1
|
Dalvi S, Roll M, Chatterjee A, Kumar LK, Bhogavalli A, Foley N, Arduino C, Spencer W, Reuben-Thomas C, Ortolan D, Pébay A, Bharti K, Anand-Apte B, Singh R. Human iPSC-based disease modeling studies identify a common mechanistic defect and potential therapies for AMD and related macular dystrophies. Dev Cell 2024; 59:3290-3305.e9. [PMID: 39362220 PMCID: PMC11652237 DOI: 10.1016/j.devcel.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Age-related macular degeneration (AMD) and related macular dystrophies (MDs) primarily affect the retinal pigment epithelium (RPE) in the eye. A hallmark of AMD/MDs that drives later-stage pathologies is drusen. Drusen are sub-RPE lipid-protein-rich extracellular deposits, but how drusen forms and accumulates is not known. We utilized human induced pluripotent stem cell (iPSC)-derived RPE from patients with AMD and three distinct MDs to demonstrate that reduced activity of RPE-secreted matrix metalloproteinase 2 (MMP2) contributes to drusen in multiple maculopathies in a genotype-agnostic manner by instigating sterile inflammation and impaired lipid homeostasis via damage-associated molecular pattern molecule (DAMP)-mediated activation of receptor for advanced glycation end-products (RAGE) and increased secretory phospholipase 2-IIA (sPLA2-IIA) levels. Therapeutically, RPE-specific MMP2 supplementation, RAGE-antagonistic peptide, and a small molecule inhibitor of sPLA2-IIA ameliorated drusen accumulation in AMD/MD iPSC-RPE. Ultimately, this study defines a causal role of the MMP2-DAMP-RAGE-sPLA2-IIA axis in AMD/MDs.
Collapse
Affiliation(s)
- Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Michael Roll
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Amit Chatterjee
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Lal Krishan Kumar
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Akshita Bhogavalli
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Nathaniel Foley
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Cesar Arduino
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Whitney Spencer
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Cheyenne Reuben-Thomas
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Davide Ortolan
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bela Anand-Apte
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA.
| |
Collapse
|
2
|
Blascke de Mello MM, Neves VGDO, Parente JM, Pernomian L, de Oliveira IS, Pedersoli CA, Awata WMC, Tirapelli CR, Arantes EC, Tostes RDCA, Schulz R, Castro MMD. Sarcoplasmic reticulum calcium ATPase (SERCA) proteolysis by matrix metalloproteinase-2 contributes to vascular dysfunction in early hypertension. Eur J Pharmacol 2024; 983:176981. [PMID: 39241943 DOI: 10.1016/j.ejphar.2024.176981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
AIMS Hypertension is associated with an increased activity of matrix metalloproteinase (MMP)-2 in the vasculature, which, in turn, proteolyzes extra- and intracellular proteins that lead to vascular dysfunction. The activity of sarcoplasmic reticulum calcium ATPase (SERCA) is decreased in the aortas of hypertensive rats. Increased activity of MMP-2 proteolyzed SERCA in rat heart during ischemia and reperfusion injury, thus impairing cardiac function. Therefore, we examined whether increased activity of MMP-2 in early hypertension contributes to proteolyze SERCA in the aortas, thus leading to maladaptive vascular remodeling and dysfunction. MAIN METHODS Male Sprague-Dawley rats were submitted to two kidney-one clip (2K-1C) or Sham surgery and treated with doxycycline. Systolic blood pressure (SBP) was assessed by tail-cuff plethysmography. After 7 days, aortas were collected for zymography assays, Western blot to SERCA, ATPase activity assay, vascular reactivity, Ki-67 immunofluorescence and hematoxylin/eosin stain. KEY FINDINGS SBP was increased in 2K-1C rats and doxycycline did not reduce it, but decreased MMP-2 activity and prevented SERCA proteolysis in aortas. Cross sectional area, media to lumen ratio and Ki-67 were all increased in the aortas of hypertensive rats and doxycycline decreased Ki-67. In 2K-1C rats, arterial relaxation to acetylcholine was impaired and doxycycline ameliorated it. SIGNIFICANCE doxycycline reduced MMP-2 activity in aortas of 2K-1C rats and prevented proteolysis of SERCA and its dysfunction, thus ameliorating hypertension-induced vascular dysfunction.
Collapse
Affiliation(s)
| | | | | | - Laena Pernomian
- Department of Pharmacology, Ribeirao Preto Medical School, Brazil
| | | | | | - Wanessa Mayumi Carvalho Awata
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, Brazil
| | | | - Richard Schulz
- Departments of Pediatrics and Pharmacology, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Center, T6G 2S2, Edmonton, Canada
| | | |
Collapse
|
3
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Yang X, Zheng L, Huo J, Hu W, Liu B, Fan Q, Zheng W, Wang Q. Combined Analysis of Second- and Third-Generation Transcriptome Sequencing for Gene Characteristics and Identification of Key Splicing Variants in Wound Healing of Ganxi Goat Skin. Animals (Basel) 2024; 14:3085. [PMID: 39518808 PMCID: PMC11544938 DOI: 10.3390/ani14213085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Ganxi goat is a local breed of goat unique to Jiangxi Province, China, named for its primary distribution in the Ganxi region. Ganxi goats are primarily raised through grazing, showing good adaptation to the local humid and hot climate, strong disease resistance, and occupying an important position in the local livestock industry. The skin, as the main barrier of the body, plays an indispensable role in resisting the invasion of external pathogenic factors and has received increasing attention in the medical and scientific fields. In this study, Ganxi goat skin was used as the research subject. Full-length transcriptome sequencing of Ganxi goat skin was performed using PacBio third-generation sequencing technology to supplement and improve the annotation information of the Ganxi goat genome. A combined analysis of second- and third-generation transcriptome sequencing was used to analyze the splicing variant events of hub genes (CDC20, MMP2, TIMP1, and EDN1) and the expression changes in each splicing variant in skin samples on day 0 and day 5 after surgical wounding. The regulatory role of related hub gene splicing variants in wound healing was analyzed. A total of 926,667 full-length non-chimeric sequences were obtained, optimizing the annotation information of 3794 genomic gene loci and identifying 2834 new genes, 256 new LncRNAs, 12,283 alternative splicing events, 549 genes with polyadenylation, and 112 fusion genes. Three splicing variant forms were identified in both the CDC20 and EDN1 genes, seven in MMP2, and two in TIMP1. The expression levels of most splicing variants showed significant changes in the skin samples on days 0 and 5 after wounding, potentially participating in the regulation of wound healing. This study provides fundamental data for the annotation of the goat genome and offers a reference for studying the regulatory mechanisms of wound healing.
Collapse
Affiliation(s)
- Xue Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Lucheng Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China;
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Qingcan Fan
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Wenya Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Qianqian Wang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| |
Collapse
|
5
|
McHill AW, Melanson EL, Wright KP, Depner CM. Circadian misalignment disrupts biomarkers of cardiovascular disease risk and promotes a hypercoagulable state. Eur J Neurosci 2024; 60:5450-5466. [PMID: 39053917 DOI: 10.1111/ejn.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
The circadian system regulates 24-h time-of-day patterns of cardiovascular physiology, with circadian misalignment resulting in adverse cardiovascular risk. Although many proteins in the coagulation-fibrinolysis axis show 24-h time-of-day patterns, it is not understood if these temporal patterns are regulated by circadian or behavioral (e.g., sleep and food intake) cycles, or how circadian misalignment influences these patterns. Thus, we utilized a night shiftwork protocol to analyze circadian versus behavioral cycle regulation of 238 plasma proteins linked to cardiovascular physiology. Six healthy men aged 26.2 ± 5.6 years (mean ± SD) completed the protocol involving two baseline days with 8-h nighttime sleep opportunities (circadian alignment), a transition to shiftwork day, followed by 2 days of simulated night shiftwork with 8-h daytime sleep opportunities (circadian misalignment). Plasma was collected for proteomics every 4 h across 24 h during baseline and during daytime sleep and the second night shift. Cosinor analyses identified proteins with circadian or behavioral cycle-regulated 24-h time-of-day patterns. Five proteins were circadian regulated (plasminogen activator inhibitor-1, angiopoietin-2, insulin-like growth factor binding protein-4, follistatin-related protein-3, and endoplasmic reticulum resident protein-29). No cardiovascular-related proteins showed regulation by behavioral cycles. Within the coagulation pathway, circadian misalignment decreased tissue factor pathway inhibitor, increased tissue factor, and induced a 24-h time-of-day pattern in coagulation factor VII (all FDR < 0.10). Such changes in protein abundance are consistent with changes observed in hypercoagulable states. Our analyses identify circadian regulation of proteins involved in cardiovascular physiology and indicate that acute circadian misalignment could promote a hypercoagulable state, possibly contributing to elevated cardiovascular disease risk among shift workers.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward L Melanson
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth P Wright
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christopher M Depner
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Chowdhury SM, Atz AM, Graham EM, Bandisode VM, Rhodes JF, Nutting AC, Taylor C, Savage A, Hassid M, Kavarana M, Menick D. Low Ventricular Stiffness Is Associated With Suboptimal Outcomes in Patients With a Single Right Ventricle After the Fontan Operation: A Novel Phenotype. J Am Heart Assoc 2024; 13:e035601. [PMID: 39189484 PMCID: PMC11646499 DOI: 10.1161/jaha.124.035601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Despite a rigorous screening process, including cardiac catheterization, a subset of patients with a single right ventricle (SRV) demonstrates suboptimal short-term outcomes after the Fontan operation. The goal of this study was to perform a comprehensive assessment of diastolic function in pre-Fontan patients with an SRV using invasive reference-standard measures and determine their associations with post-Fontan outcomes. METHODS AND RESULTS Children aged 2 to 6 years with SRV physiology undergoing pre-Fontan heart catheterization were recruited prospectively. Patients were divided into those who had an optimal or suboptimal outcome. A suboptimal outcome was defined as length of stay ≥14 days or heart transplant/cardiac death in first year after Fontan. Patients underwent pressure-volume loop analysis using reference-standard methods. The measure of ventricular stiffness, β, was obtained via preload reduction. Cardiac magnetic resonance imaging for extracellular volume and serum draws for matrix metalloproteinase activity were performed. Of 19 patients with an SRV, 9 (47%) had a suboptimal outcome. Mean age was 4.2±0.7 years. Patients with suboptimal outcomes had lower ventricular stiffness (0.021 [0.009-0.049] versus 0.090 [0.031-0.118] mL-1; P=0.02), lower extracellular volume (25% [28%-32%] versus 31% [28%-33%]; P=0.02), and lower matrix metalloproteinase-2 (90 [79-104] versus 108 [79-128] ng/mL; P=0.01) compared with patients with optimal outcomes. The only invasive measure that had an association with suboptimal outcome was β (P=0.038). CONCLUSIONS Patients with an SRV with suboptimal outcome after the Fontan operation had lower ventricular stiffness and evidence of maladaptive extracellular matrix metabolism compared with patients with optimal outcome. This appears to be a novel phenotype that may have important clinical implications and requires further study.
