( Lox-/-) die at birth with severe cardiovascular malformations. All three genetic knockout models have elastic fiber defects, aortic wall thickening, and arterial tortuosity. However, Eln-/- mice develop arterial stenoses, while Efemp2-/- and Lox-/- mice develop ascending aortic aneurysms. We performed comparative gene array analyses of these three genetic models for two vascular locations and developmental stages to determine differentially expressed genes and pathways that may explain the common and divergent phenotypes. We first examined arterial morphology and wall structure in newborn mice to confirm that the lack of elastin, fibulin-4, or lysyl oxidase expression provided the expected phenotypes. We then compared gene expression levels for each genetic model by three-way ANOVA for genotype, vascular location, and developmental stage. We found three genes upregulated by genotype in all three models, Col8a1, Igfbp2, and Thbs1, indicative of a common response to severe elastic fiber defects in developing mouse aorta. Genes that are differentially regulated by vascular location or developmental stage in all three models suggest mechanisms for location or stage-specific disease pathology. Comparison of signaling pathways enriched in all three models shows upregulation of integrins and matrix proteins involved in early wound healing, but not of mature matrix molecules such as elastic fiber proteins or fibrillar collagens.
Collapse
Affiliation(s)
| | - Austin J Cocciolone
- Department of Biomedical Engineering, Washington University , St. Louis, Missouri
| | - Jesse D Procknow
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| |
Collapse
|
10
|
Wagenseil JE. Bio-chemo-mechanics of thoracic aortic aneurysms. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:50-57. [PMID: 29911202 DOI: 10.1016/j.cobme.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.
Collapse
Affiliation(s)
- Jessica E Wagenseil
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO
| |
Collapse
|
11
|
Burris NS, Hoff BA, Kazerooni EA, Ross BD. Vascular Deformation Mapping (VDM) of Thoracic Aortic Enlargement in Aneurysmal Disease and Dissection. ACTA ACUST UNITED AC 2017; 3:163-173. [PMID: 29124128 PMCID: PMC5675573 DOI: 10.18383/j.tom.2017.00015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thoracic aortic aneurysm is a common and lethal disease that requires regular imaging surveillance to determine timing of surgical repair and prevent major complications such as rupture. Current cross-sectional imaging surveillance techniques, largely based on computed tomography angiography, are focused on measurement of maximal aortic diameter, although this approach is limited to fixed anatomic positions and is prone to significant measurement error. Here we present preliminary results showing the feasibility of a novel technique for assessing change in aortic dimensions, termed vascular deformation mapping (VDM). This technique allows quantification of 3-dimensional changes in the aortic wall geometry through nonrigid coregistration of computed tomography angiography images and spatial Jacobian analysis of aortic deformation. Through several illustrative cases we demonstrate that this method can be used to measure changes in the aortic wall geometry among patients with stable and enlarging thoracic aortic aneurysm and dissection. Furthermore, VDM results yield observations about the presence, distribution, and rate of aortic wall deformation that are not apparent by routine clinical evaluation. Finally, we show the feasibility of superposing patient-specific VDM results on a 3-dimensional aortic model using color 3D printing and discuss future directions and potential applications for the VDM technique.
Collapse
Affiliation(s)
| | - Benjamin A Hoff
- Department of Radiology, University of Michigan, Ann Arbor, MI.,Center for Molecular Imaging, University of Michigan, Ann Arbor, MI
| | | | - Brian D Ross
- Department of Radiology, University of Michigan, Ann Arbor, MI.,Center for Molecular Imaging, University of Michigan, Ann Arbor, MI.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Staiculescu MC, Kim J, Mecham RP, Wagenseil JE. Mechanical behavior and matrisome gene expression in the aneurysm-prone thoracic aorta of newborn lysyl oxidase knockout mice. Am J Physiol Heart Circ Physiol 2017; 313:H446-H456. [PMID: 28550176 PMCID: PMC5582924 DOI: 10.1152/ajpheart.00712.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
Mutations in lysyl oxidase (LOX) are associated with thoracic aortic aneurysm and dissection (TAAD). Mice that do not express Lox (Lox-/- ) die soon after birth and have 60% and 40% reductions in elastin- and collagen-specific cross-links, respectively. LOX inactivation could also change the expression of secreted factors, the structural matrix, and matrix-associated proteins that constitute the aortic matrisome. We hypothesized that absence of Lox will change the mechanical behavior of the aortic wall because of reduced elastin and collagen cross-linking and alter the expression levels of matrisome and smooth muscle cell (SMC) genes in a vascular location-specific manner. Using fluorescence microscopy, pressure myography, and gene set enrichment analysis, we visualized the microarchitecture, quantified the mechanical behavior, and examined matrisome and SMC gene expression from ascending aortas (AAs) and descending aortas (DAs) from newborn Lox+/+ and Lox-/- mice. Even though Lox-/- AAs and DAs have fragmented elastic laminae and disorganized SMCs, the unloaded outer diameter and wall thickness were similar to Lox+/+ AAs and DAs. Lox-/- AAs and DAs have altered opening angles, circumferential stresses, and circumferential stretch ratios; however, only Lox-/- AAs have increased pressurized diameters and tangent moduli. Gene set enrichment analysis showed upregulation of the extracellular matrix (ECM) regulator gene set in Lox-/- AAs and DAs as well as differential expression of secreted factors, collagens, ECM-affiliated proteins, ECM glycoproteins, and SMC cell cycle gene sets that depend on the Lox genotype and vascular location. These results provide insights into the local chemomechanical changes induced by Lox inactivation that may be important for TAAD pathogenesis.NEW & NOTEWORTHY Absence of lysyl oxidase (Lox) causes thoracic aortic aneurysms. The aortic mechanical behavior of Lox-/- mice is consistent with reduced elastin and collagen cross-linking but demonstrates vascular location-specific differences. Lox-/- aortas show upregulation of matrix remodeling genes and location-specific differential expression of other matrix and smooth muscle cell gene sets.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/enzymology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Arterial Pressure
- Biomechanical Phenomena
- Collagen/genetics
- Collagen/metabolism
- Dilatation, Pathologic
- Disease Models, Animal
- Elastin/genetics
- Elastin/metabolism
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Mechanotransduction, Cellular
- Mice, Knockout
- Phenotype
- Protein-Lysine 6-Oxidase/genetics
- Protein-Lysine 6-Oxidase/metabolism
- Stress, Mechanical
- Vascular Stiffness
Collapse
Affiliation(s)
- Marius Catalin Staiculescu
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri; and
| | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri; and
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri; and
| |
Collapse
|
13
|
Kim J, Staiculescu MC, Cocciolone AJ, Yanagisawa H, Mecham RP, Wagenseil JE. Crosslinked elastic fibers are necessary for low energy loss in the ascending aorta. J Biomech 2017; 61:199-207. [PMID: 28778385 DOI: 10.1016/j.jbiomech.2017.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 11/30/2022]
Abstract
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln-/-) or two key proteins (lysyl oxidase, Lox-/-, or fibulin-4, Fbln4-/-) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln-/-, Lox-/-, and Fbln4-/- ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56-97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln-/- aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53-387% in Eln-/-, Lox-/-, and Fbln4-/- aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta.
Collapse
Affiliation(s)
- Jungsil Kim
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States
| | - Marius Catalin Staiculescu
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States
| | - Austin J Cocciolone
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States
| | - Hiromi Yanagisawa
- Life Science Center of Tsukuba Advance Research Alliance, University of Tsukuba, Japan
| | - Robert P Mecham
- Dept. of Cell Biology and Physiology, Washington University, St. Louis, MO, United States
| | - Jessica E Wagenseil
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States.
| |
Collapse
|
14
|
Bultmann-Mellin I, Essers J, van Heijingen PM, von Melchner H, Sengle G, Sterner-Kock A. Function of Ltbp-4L and fibulin-4 in survival and elastogenesis in mice. Dis Model Mech 2016; 9:1367-1374. [PMID: 27585882 PMCID: PMC5117228 DOI: 10.1242/dmm.026005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
LTBP-4L and LTBP-4S are two isoforms of the extracellular matrix protein latent-transforming growth factor beta-binding protein 4 (LTBP-4). The mutational inactivation of both isoforms causes autosomal recessive cutis laxa type 1C (ARCL1C) in humans and an ARCL1C-like phenotype in Ltbp4-/- mice, both characterized by high postnatal mortality and severely affected elastogenesis. However, genetic data in mice suggest isoform-specific functions for Ltbp-4 because Ltbp4S-/- mice, solely expressing Ltbp-4L, survive to adulthood. This clearly suggests a requirement of Ltbp-4L for postnatal survival. A major difference between Ltbp4S-/- and Ltbp4-/- mice is the matrix incorporation of fibulin-4 (a key factor for elastogenesis; encoded by the Efemp2 gene), which is normal in Ltbp4S-/- mice, whereas it is defective in Ltbp4-/- mice, suggesting that the presence of Ltbp-4L might be required for this process. To investigate the existence of a functional interaction between Ltbp-4L and fibulin-4, we studied the consequences of fibulin-4 deficiency in mice only expressing Ltbp-4L. Resulting Ltbp4S-/-;Fibulin-4R/R mice showed a dramatically reduced lifespan compared to Ltbp4S-/- or Fibulin-4R/R mice, which survive to adulthood. This dramatic reduction in survival of Ltbp4S-/-;Fibulin-4R/R mice correlates with severely impaired elastogenesis resulting in defective alveolar septation and distal airspace enlargement in lung, and increased aortic wall thickness with severely fragmented elastic lamellae. Additionally, Ltbp4S-/-;Fibulin-4R/R mice suffer from aortic aneurysm formation combined with aortic tortuosity, in contrast to Ltbp4S-/- or Fibulin-4R/R mice. Together, in accordance with our previous biochemical findings of a physical interaction between Ltbp-4L and fibulin-4, these novel in vivo data clearly establish a functional link between Ltbp-4L and fibulin-4 as a crucial molecular requirement for survival and elastogenesis in mice.
Collapse
Affiliation(s)
- Insa Bultmann-Mellin
- Center for Experimental Medicine, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jeroen Essers
- Department of Molecular Genetics, Cancer Genomics Centre, Erasmus MC, 3015 CN Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus MC, 3015 CN Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Paula M van Heijingen
- Department of Molecular Genetics, Cancer Genomics Centre, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Harald von Melchner
- Department of Molecular Hematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Anja Sterner-Kock
- Center for Experimental Medicine, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|