Collapse
Affiliation(s)
- Shahryar M. Chowdhury
- Department of Pediatrics, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - Andrew M. Atz
- Department of Pediatrics, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - Eric M. Graham
- Department of Pediatrics, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - Varsha M. Bandisode
- Department of Pediatrics, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - John F. Rhodes
- Department of Pediatrics, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - Arni C. Nutting
- Department of Pediatrics, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - Carolyn Taylor
- Department of Pediatrics, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - Andrew Savage
- Department of Pediatrics, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - Marc Hassid
- Department of AnesthesiaMedical University of South CarolinaCharlestonSCUSA
| | - Minoo Kavarana
- Department of SurgeryMedical University of South CarolinaCharlestonSCUSA
| | - Donald Menick
- Department of Medicine, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
7
|
Salah A, Bouzid F, Dhouib W, Benmarzoug R, Triki N, Rebai A, Kharrat N. Integrative Bioinformatics Approaches to Uncover Hub Genes and Pathways Involved in Cardiovascular Diseases. Cell Biochem Biophys 2024; 82:2107-2127. [PMID: 38809349 DOI: 10.1007/s12013-024-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Cardiovascular diseases (CVD) represent a significant global health challenge resulting from a complex interplay of genetic, environmental, and lifestyle factors. However, the molecular pathways and genetic factors involved in the onset and progression of CVDs remain incompletely understood. Here, we performed an integrative bioinformatic analysis to highlight specific genes and signaling pathways implicated in the pathogenesis of 80 CVDs. Differentially expressed genes (DEGs) were identified through the integrated analysis of microarray and GWAS datasets. Then, hub genes were identified after gene ontology functional annotation analysis and protein-protein internet (PPI) analysis. In addition, pathways were identified through KEGG and gene ontology enrichment analyses. A total of 821 hub genes related to 80 CVDs were identified, including 135 common and frequent CVD-associated genes. TNF, IL6, VEGFA, and TGFB.1 genes were the central core genes expressed in 50% or more of CVDs, confirming that the inflammation is a key pathological feature of CVDs. Analysis of hub genes by KEGG enrichment revealed predominant enrichment in 201 KEGG pathways, of which the AGE-RAGE signaling pathway in diabetic complications was identified as the common key KEGG implicated in 62 CVDs. In addition, the outcomes showed an overrepresentation in pathways categorized under human diseases, particularly in the subcategories of infectious diseases and cancers, which may be common risk factors for CVDs. In conclusion, this powerful approach for in silico fine-mapping of genes and pathways allowed the identification of determinant hubs genes and pathways implicated in the pathogenesis of CVDs which could be employed in developing more targeted and effective interventions for preventing, diagnosing, and treating CVDs. The function of these hub genes in CVDs needs further exploration to elucidate their biological characteristics.
Collapse
Affiliation(s)
- Awatef Salah
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.
| | - Fériel Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Wala Dhouib
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Benmarzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nesrine Triki
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Najla Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Kazmi I, Afzal M, Almalki WH, S RJ, Alzarea SI, Kumar A, Sinha A, Kukreti N, Ali H, Abida. From oncogenes to tumor suppressors: The dual role of ncRNAs in fibrosarcoma. Pathol Res Pract 2024; 258:155329. [PMID: 38692083 DOI: 10.1016/j.prp.2024.155329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Fibrosarcoma is a challenging cancer originating from fibrous tissues, marked by aggressive growth and limited treatment options. The discovery of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs), has opened new pathways for understanding and treating this malignancy. These ncRNAs play crucial roles in gene regulation, cellular processes, and the tumor microenvironment. This review aims to explore the impact of ncRNAs on fibrosarcoma's pathogenesis, progression, and resistance to treatment, focusing on their mechanistic roles and therapeutic potential. A comprehensive review of literature from databases like PubMed and Google Scholar was conducted, focusing on the dysregulation of ncRNAs in fibrosarcoma, their contribution to tumor growth, metastasis, drug resistance, and their cellular pathway interactions. NcRNAs significantly influence fibrosarcoma, affecting cell proliferation, apoptosis, invasion, and angiogenesis. Their function as oncogenes or tumor suppressors makes them promising biomarkers and therapeutic targets. Understanding their interaction with the tumor microenvironment is essential for developing more effective treatments for fibrosarcoma. Targeting ncRNAs emerges as a promising strategy for fibrosarcoma therapy, offering hope to overcome the shortcomings of existing treatments. Further investigation is needed to clarify specific ncRNAs' roles in fibrosarcoma and to develop ncRNA-based therapies, highlighting the significance of ncRNAs in improving patient outcomes in this challenging cancer.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
9
|
Zarina KZ, Pilmane M. Characterization of Angiogenic, Matrix Remodeling, and Antimicrobial Factors in Preterm and Full-Term Human Umbilical Cords. J Dev Biol 2024; 12:13. [PMID: 38804433 PMCID: PMC11130933 DOI: 10.3390/jdb12020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Little is known about morphogenetic changes in the umbilical cord during the maturation process. Extracellular matrix remodeling, angiogenesis, progenitor activity, and immunomodulation are represented by specific markers; therefore, the aim of this study was to determine the expression of matrix metalloproteinase-2 (MMP2), tissue inhibitor of metalloproteinases-2 (TIMP2), CD34, vascular endothelial growth factor (VEGF), and human β-defensin 2 (HBD2) in preterm and full-term human umbilical cord tissue. METHODS Samples of umbilical cord tissue were obtained from 17 patients and divided into two groups: very preterm and moderate preterm birth umbilical cords; late preterm birth and full-term birth umbilical cords. Routine histology examination was conducted. Marker-positive cells were detected using the immunohistochemistry method. The number of positive structures was counted semi-quantitatively using microscopy. Statistical analysis was carried out using the SPSS Statistics 29 program. RESULTS Extraembryonic mesenchyme cells are the most active cell producers, expressing MMP2, TIMP2, VEGF, and HBD2 at notable levels in preterm and full-term umbilical cord tissue. Statistically significant differences in the expression of CD34, MMP2, and TIMP2 between the two patient groups were found. The expression of VEGF was similar in both patient groups, with the highest number of VEGF-positive cells seen in the extraembryonic mesenchyme. The expression of HBD2 was the highest in the extraembryonic mesenchyme and the amniotic epithelium, where mostly moderate numbers of HBD2-positive cells were detected. CONCLUSIONS Extracellular matrix remodeling in preterm and term umbilical cords is strongly regulated, and tissue factors MMP2 and TIMP2 take part in this process. The expression of VEGF is not affected by the umbilical cord's age; however, individual patient factors can affect the production of VEGF. Numerous CD34-positive cells in the endothelium of the umbilical arteries suggest a significant role of progenitor cells in very preterm and moderate preterm birth umbilical cords. Antimicrobial activity provided by HBD2 is essential and constant in preterm and full-term umbilical cords.
Collapse
Affiliation(s)
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia;
| |
Collapse
|
10
|
Wang A, Dong S, Liu B, Liu D, Zou M, Han Y, Yang L, Wang Y. The role of RUNX1/NF-κB in regulating PVAT inflammation in aortic dissection. Sci Rep 2024; 14:9960. [PMID: 38693222 PMCID: PMC11063189 DOI: 10.1038/s41598-024-60737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
The pathogenesis of aortic dissection (AD), an aortic disease associated with high mortality, involves significant vascular inflammatory infiltration. However, the precise relationship between perivascular adipose tissue (PVAT) and aortic dissection remains incompletely understood. The objective of this study is to investigate the role of PVAT inflammation in the pathogenesis of aortic dissection and identify novel therapeutic targets for this disease. The mouse model of aortic dissection was established in this study through intraperitoneal injection of Ang II and administration of BAPN in drinking water. Additionally, control groups were established at different time points including the 2-week group, 3-week group, and 4-week group. qPCR and immunohistochemistry techniques were employed to detect the expression of inflammatory markers and RUNX1 in PVAT surrounding the thoracic aorta in mice. Additionally, an aortic dissection model was established using RUNX1 knockout mice, and the aforementioned indicators were assessed. The 3T3-L1 cells were induced to differentiate into mature adipocytes in vitro, followed by lentivirus transfection for the knockdown or overexpression of RUNX1. The study aimed to investigate the potential cell-to-cell interactions by co-culturing 3T3-L1 cells with A7r5 or RAW264.7 cells. Subsequently, human aortic PVAT samples were obtained through clinical surgery and the aforementioned indicators were detected. In comparison to the control group, the aortic dissection model group exhibited decreased expression of MMP-2 and NF-κB in PVAT, while TNF-α and RUNX1 expression increased. Suppression of RUNX1 expression resulted in increased MMP-2 and NF-κB expression in PVAT, along with decreased TNF-α expression. Overexpression of RUNX1 upregulated the expression levels of NF-Κb, MMP-2, and TNF-α in adipocytes, whereas knockdown of RUNX1 exerted an opposite effect. Macrophages co-cultured with adipocytes overexpressing RUNX1 exhibited enhanced CD86 expression, while vascular smooth muscle cells co-cultured with these adipocytes showed reduced α-SMA expression. In human samples, there was an increase in both RUNX1 and MMP-2 expression levels, accompanied by a decrease in TNF-α and NF-Κb expression. The presence of aortic dissection is accompanied by evident inflammatory alterations in the PVAT, and this phenomenon appears to be associated with the involvement of RUNX1. It is plausible that the regulation of PVAT's inflammatory changes by RUNX1/NF-κB signaling pathway plays a role in the pathogenesis of aortic dissection.
Collapse
Affiliation(s)
- Ao Wang
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Shengjun Dong
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Baohui Liu
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Dianxiao Liu
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Mingrui Zou
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Yuexin Han
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Lijuan Yang
- Department of Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China.
| | - Yujiu Wang
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China.
| |
Collapse
|
11
|
Kopańko M, Zabłudowska M, Pawlak D, Sieklucka B, Krupa A, Sokołowska K, Ziemińska M, Pawlak K. The Possible Effect of β-Blocker Use on the Circulating MMP-2/TIMP-2 System in Patients with Chronic Kidney Disease on Conservative Treatment. J Clin Med 2024; 13:1847. [PMID: 38610612 PMCID: PMC11012263 DOI: 10.3390/jcm13071847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: The purpose of the study was to determine whether the use of β-adrenoceptor antagonists (β-blockers) can affect metalloproteinase 2 (MMP-2) and its tissue inhibitor (TIMP-2) in patients with chronic kidney disease (CKD) on conservative treatment. Methods: The circulating MMP-2/TIMP-2 system, proinflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the marker of oxidative stress-Cu/Zn superoxide dismutase (Cu/Zn SOD)-were measured in 23 CKD patients treated with β-blockers [β-blockers (+)] and in 27 CKD patients not receiving the above medication [β-blockers (-)]. Results: The levels of MMP-2, TIMP-2, and IL-6 were significantly lower in the β-blockers (+) than in the β-blockers (-) group, whereas Cu/Zn SOD concentrations were not affected by β-blocker use. There was a strong, independent association between MMP-2 and TIMP-2 in both analyzed patient groups. In the β-blockers (+) group, MMP-2 levels were indirectly related to the signs of inflammation, whereas in the β-blockers (-) group, the alterations in the MMP-2/TIMP-2 system were associated with the oxidative stress marker and CKD etiology. Conclusions: This study is the first to suggest that the use of β-blockers was associated with the reduction in IL-6 and the MMP-2/TIMP-2 system in CKD, providing a pharmacological rationale for the use of β-blockers to reduce inflammation and abnormal vascular remodeling in CKD.
Collapse
Affiliation(s)
- Magdalena Kopańko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Magdalena Zabłudowska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Katarzyna Sokołowska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Marta Ziemińska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| |
Collapse
|
12
|
Ter Mors B, Spieler V, Merino Asumendi E, Gantert B, Lühmann T, Meinel L. Bioresponsive Cytokine Delivery Responding to Matrix Metalloproteinases. ACS Biomater Sci Eng 2024; 10:29-37. [PMID: 37102329 DOI: 10.1021/acsbiomaterials.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cytokines are regulated in acute and chronic inflammation, including rheumatoid arthritis (RA) and myocardial infarction (MI). However, the dynamic windows within which cytokine activity/inhibition is desirable in RA and MI change timely and locally during the disease. Therefore, traditional, static delivery regimens are unlikely to meet the idiosyncrasy of these highly dynamic pathophysiological and individual processes. Responsive delivery systems and biomaterials, sensing surrogate markers of inflammation (i.e., matrix metalloproteinases - MMPs) and answering with drug release, may present drug activity at the right time, manner, and place. This article discusses MMPs as surrogate markers for disease activity in RA and MI to clock drug discharge to MMP concentration profiles from MMP-responsive drug delivery systems and biomaterials.
Collapse
Affiliation(s)
- Björn Ter Mors
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valerie Spieler
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eduardo Merino Asumendi
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Benedikt Gantert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| |
Collapse
|
13
|
Boucetta H, Zhang L, Sosnik A, He W. Pulmonary arterial hypertension nanotherapeutics: New pharmacological targets and drug delivery strategies. J Control Release 2024; 365:236-258. [PMID: 37972767 DOI: 10.1016/j.jconrel.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, serious, and incurable disease characterized by high lung pressure. PAH-approved drugs based on conventional pathways are still not exhibiting favorable therapeutic outcomes. Drawbacks like short half-lives, toxicity, and teratogenicity hamper effectiveness, clinical conventionality, and long-term safety. Hence, approaches like repurposing drugs targeting various and new pharmacological cascades and/or loaded in non-toxic/efficient nanocarrier systems are being investigated lately. This review summarizes the status of conventional, repurposed, either in vitro, in vivo, and/or in clinical trials of PAH treatment. In-depth description, discussion, and classification of the new pharmacological targets and nanomedicine strategies with a description of all the nanocarriers that showed promising efficiency in delivering drugs are discussed. Ultimately, an illustration of the different nucleic acids tailored and nanoencapsulated within different types of nanocarriers to restore the pathways affected by this disease is presented.
Collapse
Affiliation(s)
- Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
14
|
Yong J, Wang R, Song F, Wang T. The protective effects of pirfenidone in preventing abdominal aortic aneurysm formation. J Biochem Mol Toxicol 2023; 37:e23514. [PMID: 37691532 DOI: 10.1002/jbt.23514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/07/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
Vascular endothelial growth factor (VEGF)-mediated angiogenesis participates in the initiation and progression of abdominal aortic aneurysm (AAA). Pirfenidone is a compound that has anti-inflammatory and antioxidant properties and suppresses angiogenesis. Pirfenidone targets the extracellular matrix (ECM) and has therapeutic effects on fibrotic diseases. Therefore, we speculated that pirfenidone might have meaningful therapeutic effects in AAA, and the current study was designed to investigate this capacity. An AAA model was constructed in mice using a long-term injection of angiotensin II (Ang II), followed by a 28-day administration of 200 mg/kg/day pirfenidone. Increased maximal external diameter of the abdominal artery, promoted levels of VEGF-A and its receptor VEGF-R2, upregulated matrix metallopeptidases (MMP)-2 and MMP-9, and elevated release of pro-inflammatory cytokines were observed in AAA mice, which were extremely repressed by 200 mg/kg pirfenidone. Human aortic endothelial cells (HAECs) were stimulated with Ang II for 1 day, in the presence or absence of pirfenidone (100 nM). Elevated expression of VEGF-A and VEGF-R2, facilitated proliferation, increased tube formation ability, and upregulated MMP-2 and MMP-9 were observed in Ang II-stimulated HAECs, all of which were significantly rescued by 100 nM pirfenidone. Finally, the elevated levels of myeloid differentiation primary response 88 and phosphorylated nuclear factor-kappa-B subunit p65 observed in Ang II-stimulated HAECs were repressed by pirfenidone. Collectively, pirfenidone alleviated AAA by inhibiting ECM degradation and ameliorating endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Yong
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Rui Wang
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Fubo Song
- Department of Medical Records Room, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Tao Wang
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
15
|
Buckley LF, Agha AM, Dorbala P, Claggett BL, Yu B, Hussain A, Nambi V, Chen LY, Matsushita K, Hoogeveen RC, Ballantyne CM, Shah AM. MMP-2 Associates With Incident Heart Failure and Atrial Fibrillation: The ARIC Study. Circ Heart Fail 2023; 16:e010849. [PMID: 37753653 PMCID: PMC10842537 DOI: 10.1161/circheartfailure.123.010849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND MMP (matrix metalloproteinase)-2 participates in extracellular matrix regulation and may be involved in heart failure (HF), atrial fibrillation (AF), and coronary heart disease. METHODS Among the 4693 ARIC study (Atherosclerosis Risk in Communities) participants (mean age, 75±5 years; 42% women) without prevalent HF, multivariable Cox proportional hazard models were used to estimate associations of plasma MMP-2 levels with incident HF, HF with preserved ejection fraction (≥50%), HF with reduced ejection fraction (<50%), AF, and coronary heart disease. Mediation of the association between MMP-2 and HF was assessed by censoring participants who developed AF or coronary heart disease before HF. Multivariable linear regression models were used to assess associations of MMP-2 with measures of left ventricular and left atrial structure and function. RESULTS Compared with the 3 lower quartiles, the highest MMP-2 quartile associated with greater risk of incident HF overall (adjusted hazard ratio, 1.48 [95% CI, 1.21-1.81]), incident HF with preserved ejection fraction (1.44 [95% CI, 1.07-1.94]), incident heart failure with reduced ejection fraction (1.48 [95% CI, 1.08-2.02]), and incident AF (1.44 [95% CI, 1.18-1.77]) but not incident coronary heart disease (0.97 [95% CI, 0.71-1.34]). Censoring AF attenuated the MMP-2 association with HF with preserved ejection fraction. Higher plasma MMP-2 levels were associated with larger left ventricular end-diastolic volume index, greater left ventricular mass index, higher E/e' ratio, larger left atrial volume index, and worse left atrial reservoir and contractile strains (all P<0.001). CONCLUSIONS Higher plasma MMP-2 levels associate with diastolic dysfunction, left atrial dysfunction, and a higher risk of incident HF and AF. AF is a mediator of MMP-2-associated HF with preserved ejection fraction risk.
Collapse
Affiliation(s)
- Leo F Buckley
- Department of Pharmacy Services (L.F.B.), Brigham and Women's Hospital, Boston, MA
| | - Ali M Agha
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX (A.A., A.H., V.N., R.C.H., C.M.B.)
| | - Pranav Dorbala
- Division of Cardiovascular Medicine (P.D., B.L.C.), Brigham and Women's Hospital, Boston, MA
| | - Brian L Claggett
- Division of Cardiovascular Medicine (P.D., B.L.C.), Brigham and Women's Hospital, Boston, MA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston (B.Y.)
| | - Aliza Hussain
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX (A.A., A.H., V.N., R.C.H., C.M.B.)
| | - Vijay Nambi
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX (A.A., A.H., V.N., R.C.H., C.M.B.)
- Michael E. DeBakey Veterans Affairs Hospital, Houston, TX (V.N.)
| | - Lin Yee Chen
- Division of Cardiovascular Medicine, University of Minnesota, Minneapolis (L.Y.C.)
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M.)
| | - Ron C Hoogeveen
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX (A.A., A.H., V.N., R.C.H., C.M.B.)
| | - Christie M Ballantyne
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX (A.A., A.H., V.N., R.C.H., C.M.B.)
| | - Amil M Shah
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas (A.M.S.)
| |
Collapse
|
16
|
Ribeiro Vitorino T, Ferraz do Prado A, Bruno de Assis Cau S, Rizzi E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem Pharmacol 2023; 215:115684. [PMID: 37459959 DOI: 10.1016/j.bcp.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Hypertension is one of the leading risk factors for the development of heart failure. Despite being a multifactorial disease, in recent years, preclinical and clinical studies suggest strong evidence of the pivotal role of inflammatory cells and cytokines in the remodeling process and cardiac dysfunction. During the heart remodeling, activation of extracellular matrix metalloproteinases (MMPs) occurs, with MMP-2 being one of the main proteases secreted by cardiomyocytes, fibroblasts, endothelial and inflammatory cells in cardiac tissue. In this review, we will address the process of cardiac remodeling and injury induced by the increase in MMP-2 and the main signaling pathways involving cytokines and inflammatory cells in the process of transcriptional, secretion and activation of MMP-2. In addition, an interaction and coordinated action between MMP-2 and inflammation are explored and significant in maintaining the cardiac cycle. These observations suggest that new therapeutic opportunities targeting MMP-2 could be used to reduce inflammatory biomarkers and reduce cardiac damage in hypertension.
Collapse
Affiliation(s)
- Thaís Ribeiro Vitorino
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, UNICAMP, Brazil
| | - Alejandro Ferraz do Prado
- Cardiovascular System Pharmacology and Toxicology, Institute of Biological Sciences, Federal University of Para, UFPA, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, UFMG, Brazil.
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil.
| |
Collapse
|
17
|
Abstract
Matrix metalloproteinases (MMPs) are a class of endopeptidases that are dependent on zinc and facilitate the degradation of extracellular matrix (ECM) proteins, thereby playing pivotal parts in human physiology and pathology. MMPs regulate normal tissue and cellular functions, including tissue development, remodeling, angiogenesis, bone formation, and wound healing. Several diseases, including cancer, inflammation, cardiovascular diseases, and nervous system disorders, have been linked to dysregulated expression of specific MMP subtypes, which can promote tumor progression, metastasis, and inflammation. Various MMP-responsive drug delivery and release systems have been developed by harnessing cleavage activities and overexpression of MMPs in affected regions. Herein, we review the structure, substrates, and physiological and pathological functions of various MMPs and highlight the strategies for designing MMP-responsive nanoparticles to improve the targeting efficiency, penetration, and protection of therapeutic payloads.
Collapse
Affiliation(s)
- Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
18
|
Watling SE, Rhind SG, Warsh J, Green D, McCluskey T, Tong J, Truong P, Chavez S, Richardson JD, Kish SJ, Boileau I. Exploring brain glutathione and peripheral blood markers in posttraumatic stress disorder: a combined [1H]MRS and peripheral blood study. Front Psychiatry 2023; 14:1195012. [PMID: 37333909 PMCID: PMC10272391 DOI: 10.3389/fpsyt.2023.1195012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Oxidative stress has been implicated in psychiatric disorders, including posttraumatic stress disorder (PTSD). Currently, the status of glutathione (GSH), the brain's most abundant antioxidant, in PTSD remains uncertain. Therefore, the current study investigated brain concentrations of GSH and peripheral concentrations of blood markers in individuals with PTSD vs. Healthy Controls (HC). Methods GSH spectra was acquired in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) using MEGA-PRESS, a J-difference-editing acquisition method. Peripheral blood samples were analyzed for concentrations of metalloproteinase (MMP)-9, tissue inhibitors of MMP (TIMP)-1,2, and myeloperoxidase (MPO). Results There was no difference in GSH between PTSD and HC in the ACC (n = 30 PTSD, n = 20 HC) or DLPFC (n = 14 PTSD, n = 18 HC). There were no group differences between peripheral blood markers (P > 0.3) except for (non-significantly) lower TIMP-2 in PTSD. Additionally, TIMP-2 and GSH in the ACC were positively related in those with PTSD. Finally, MPO and MMP-9 were negatively associated with duration of PTSD. Conclusions We do not report altered GSH concentrations in the ACC or DLPFC in PTSD, however, systemic MMPs and MPO might be implicated in central processes and progression of PTSD. Future research should investigate these relationships in larger sample sizes.
Collapse
Affiliation(s)
- Sarah E. Watling
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Jerry Warsh
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Duncan Green
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tina McCluskey
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Peter Truong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - J. Don Richardson
- The MacDonald Franklin Operational Stress Injury (OSI) Research Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- St. Joseph's London Operational Stress Injury (OSI), Parkwood Institute, St. Joseph's Health Care, London, ON, Canada
| | - Stephen J. Kish
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Liu Y, Wang K, Yang S, Xue G, Lu L. Mulberry extract upregulates cholesterol efflux and inhibits p38 MAPK-NLRP3-mediated inflammation in foam cells. Food Sci Nutr 2023; 11:3141-3153. [PMID: 37324843 PMCID: PMC10261774 DOI: 10.1002/fsn3.3296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 10/29/2023] Open
Abstract
The accumulation of foam cells in arterial intima and the accompanied chronic inflammation are considered major causes of neoatherosclerosis and restenosis. However, both the underlying mechanism and effective treatment for the disease are yet to be uncovered. In this study, we combined transcriptome profiling of restenosis artery tissue and bioinformatic analysis to reveal that NLRP3 inflammasome is markedly upregulated in restenosis and that several restenosis-related DEGs are also targets of mulberry extract, a natural dietary supplement used in traditional Chinese medicine. We demonstrated that mulberry extract suppresses the formation of ox-LDL-induced foam cells, possibly by upregulating the cholesterol efflux genes ABCA1 and ABCG1 to inhibit intracellular lipid accumulation. In addition, mulberry extract dampens NLRP3 inflammasome activation by stressing the MAPK signaling pathway. These findings unveil the therapeutic value of mulberry extract in neoatherosclerosis and restenosis treatment by regulating lipid metabolism and inflammatory response of foam cells.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Vascular Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Kefan Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Liming Lu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
20
|
Bajpai AK, Gu Q, Orgil BO, Xu F, Torres-Rojas C, Zhao W, Chen C, Starlard-Davenport A, Jones B, Lebeche D, Towbin JA, Purevjav E, Lu L, Zhang W. Cardiac copper content and its relationship with heart physiology: Insights based on quantitative genetic and functional analyses using BXD family mice. Front Cardiovasc Med 2023; 10:1089963. [PMID: 36818345 PMCID: PMC9931904 DOI: 10.3389/fcvm.2023.1089963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Copper (Cu) is essential for the functioning of various enzymes involved in important cellular and physiological processes. Although critical for normal cardiac function, excessive accumulation, or deficiency of Cu in the myocardium is detrimental to the heart. Fluctuations in cardiac Cu content have been shown to cause cardiac pathologies and imbalance in systemic Cu metabolism. However, the genetic basis underlying cardiac Cu levels and their effects on heart traits remain to be understood. Representing the largest murine genetic reference population, BXD strains have been widely used to explore genotype-phenotype associations and identify quantitative trait loci (QTL) and candidate genes. METHODS Cardiac Cu concentration and heart function in BXD strains were measured, followed by QTL mapping. The candidate genes modulating Cu homeostasis in mice hearts were identified using a multi-criteria scoring/filtering approach. RESULTS Significant correlations were identified between cardiac Cu concentration and left ventricular (LV) internal diameter and volumes at end-diastole and end-systole, demonstrating that the BXDs with higher cardiac Cu levels have larger LV chamber. Conversely, cardiac Cu levels negatively correlated with LV posterior wall thickness, suggesting that lower Cu concentration in the heart is associated with LV hypertrophy. Genetic mapping identified six QTLs containing a total of 217 genes, which were further narrowed down to 21 genes that showed a significant association with cardiac Cu content in mice. Among those, Prex1 and Irx3 are the strongest candidates involved in cardiac Cu modulation. CONCLUSION Cardiac Cu level is significantly correlated with heart chamber size and hypertrophy phenotypes in BXD mice, while being regulated by multiple genes in several QTLs. Prex1 and Irx3 may be involved in modulating Cu metabolism and its downstream effects and warrant further experimental and functional validations.
Collapse
Affiliation(s)
- Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Buyan-Ochir Orgil
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Carolina Torres-Rojas
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chen Chen
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron Jones
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jeffrey A. Towbin
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States
- Pediatric Cardiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
21
|
Huang JJ, Wang CW, Liu Y, Zhang YY, Yang NB, Yu YC, Jiang Q, Song QF, Qian GQ. Role of the extracellular matrix in COVID-19. World J Clin Cases 2023; 11:73-83. [PMID: 36687194 PMCID: PMC9846981 DOI: 10.12998/wjcc.v11.i1.73] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) has spread globally, with over 500 million cases and 6 million deaths to date. COVID-19 is associated with a systemic inflammatory response and abnormalities of the extracellular matrix (ECM), which is also involved in inflammatory storms. Upon viral infection, ECM proteins are involved in the recruitment of inflammatory cells and interference with target organ metabolism, including in the lungs. Additionally, serum biomarkers of ECM turnover are associated with the severity of COVID-19 and may serve as potential targets. Consequently, understanding the expression and function of ECM, particularly of the lung, during severe acute respiratory syndrome of the coronavirus 2 infection would provide valuable insights into the mechanisms of COVID-19 progression. In this review, we summarize the current findings on ECM, such as hyaluronic acid, matrix metalloproteinases, and collagen, which are linked to the severity and inflammation of COVID-19. Some drugs targeting the extracellular surface have been effective. In the future, these ECM findings could provide novel perspectives on the pathogenesis and treatment of COVID-19.
Collapse
Affiliation(s)
- Jia-Jia Huang
- School of Medicine, Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Chu-Wen Wang
- School of Medicine, Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Ying Liu
- School of Medicine, Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Ying-Ying Zhang
- School of Medicine, Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Nai-Bin Yang
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Yu-Chun Yu
- Department of Endocrinology, Ningbo Ninth Hospital, Ningbo 315000, Zhejiang Province, China
| | - Qi Jiang
- Department of Digestive, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Qi-Fa Song
- Medical Data Center, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Guo-Qing Qian
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
22
|
Sanyal S, Amin SA, Banerjee P, Gayen S, Jha T. A review of MMP-2 structures and binding mode analysis of its inhibitors to strategize structure-based drug design. Bioorg Med Chem 2022; 74:117044. [DOI: 10.1016/j.bmc.2022.117044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
|
23
|
Liu SF, Nambiar Veetil N, Li Q, Kucherenko MM, Knosalla C, Kuebler WM. Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening. Front Immunol 2022; 13:959209. [PMID: 36275740 PMCID: PMC9579293 DOI: 10.3389/fimmu.2022.959209] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease that arises from multiple etiologies and ultimately leads to right heart failure as the predominant cause of morbidity and mortality. In patients, distinct inflammatory responses are a prominent feature in different types of PH, and various immunomodulatory interventions have been shown to modulate disease development and progression in animal models. Specifically, PH-associated inflammation comprises infiltration of both innate and adaptive immune cells into the vascular wall of the pulmonary vasculature—specifically in pulmonary vascular lesions—as well as increased levels of cytokines and chemokines in circulating blood and in the perivascular tissue of pulmonary arteries (PAs). Previous studies suggest that altered hemodynamic forces cause lung endothelial dysfunction and, in turn, adherence of immune cells and release of inflammatory mediators, while the resulting perivascular inflammation, in turn, promotes vascular remodeling and the progression of PH. As such, a vicious cycle of endothelial activation, inflammation, and vascular remodeling may develop and drive the disease process. PA stiffening constitutes an emerging research area in PH, with relevance in PH diagnostics, prognostics, and as a therapeutic target. With respect to its prognostic value, PA stiffness rivals the well-established measurement of pulmonary vascular resistance as a predictor of disease outcome. Vascular remodeling of the arterial extracellular matrix (ECM) as well as vascular calcification, smooth muscle cell stiffening, vascular wall thickening, and tissue fibrosis contribute to PA stiffening. While associations between inflammation and vascular stiffening are well-established in systemic vascular diseases such as atherosclerosis or the vascular manifestations of systemic sclerosis, a similar connection between inflammatory processes and PA stiffening has so far not been addressed in the context of PH. In this review, we discuss potential links between inflammation and PA stiffening with a specific focus on vascular calcification and ECM remodeling in PH.
Collapse
Affiliation(s)
- Shao-Fei Liu
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Netra Nambiar Veetil
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
| | - Qiuhua Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Mariya M. Kucherenko
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- *Correspondence: Mariya M. Kucherenko,
| | - Christoph Knosalla
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- German Center for Lung Research (DZL), Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Batko-Szwaczka A, Francuz T, Kosowska A, Cogiel A, Dudzińska-Griszek J, Wilczyński K, Hornik B, Janusz-Jenczeń M, Włodarczyk I, Wnuk B, Szołtysek J, Durmała J, Dulawa J, Szewieczek J. Predictors of Adverse Outcomes in Healthy Aging Adults: Coronary Artery Disease, Lower Educational Status and Higher P-Selectin Levels. Clin Interv Aging 2022; 17:1173-1185. [PMID: 35957925 PMCID: PMC9362850 DOI: 10.2147/cia.s363881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Societal aging – as a global demographic phenomenon – shows no indication of abating. As a result, the problem of age-associated disability and related long-term care is emerging as a major public health challenge. It is important that methods for identifying older adults at risk of adverse outcomes are implemented early. Methods The study group consisted of 145 individuals, 44.1% women, who were randomized from community-dwelling 60–74-year-old adults. A comprehensive geriatric assessment was supplemented with Fried frailty phenotype evaluation and blood tests (including adhesion molecules, matrix metalloproteinases and neurotrophic factors). A follow-up by phone call was made for at least 3 years after the initial examination. Composite endpoint (CE) included falls, hospitalization, institutionalization and death. Results Mean study group age was 66.5 ± 4.1 years (\documentclass[12pt]{minimal}
\usepackage{wasysym}
\usepackage[substack]{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage[mathscr]{eucal}
\usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{}
\DeclareFontShape{T1}{linotext}{m}{n} {linotext }{}
\DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext}
\begin{document}
$$\overline {\rm{X}} {\rm{ \pm SD}}$$
\end{document}) and mean number of diseases was 3.7 ± 2.2. Functional status of the subjects was good, as indicated by high Barthel Index scores of 99.1 ± 2.4, MMSE scores of 29.0 ±1.5 and no frailty case. During a three-year follow-up, 71 participants (49.0%) experienced any CE-events. The Wilcoxon-Gehan test indicates that a higher probability of three-year CE completion was associated with an age >65 years (P = 0.006), coronary artery disease (CAD) (P = 0.008), 6-Minute Walk Test <432 m (P = 0.034), serum glucose >120 mg/dL (P = 0.047), serum cortisol >10 μg/dL (P = 0.011), leptin ≥15 ng/mL (P = 0.018), P-selectin ≥23 ng/mL (P = 0.006) and GDNF ≥20 pg/mL (P = 0.004). CAD (OR = 3.64, 95% CI = 1.53−8.69, P = 0.004), educational status (OR = 0.87, 95% CI = 0.77−0.98, P = 0.022) and P-selectin levels (OR = 1.07, 95% CI = 1.02−1.13, P = 0.013) were independent measures predicting three-year CE occurrence in multivariate logistic regression analysis adjusted for clinical and functional measures, and blood tests. Conclusion Coronary artery disease, poorer lower educational status and higher P-selectin levels were predictive of adverse outcomes in the community-dwelling healthy-aging early-old adults during three-year follow-up.
Collapse
Affiliation(s)
- Agnieszka Batko-Szwaczka
- Department of Geriatrics, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Correspondence: Agnieszka Batko-Szwaczka, Department of Geriatrics, Faculty of Health Sciences in Katowice, Medical University of Silesia, Poniatowskiego 15, Katowice, 40-055, Poland, Tel +48323598239, Fax +48322059483, Email
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kosowska
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Cogiel
- Department of Geriatrics, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Dudzińska-Griszek
- Department of Geriatrics, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Wilczyński
- Department of Geriatrics, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Beata Hornik
- Department of Internal Nursing, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Janusz-Jenczeń
- Department of Internal Nursing, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Iwona Włodarczyk
- Department of Internal Nursing, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bartosz Wnuk
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Szołtysek
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jacek Durmała
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jan Dulawa
- Department of Internal Medicine and Metabolic Diseases, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jan Szewieczek
- Department of Geriatrics, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
25
|
Gonçalves PR, Nascimento LD, Gerlach RF, Rodrigues KE, Prado AF. Matrix Metalloproteinase 2 as a Pharmacological Target in Heart Failure. Pharmaceuticals (Basel) 2022; 15:ph15080920. [PMID: 35893744 PMCID: PMC9331741 DOI: 10.3390/ph15080920] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) is an acute or chronic clinical syndrome that results in a decrease in cardiac output and an increase in intracardiac pressure at rest or upon exertion. The pathophysiology of HF is heterogeneous and results from an initial harmful event in the heart that promotes neurohormonal changes such as autonomic dysfunction and activation of the renin-angiotensin-aldosterone system, endothelial dysfunction, and inflammation. Cardiac remodeling occurs, which is associated with degradation and disorganized synthesis of extracellular matrix (ECM) components that are controlled by ECM metalloproteinases (MMPs). MMP-2 is part of this group of proteases, which are classified as gelatinases and are constituents of the heart. MMP-2 is considered a biomarker of patients with HF with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF). The role of MMP-2 in the development of cardiac injury and dysfunction has clearly been demonstrated in animal models of cardiac ischemia, transgenic models that overexpress MMP-2, and knockout models for this protease. New research to minimize cardiac structural and functional alterations using non-selective and selective inhibitors for MMP-2 demonstrates that this protease could be used as a possible pharmacological target in the treatment of HF.
Collapse
Affiliation(s)
- Pricila Rodrigues Gonçalves
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (P.R.G.); (L.D.N.); (K.E.R.)
| | - Lisandra Duarte Nascimento
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (P.R.G.); (L.D.N.); (K.E.R.)
| | - Raquel Fernanda Gerlach
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo (FORP/USP), Ribeirao Preto 14040-904, SP, Brazil;
| | - Keuri Eleutério Rodrigues
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (P.R.G.); (L.D.N.); (K.E.R.)
| | - Alejandro Ferraz Prado
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (P.R.G.); (L.D.N.); (K.E.R.)
- Correspondence:
| |
Collapse
|
26
|
Simões G, Pereira T, Caseiro A. Matrix metaloproteinases in vascular pathology. Microvasc Res 2022; 143:104398. [PMID: 35671836 DOI: 10.1016/j.mvr.2022.104398] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022]
Abstract
Vascular diseases are the main cause of morbidity and mortality. The vascular extracellular matrix (ECM) is essential in mechanical support, also regulating the cellular behavior fundamental to vascular function and homeostasis. Vascular remodeling is an adaptive response to various physiological and pathological changes and is associated with aging and vascular diseases. The aim of this review is provide a general overview of the involvement of MMPs in the pathogenesis of vascular diseases, namely, arterial hypertension, atherosclerosis, aortic aneurysms and myocardial infarction. The change in the composition of the ECM by matrix metalloproteinases (MMPs) generates a pro-inflammatory microenvironment that modifies the phenotypes of endothelial cells and vascular smooth muscle cells. They play a central role in morphogenesis, tissue repair and remodeling in response to injury, e.g., after myocardial infarction, and in progression of diseases such as atherosclerosis. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension and aneurysm formation. MMPs are regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio generally determines the extent of ECM protein degradation and tissue remodeling. Studies are currently focused on improving the diagnostic and prognostic value of MMPs involved in the pathogenic process, increasing their therapeutic potential, and monitoring the disease. New selective MMP inhibitors may improve the specificity of these inhibitors, target specific MMPs in relevant pathological conditions and mitigate some of the side effects.
Collapse
Affiliation(s)
- Gonçalo Simões
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Telmo Pereira
- LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Politécnico de Coimbra, ESTeSC, Fisiologia Clínica, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Armando Caseiro
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Unidade I&D Química-Física Molecular, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.
| |
Collapse
|
27
|
Pawar V, Shastri LA, Gudimani P, Joshi S, Kumbar VM, Sunagar V. Rational design, synthesis and SAR study of novel warfarin analogous of 4-hydroxy coumarin-beta-aryl propanoic acid derivatives as potent anti-inflammatory agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Song Y, Jia H, Hua Y, Wu C, Li S, Li K, Liang Z, Wang Y. The Molecular Mechanism of Aerobic Exercise Improving Vascular Remodeling in Hypertension. Front Physiol 2022; 13:792292. [PMID: 35295586 PMCID: PMC8919036 DOI: 10.3389/fphys.2022.792292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/13/2022] [Indexed: 11/26/2022] Open
Abstract
The treatment and prevention of hypertension has been a worldwide medical challenge. The key pathological hallmark of hypertension is altered arterial vascular structure and function, i.e., increased peripheral vascular resistance due to vascular remodeling. The aim of this review is to elucidate the molecular mechanisms of vascular remodeling in hypertension and the protective mechanisms of aerobic exercise against vascular remodeling during the pathological process of hypertension. The main focus is on the mechanisms of oxidative stress and inflammation in the pathological condition of hypertension and vascular phenotypic transformation induced by the trilaminar structure of vascular endothelial cells, smooth muscle cells and extracellular matrix, and the peripheral adipose layer of the vasculature. To further explore the possible mechanisms by which aerobic exercise ameliorates vascular remodeling in the pathological process of hypertension through anti-proliferative, anti-inflammatory, antioxidant and thus inhibiting vascular phenotypic transformation. It provides a new perspective to reveal the intervention targets of vascular remodeling for the prevention and treatment of hypertension and its complications.
Collapse
Affiliation(s)
- Yinping Song
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Hao Jia
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Yijie Hua
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Chen Wu
- School of Health and Sports, Xi’an Fanyi University, Xi’an, China
| | - Sujuan Li
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Kunzhe Li
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Zhicheng Liang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Youhua Wang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
- *Correspondence: Youhua Wang,
| |
Collapse
|
29
|
Gao Y, Liu Z, Liu Y. Cisplatin combined with capecitabine-induced chemotherapy for local nasopharyngeal carcinoma can improve the quality of life and reduce toxic and side effects. World J Surg Oncol 2021; 19:280. [PMID: 34535176 PMCID: PMC8449458 DOI: 10.1186/s12957-021-02393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background This study was designed to probe into the effect of cisplatin combined with capecitabine on nasopharyngeal carcinoma (NPC). Methods A total of 136 NPC patients treated for the first time in our hospital from January 2016 to March 2017 were collected and divided into two groups: A and B. Among them, 66 in group A were treated with cisplatin intravenous drip, while 70 in group B were treated with capecitabine on the basis of group A. The efficacy, toxic and side effects, and quality of life of the two groups were observed. Results The short-term efficacy of group B was better than that of group A (p<0.05). The toxic and side effects of group B were lower than that of group A (p<0.05). The quality of life in group B was higher than that in group A (p<0.05). Conclusions Cisplatin combined with capecitabine-induced chemotherapy for local NPC can improve the quality of life and reduce the toxic and side effects.
Collapse
Affiliation(s)
- Ying Gao
- Department of Otorhinolaryngology, Affiliated Hospital of Yan'an University, Yan'an, 716000, Shanxi Province, China
| | - Zhe Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000, Shanxi Province, China
| | - Yiting Liu
- Department of Medical Oncology, Affiliated Hospital of Yan'an University, 43 North Street, Baota District, Yan'an, 716000, Shanxi Province, China.
| |
Collapse
|
30
|
D Avila-Mesquita C, Couto AES, Campos LCB, Vasconcelos TF, Michelon-Barbosa J, Corsi CAC, Mestriner F, Petroski-Moraes BC, Garbellini-Diab MJ, Couto DMS, Jordani MC, Ferro D, Sbragia L, Joviliano EE, Evora PR, Carvalho Santana RD, Martins-Filho OA, Polonis K, Menegueti MG, Ribeiro MS, Auxiliadora-Martins M, Becari C. MMP-2 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients. Biomed Pharmacother 2021; 142:112067. [PMID: 34449310 PMCID: PMC8376652 DOI: 10.1016/j.biopha.2021.112067] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
Respiratory symptoms are one of COVID-19 manifestations, and the metalloproteinases (MMPs) have essential roles in the lung physiology. We sought to characterize the plasmatic levels of matrix metalloproteinase-2 and 9 (MMP-2 and MMP-9) in patients with severe COVID-19 and to investigate an association between plasma MMP-2 and MMP-9 levels and clinical outcomes and mortality. MMP-2 and MMP-9 levels in plasma from patients with COVID-19 treated in the ICU (COVID-19 group) and Control patients were measured with the zymography. The study groups were matched for age, sex, hypertension, diabetes, BMI, and obesity profile. MMP-2 levels were lower and MMP-9 levels were higher in a COVID-19 group (p < 0.0001) compared to Controls. MMP-9 levels in COVID-19 patients were not affected by comorbidity such as hypertension or obesity. MMP-2 levels were affected by hypertension (p < 0.05), but unaffected by obesity status. Notably, hypertensive COVID-19 patients had higher MMP-2 levels compared to the non-hypertensive COVID-19 group, albeit still lower than Controls (p < 0.05). No association between MMP-2 and MMP-9 plasmatic levels and corticosteroid treatment or acute kidney injury was found in COVID-19 patients. The survival analysis showed that COVID-19 mortality was associated with increased MMP-2 and MMP-9 levels. Age, hypertension, BMI, and MMP-2 and MMP-9 were better predictors of mortality during hospitalization than SAPS3 and SOFA scores at hospital admission. In conclusion, a significant association between MMP-2 and MMP-9 levels and COVID-19 was found. Notably, MMP-2 and MMP-9 levels predicted the risk of in-hospital death suggesting possible pathophysiologic and prognostic roles.
Collapse
Affiliation(s)
- Carolina D Avila-Mesquita
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ariel E S Couto
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ligia C B Campos
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tauana F Vasconcelos
- Division of Intensive Care, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jessyca Michelon-Barbosa
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos A C Corsi
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiola Mestriner
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno C Petroski-Moraes
- Division of Intensive Care, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria J Garbellini-Diab
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel M S Couto
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria C Jordani
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Denise Ferro
- Division of Cardiac Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lourenço Sbragia
- Division of Pediatrics Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edwaldo E Joviliano
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo R Evora
- Division of Cardiac Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo de Carvalho Santana
- Division of Infectious Diseases, Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Katarzyna Polonis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mayra G Menegueti
- Ribeirão Preto Nurse Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauricio S Ribeiro
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Auxiliadora-Martins
- Division of Intensive Care, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Christiane Becari
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
31
|
Metabolic syndrome and the plasma proteome: from association to causation. Cardiovasc Diabetol 2021; 20:111. [PMID: 34016094 PMCID: PMC8138979 DOI: 10.1186/s12933-021-01299-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background The metabolic syndrome (MetS), defined by the simultaneous clustering of cardio-metabolic risk factors, is a significant worldwide public health burden with an estimated 25% prevalence worldwide. The pathogenesis of MetS is not entirely clear and the use of molecular level data could help uncover common pathogenic pathways behind the observed clustering. Methods Using a highly multiplexed aptamer-based affinity proteomics platform, we examined associations between plasma proteins and prevalent and incident MetS in the KORA cohort (n = 998) and replicated our results for prevalent MetS in the HUNT3 study (n = 923). We applied logistic regression models adjusted for age, sex, smoking status, and physical activity. We used the bootstrap ranking algorithm of least absolute shrinkage and selection operator (LASSO) to select a predictive model from the incident MetS associated proteins and used area under the curve (AUC) to assess its performance. Finally, we investigated the causal effect of the replicated proteins on MetS using two-sample Mendelian randomization. Results Prevalent MetS was associated with 116 proteins, of which 53 replicated in HUNT. These included previously reported proteins like leptin, and new proteins like NTR domain-containing protein 2 and endoplasmic reticulum protein 29. Incident MetS was associated with 14 proteins in KORA, of which 13 overlap the prevalent MetS associated proteins with soluble advanced glycosylation end product-specific receptor (sRAGE) being unique to incident MetS. The LASSO selected an eight-protein predictive model with an (AUC = 0.75; 95% CI = 0.71–0.79) in KORA. Mendelian randomization suggested causal effects of three proteins on MetS, namely apolipoprotein E2 (APOE2) (Wald-Ratio = − 0.12, Wald-p = 3.63e−13), apolipoprotein B (APOB) (Wald-Ratio = − 0.09, Wald-p = 2.54e−04) and proto-oncogene tyrosine-protein kinase receptor (RET) (Wald-Ratio = 0.10, Wald-p = 5.40e−04). Conclusions Our findings offer new insights into the plasma proteome underlying MetS and identify new protein associations. We reveal possible casual effects of APOE2, APOB and RET on MetS. Our results highlight protein candidates that could potentially serve as targets for prevention and therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01299-2.
Collapse
|
32
|
Sarker H, Haimour A, Toor R, Fernandez-Patron C. The Emerging Role of Epigenetic Mechanisms in the Causation of Aberrant MMP Activity during Human Pathologies and the Use of Medicinal Drugs. Biomolecules 2021; 11:biom11040578. [PMID: 33920915 PMCID: PMC8071227 DOI: 10.3390/biom11040578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Matrix metalloproteinases (MMPs) cleave extracellular matrix proteins, growth factors, cytokines, and receptors to influence organ development, architecture, function, and the systemic and cell-specific responses to diseases and pharmacological drugs. Conversely, many diseases (such as atherosclerosis, arthritis, bacterial infections (tuberculosis), viral infections (COVID-19), and cancer), cholesterol-lowering drugs (such as statins), and tetracycline-class antibiotics (such as doxycycline) alter MMP activity through transcriptional, translational, and post-translational mechanisms. In this review, we summarize evidence that the aforementioned diseases and drugs exert significant epigenetic pressure on genes encoding MMPs, tissue inhibitors of MMPs, and factors that transcriptionally regulate the expression of MMPs. Our understanding of human pathologies associated with alterations in the proteolytic activity of MMPs must consider that these pathologies and their medicinal treatments may impose epigenetic pressure on the expression of MMP genes. Whether the epigenetic mechanisms affecting the activity of MMPs can be therapeutically targeted warrants further research.
Collapse
|
33
|
Hardy E, Fernandez-Patron C. Targeting MMP-Regulation of Inflammation to Increase Metabolic Tolerance to COVID-19 Pathologies: A Hypothesis. Biomolecules 2021; 11:biom11030390. [PMID: 33800947 PMCID: PMC7998259 DOI: 10.3390/biom11030390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Many individuals infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) develop no or only mild symptoms, but some can go on onto develop a spectrum of pathologies including pneumonia, acute respiratory distress syndrome, respiratory failure, systemic inflammation, and multiorgan failure. Many pathogens, viral and non-viral, can elicit these pathologies, which justifies reconsidering whether the target of therapeutic approaches to fight pathogen infections should be (a) the pathogen itself, (b) the pathologies elicited by the pathogen interaction with the human host, or (c) a combination of both. While little is known about the immunopathology of SARS-CoV-2, it is well-established that the above-mentioned pathologies are associated with hyper-inflammation, tissue damage, and the perturbation of target organ metabolism. Mounting evidence has shown that these processes are regulated by endoproteinases (particularly, matrix metalloproteinases (MMPs)). Here, we review what is known about the roles played by MMPs in the development of COVID-19 and postulate a mechanism by which MMPs could influence energy metabolism in target organs, such as the lung. Finally, we discuss the suitability of MMPs as therapeutic targets to increase the metabolic tolerance of the host to damage inflicted by the pathogen infection, with a focus on SARS-CoV-2.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center for Molecular Immunology, 16040 Havana, Cuba
- Correspondence: (E.H.); (C.F.-P.)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence: (E.H.); (C.F.-P.)
| |
Collapse
|
34
|
Huang T, Liu S, Liu R, Pan B, Wang W. Inhibition of miR-188-5p Suppresses Progression of Experimental Abdominal Aortic Aneurysms. J Cardiovasc Pharmacol 2021; 77:107-114. [PMID: 33105327 DOI: 10.1097/fjc.0000000000000915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/29/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT Abdominal aortic aneurysm (AAA) is an aging-related degenerative disease. miR-188-5p was reported to induce cell senescence and play a key role in aging-related disease. Therefore, in this study, we investigated miR-188-5p expression during progression in experimental AAAs. Furthermore, we investigated whether inhibition of miR-188-5p could suppress AAA progression. Experimental AAAs were created in 9-12-week-old male C57BL/6J mice by transient intra-aortic infusion of porcine pancreatic elastase. Expression of miR-188-5p levels were assessed in aneurysmal and control aortae during the progression of aneurysm. For inhibition experiment, miR-188 inhibiting group mice were injected with AAV2-miR188-5p sponge through tail vein and control group mice were injected with AAV2-CMV-GFP. Influences on experimental AAA progression were assessed by measurements of aortic diameter and histopathologic analysis at sacrifice. Meanwhile, immunohistochemistry and fluorescence in situ hybridization were used to determine the inflammatory cells infiltration and colocalization of miR-188-5p in aortic sections. Expression of miR-188-5p is upregulated during progression of AAA. Importantly, miR-188-5p inhibition treatment prevented enlargement of experimental aneurysms. Meanwhile, miR-188-5p inhibition regimens attenuated medial elastin degradation, smooth muscle cell depletion, and mural angiogenesis and the accumulation of macrophages, T cells, and angiogenesis. Furthermore, colocalization of miR188-5p with CD68 and CD3 was observed, which suggest miR-188-5p was expressed mainly in infiltrated macrophages and T cells. Expression of miR-188-5p is increased in experimental AAAs. Treatment with miR-188-5p inhibition limits experimental AAA progression, with histologic evidence of reduced neovessels and attenuated mural leukocyte infiltration. These findings underscore the potential significance of miR-188-5p in aneurysm pathogenesis and as a target for suppression of AAA disease.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- CD3 Complex/metabolism
- Chemotaxis, Leukocyte
- Disease Models, Animal
- Disease Progression
- Down-Regulation
- Genetic Therapy
- Macrophages
- Male
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- T-Lymphocytes/metabolism
- Mice
Collapse
Affiliation(s)
- Tingting Huang
- Departments of Vascular Surgery; and
- Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Liu
- Departments of Vascular Surgery; and
| | - Rui Liu
- Departments of Vascular Surgery; and
| | | | - Wei Wang
- Departments of Vascular Surgery; and
| |
Collapse
|
35
|
Olichwier A, Balatskyi VV, Wolosiewicz M, Ntambi JM, Dobrzyn P. Interplay between Thyroid Hormones and Stearoyl-CoA Desaturase 1 in the Regulation of Lipid Metabolism in the Heart. Int J Mol Sci 2020; 22:ijms22010109. [PMID: 33374300 PMCID: PMC7796080 DOI: 10.3390/ijms22010109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1), an enzyme that is involved in the biosynthesis of monounsaturated fatty acids, induces the reprogramming of cardiomyocyte metabolism. Thyroid hormones (THs) activate both lipolysis and lipogenesis. Many genes that are involved in lipid metabolism, including Scd1, are regulated by THs. The present study used SCD1 knockout (SCD1−/−) mice to test the hypothesis that THs are important factors that mediate the anti-steatotic effect of SCD1 downregulation in the heart. SCD1 deficiency decreased plasma levels of thyroid-stimulating hormone and thyroxine and the expression of genes that regulate intracellular TH levels (i.e., Slc16a2 and Dio1-3) in cardiomyocytes. Both hypothyroidism and SCD1 deficiency affected genomic and non-genomic TH pathways in the heart. SCD1 deficiency is known to protect mice from genetic- or diet-induced obesity and decrease lipid content in the heart. Interestingly, hypothyroidism increased body adiposity and triglyceride and diacylglycerol levels in the heart in SCD1−/− mice. The accumulation of triglycerides in cardiomyocytes in SCD1−/− hypothyroid mice was caused by the activation of lipogenesis, which likely exceeded the upregulation of lipolysis and fatty acid oxidation. Lipid accumulation was also observed in the heart in wildtype hypothyroid mice compared with wildtype control mice, but this process was related to a reduction of triglyceride lipolysis and fatty acid oxidation. We also found that simultaneous SCD1 and deiodinase inhibition increased triglyceride content in HL-1 cardiomyocytes, and this process was related to the downregulation of lipolysis. Altogether, the present results suggest that THs are an important part of the mechanism of SCD1 in cardiac lipid utilization and may be involved in the upregulation of energetic metabolism that is associated with SCD1 deficiency.
Collapse
Affiliation(s)
- Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - Volodymyr V. Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.O.); (V.V.B.); (M.W.)
- Correspondence:
| |
Collapse
|
36
|
Taha HR, Al-Sawalha NA, Alzoubi KH, Khabour OF. Effect of E-Cigarette aerosol exposure on airway inflammation in a murine model of asthma. Inhal Toxicol 2020; 32:503-511. [PMID: 33297792 DOI: 10.1080/08958378.2020.1856238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The popularity of electronic cigarettes (E-Cigs) smoking is increasing worldwide including patients with asthma. In this study, the effects of E-Cigs aerosol exposure on airway inflammation in an allergen-driven murine model of asthma were investigated. MATERIALS AND METHODS Balb/c mice were randomly assigned to; control group (received fresh air, Ovalbumin (Ova) sensitization and saline challenge), E-Cig group (received E-Cig aerosol, Ova sensitization, and saline challenge), Ova S/C group (received fresh air, Ova sensitization and Ova challenge) and E-Cig + Ova S/C group. Bronchoalveolar lavage fluid (BALF) and lung tissue were evaluated for inflammatory cells and inflammatory mediators, respectively. RESULTS Exposure to E-Cig aerosol significantly increased the number of all types of inflammatory cells in BALF (p < 0.05). Further, E-Cig aerosol reduced levels of transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-2 in lung tissue homogenate (p < 0.05). Combined E-Cig aerosol and Ova S/C increased the airway recruitment of inflammatory cells, especially neutrophils, eosinophils, and lymphocytes (p < 0.05), increased the level of interleukin (IL)-13, and reduced the level of TGF-β1 (p < 0.05). CONCLUSIONS E-Cig aerosol exposure induced airway inflammation in both control mice and allergen-driven murine model of asthma. The inflammatory response induced by E-Cig was slightly higher in allergen-driven murine model of asthma than in healthy animals.
Collapse
Affiliation(s)
- Huda R Taha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Omar F Khabour
- Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
37
|
The relationship between periodontal status and rheumatoid arthritis - systematic review. Reumatologia 2020; 58:236-242. [PMID: 32921831 PMCID: PMC7477472 DOI: 10.5114/reum.2020.98436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 01/14/2023] Open
Abstract
There have been numerous publications investigating the relationship between periodontitis (PD) and rheumatoid arthritis (RA) so far. This publication presents the common risk factors for the development of PD and RA. The major impact of the pathological bacterial factor and cigarette smoking with chronic inflammation playing the key role in both diseases has been confirmed by numerous studies in various populations over the years. More research focuses nowadays also on the role of improper diet and obesity. Pathophysiological pathways, such as increased concentration of proinflammatory cytokines, indirectly affecting the cardiovascular complications and coagulation disorders, which has an impact on function disorders of tissue metalloproteinase inhibitors and the plasminogen activation system, were also researched. This systematic review of current literature has shown numerous discrepancies in previous analyses and the need for further detailed research on the relationship between periodontal status and RA.
Collapse
|
38
|
Chen JM, Chen PY, Lin CC, Hsieh MC, Lin JT. Antimetastatic Effects of Sesamin on Human Head and Neck Squamous Cell Carcinoma through Regulation of Matrix Metalloproteinase-2. Molecules 2020; 25:molecules25092248. [PMID: 32397656 PMCID: PMC7249112 DOI: 10.3390/molecules25092248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Sesamin is a lignin present in sesame oil from the bark of Zanthoxylum spp. Sesamin reportedly has anticarcinogenic potential and exerts anti-inflammatory effects on several tumors. Hypothesis/Purpose: However, the effect of sesamin on metastatic progression in human head and neck squamous carcinoma (HNSCC) remains unknown in vitro and in vivo; hence, we investigated the effect of sesamin on HNSCC cells in vitro. Methods and Results: Sesamin-treated human oral cancer cell lines FaDu, HSC-3, and Ca9-22 were subjected to a wound-healing assay. Furthermore, Western blotting was performed to assess the effect of sesamin on the expression levels of matrix metalloproteinase (MMP)-2 and proteins of the MAPK signaling pathway, including p-ERK1/2, P-p38, and p-JNK1/2. In addition, we investigated the association between MMP-2 expression and the MAPK pathway in sesamin-treated oral cancer cells. Sesamin inhibited cell migration and invasion in FaDu, Ca9-22, and HSC-3 cells and suppressed MMP-2 at noncytotoxic concentrations (0 to 40 μM). Furthermore, sesamin significantly reduced p38 MAPK and JNK phosphorylation in a dose-dependent manner in FaDu and HSC-3 cells. Conclusions: These results indicate that sesamin suppresses the migration and invasion of HNSCC cells by regulating MMP-2 and is thus a potential antimetastatic agent for treating HNSCC.
Collapse
Affiliation(s)
- Jian-Ming Chen
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Pei-Yin Chen
- Department of Recreation and Holistic Wellness, MingDao University, Changhua 523, Taiwan;
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (M.-C.H.); (J.-T.L.); Tel.: +886-4-7238595 (J.-T.L.); Fax: +886-4-7232942 (J.-T.L.)
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence: (M.-C.H.); (J.-T.L.); Tel.: +886-4-7238595 (J.-T.L.); Fax: +886-4-7232942 (J.-T.L.)
| |
Collapse
|
39
|
The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediators Inflamm 2020; 2020:8635158. [PMID: 32454796 PMCID: PMC7222606 DOI: 10.1155/2020/8635158] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix metalloproteinases (MMPs) are a group of proteins that activate substrates by enzymatic cleavage and, on the basis of their activities, have been demonstrated to play a role in ageing. Thus, in order to gain insight into the pathophysiology of ageing and to identify new markers of longevity, we analysed the activity levels of MMP-2 and MMP-9 in association with some relevant haematochemical parameters in a Sicilian population, including long-living individuals (LLIs, ≥95 years old). A cohort of 154 healthy subjects (72 men and 82 women) of different ages (age range 20-112) was recruited. The cohort was divided into five subgroups: the first group with subjects less than 40 years old, the second group ranging from 40 to 64 years old, the third group ranging from 65 to 89 years old, the fourth group ranging from 90 to 94 years old, and the fifth group with subjects more than 95 years old. A relationship was observed between LLIs and MMP-2, but not between LLIs and MMP-9. However, in the LLI group, MMP-2 and MMP-9 values were significantly correlated. Furthermore, in LLIs, we found a positive correlation of MMP-2 with the antioxidant catabolite uric acid and a negative correlation with the inflammatory marker C-reactive protein. Finally, in LLIs MMP-9 values correlated directly both with cholesterol and with low-density lipoproteins. On the whole, our data suggest that the observed increase of MMP-2 in LLIs might play a positive role in the attainment of longevity. This is the first study that shows that serum activity of MMP-2 is increased in LLIs as compared to younger subjects. As far as we are concerned, it is difficult to make wide-ranging conclusions/assumptions based on these observations in view of the relatively small sample size of LLIs. However, this is an important starting point. Larger-scale future studies will be required to clarify these findings including the link with other systemic inflammatory and antioxidant markers.
Collapse
|
40
|
Tan F, Chen X, Zhang H, Yuan J, Sun C, Xu F, Huang L, Zhang X, Guan H, Chen Z, Wang C, Fan S, Zeng L, Ma X, Ye W, He W, Lu P, Petritis B, Huang RP, Yang Z. Differences in serum proteins in traditional Chinese medicine constitutional population: Analysis and verification. J Leukoc Biol 2020; 108:547-557. [PMID: 32248572 DOI: 10.1002/jlb.6vma0220-663rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
Traditional Chinese medicine assigns individuals into different categories called "constitutions" to help guide the clinical treatment according to subjective physiologic, psychologic analyses, large-scale clinical observations, and epidemiologic studies. To further explore more objective expressions of constitutions, antibody microarrays were used to analyze the serologic protein profiles of two different constitutions, a balanced (or healthy) constitution (BC) and the dampness constitution (DC) comprising phlegm-dampness and damp-heat constitutions. The profiles of changing constitutions across time were also analyzed. Nineteen differentially expressed proteins between the two groups were identified, with known biologic functions involved in immunity and inflammation. This proteomic study may provide a biologic explanation why the BC is different than the dampness constitution.
Collapse
Affiliation(s)
- Fei Tan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Xinyan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huihua Zhang
- South China Biochip Research Center, Guangzhou, China.,RayBiotech, Inc., Guangzhou, China
| | - Jiamin Yuan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huahua Guan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Chen Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Shaoyi Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Liling Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| | - Xiaoming Ma
- The 8th People's Hospital of Nanhai District, Foshan, China
| | - Weicheng Ye
- The 8th People's Hospital of Nanhai District, Foshan, China
| | - Weitong He
- The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, China
| | - Peixia Lu
- Xiqiao town Community Health Service Center, Foshan, China
| | | | - Ruo-Pan Huang
- South China Biochip Research Center, Guangzhou, China.,RayBiotech, Inc., Guangzhou, China.,RayBiotech Life, Inc., Peachtree Corners, Georgia, USA
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou, China
| |
Collapse
|
41
|
Medeiros NI, Gomes JAS, Fiuza JA, Sousa GR, Almeida EF, Novaes RO, Rocha VLS, Chaves AT, Dutra WO, Rocha MOC, Correa-Oliveira R. MMP-2 and MMP-9 plasma levels are potential biomarkers for indeterminate and cardiac clinical forms progression in chronic Chagas disease. Sci Rep 2019; 9:14170. [PMID: 31578449 PMCID: PMC6775161 DOI: 10.1038/s41598-019-50791-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
One of the major challenges in chronic Chagas disease is to understand the mechanisms that predict the clinical evolution from asymptomatic to severe cardiac clinical forms. Our cohort consisted of twenty-eight Chagas disease patients followed for twenty years. Plasma levels of MMP-2 and MMP-9 gelatinases and TIMPs were evaluated by multiplexed immunoassay at two points in time with an average interval of six years. MMP-2 plasma levels, but not MMP-9, increased in cardiac patients over time. TIMP-1 levels diminished in cardiac patients, while TIMP-3 dropped in asymptomatic patients in the course of the evaluated interval. An inversion of time lines was observed relative to the clinical asymptomatic and cardiac forms for MMP-2. Receiver Operating Characteristic (ROC) curve analysis identified MMP-2 as a biomarker to distinguish asymptomatic from cardiac clinical forms, while MMP-9 is a biomarker that segregates infected from non-infected patients. We have pointed out that MMP-2 and MMP-9 together can predict clinical evolution in Chagas disease. MMP-2 was suggested as a biomarker for fibrosis replacement in early remodeling and a sensitive predictor for initial changes in asymptomatic patients that may evolve into the cardiac clinical form. MMP-9 seems to be a biomarker for late fibrosis and severe cardiac remodeling in cardiac patients.
Collapse
Affiliation(s)
- Nayara I Medeiros
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil.,Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana A S Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Jacqueline A Fiuza
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Giovane R Sousa
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eliane F Almeida
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata O Novaes
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Virgínia L S Rocha
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana T Chaves
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walderez O Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais - INCT-DT, Belo Horizonte, Minas Gerais, Brazil
| | - Manoel O C Rocha
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Correa-Oliveira
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais - INCT-DT, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
42
|
Cook R, Sarker H, Fernandez-Patron C. Pathologies of matrix metalloproteinase-2 underactivity: a perspective on a neglected condition 1. Can J Physiol Pharmacol 2018; 97:486-492. [PMID: 30457883 DOI: 10.1139/cjpp-2018-0525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A member of the matrix metalloproteinase family, matrix metalloproteinase-2 (MMP-2, gelatinase A), has been extensively studied for its role in both normal physiology and pathological processes. Whereas most research efforts in recent years have investigated the pathologies associated with MMP-2 overactivity, the pathological mechanisms elicited by MMP-2 underactivity are less well understood. Here, we distinguish between 2 states and describe their causes: (i) MMP-2 deficiency (complete loss of MMP-2 activity) and (ii) MMP-2 insufficiency (defined as MMP-2 activity below baseline levels). Further, we review the biology of MMP-2, summarizing the current literature on MMP-2 underactivity in both mice and humans, and describe research being conducted by our lab towards improving our understanding of the pathological mechanisms elicited by MMP-2 deficiency/insufficiency. We think that this research could stimulate the discovery of new therapeutic approaches for managing pathologies associated with MMP-2 underactivity. Moreover, similar concepts could apply to other members of the matrix metalloproteinase family.
Collapse
Affiliation(s)
- Ryan Cook
- a Department of Biochemistry, Faculty of Medicine and Dentistry, 3-19 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Hassan Sarker
- a Department of Biochemistry, Faculty of Medicine and Dentistry, 3-19 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carlos Fernandez-Patron
- b Department of Biochemistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, 3-19 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|