1
|
Li T, Thoen ZE, Applebaum JM, Khalil RA. Menopause-related changes in vascular signaling by sex hormones. J Pharmacol Exp Ther 2025; 392:103526. [PMID: 40184819 DOI: 10.1016/j.jpet.2025.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/24/2025] [Indexed: 04/07/2025] Open
Abstract
Cardiovascular disease (CVD), such as hypertension and coronary artery disease, involves pathological changes in vascular signaling, function, and structure. Vascular signaling is regulated by multiple intrinsic and extrinsic factors that influence endothelial cells, vascular smooth muscle, and extracellular matrix. Vascular function is also influenced by environmental factors including diet, exercise, and stress, as well as genetic background, sex differences, and age. CVD is more common in adult men and postmenopausal women than in premenopausal women. Specifically, women during menopausal transition, with declining ovarian function and production of estrogen (E2) and progesterone, show marked increase in the incidence of CVD and associated vascular dysfunction. Mechanistic research suggests that E2 and E2 receptor signaling have beneficial effects on vascular function including vasodilation, decreased blood pressure, and cardiovascular protection. Also, the tangible benefits of E2 supplementation in improving menopausal symptoms have prompted clinical trials of menopausal hormone therapy (MHT) in CVD, but the results have been inconsistent. The inadequate benefits of MHT in CVD could be attributed to the E2 type, dose, formulation, route, timing, and duration as well as menopausal changes in E2/E2 receptor vascular signaling. Other factors that could affect the responsiveness to MHT are the integrated hormonal milieu including gonadotropins, progesterone, and testosterone, vascular health status, preexisting cardiovascular conditions, and menopause-related dysfunction in the renal, gastrointestinal, endocrine, immune, and nervous systems. Further analysis of these factors should enhance our understanding of menopause-related changes in vascular signaling by sex hormones and provide better guidance for management of CVD in postmenopausal women. SIGNIFICANCE STATEMENT: Cardiovascular disease is more common in adult men and postmenopausal women than premenopausal women. Earlier observations of vascular benefits of menopausal hormone therapy did not materialize in randomized clinical trials. Further examination of the cardiovascular effects of sex hormones in different formulations and regimens, and the menopausal changes in vascular signaling would help to adjust the menopausal hormone therapy protocols in order to enhance their effectiveness in reducing the risk and the management of cardiovascular disease in postmenopausal women.
Collapse
Affiliation(s)
- Tao Li
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Zachary E Thoen
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jessica M Applebaum
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Toivonen E, Sikkinen J, Salonen A, Kärkkäinen O, Koistinen V, Klåvus A, Meuronen T, Heini T, Maltseva A, Niku M, Jääskeläinen T, Laivuori H. Metabolic profiles of meconium in preeclamptic and normotensive pregnancies. Metabolomics 2025; 21:21. [PMID: 39863780 PMCID: PMC11762436 DOI: 10.1007/s11306-025-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn. OBJECTIVES To compare meconium metabolome of infants from PE and normotensive pregnancies. METHODS A cohort of preeclamptic parturients and normotensive controls were recruited in Tampere University Hospital during 2019-2022. Meconium was sampled and its metabolome analyzed using liquid chromatography- mass spectrometry in 48 subjects in each group. RESULTS Differences in abundances of 1263 compounds, of which 19 could be annotated, were detected between the two groups. Several acylcarnitines, androsterone sulfate, three bile acids, amino acid derivatives (phenylacetylglutamine, epsilon-(gamma-glutamyl)lysine and N-(phenylacetyl)glutamic acid), as well as caffeine and paraxanthine were lower in the PE group compared to the control group. Urea and progesterone were higher in the PE group. CONCLUSION PE is associated with alterations in the meconium metabolome of infants. The differing abundances of several metabolites show alterations in the interaction between the fetoplacental unit and mother in PE, but whether they are a cause or an effect of the disorder remains to be further investigated.
Collapse
Affiliation(s)
- Elli Toivonen
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland.
| | - Jutta Sikkinen
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Kärkkäinen
- Afekta Technologies Ltd., Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Tuomas Heini
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arina Maltseva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, Helsinki, Finland
| |
Collapse
|
3
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
4
|
Hetherington K, Thomas J, Nicholls SJ, Barsha G, Bubb KJ. Unique cardiometabolic factors in women that contribute to modified cardiovascular disease risk. Eur J Pharmacol 2024; 984:177031. [PMID: 39369878 DOI: 10.1016/j.ejphar.2024.177031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Major risk factors of cardiovascular disease (CVD) include hypertension, obesity, diabetes mellitus and metabolic syndrome; all of which are considered inflammatory conditions. Women are disproportionately affected by inflammatory conditions, with sex differences emerging as early as adolescence. Hormonal fluctuations associated with reproductive events such as menarche, pregnancy and menopause, are hypothesized to promote a pro-inflammatory state in women. Moreover, women who have experienced inflammatory-type conditions such as polycystic ovarian syndrome (PCOS), gestational diabetes or pre-eclampsia, have a cardiometabolic phenotype that pre-disposes to increased risk of myocardial infarction, stroke and coronary heart disease. Women with no notable CVD risk factors are often relatively protected from CVD pre-menopause; but overtake men in risk of major cardiovascular events when the cardiovascular protective effects of oestrogen begin to wane. Sex differences and female-specific factors have long been considered challenging to study and this has led to an underrepresentation of females in clinical trials and lack of female-specific data from pre-clinical studies. However, there is now a clear prerogative to include females at all stages of research, despite inherent complexities and potential variability in data. This review explores recent advancements in our understanding of CVD in women. We summarise the underlying factors unique to women that can promote CVD risk factors, ultimately contributing to CVD burden and the emerging therapies aimed to combat this.
Collapse
Affiliation(s)
- Kara Hetherington
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia
| | - Jordyn Thomas
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia
| | - Stephen J Nicholls
- Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia
| | - Giannie Barsha
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia
| | - Kristen J Bubb
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
5
|
Goyette S, Mishra T, Raza F, Naqvi Z, Khan S, Khan A, Igman P, Bhat MS. Menstruation-Related Angina-The Wee Hours. Int J Angiol 2024; 33:229-236. [PMID: 39502351 PMCID: PMC11534467 DOI: 10.1055/s-0044-1782602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Literature reveals two kinds of menstruation-related anginas-cardiac syndrome X (CSX) and catamenial angina. CSX generally occurs in perimenopausal or postmenopausal women; catamenial angina affects females from puberty to menopause with existing/preexisting or predisposed to coronary artery disease. CSX involves recurring anginal-type retrosternal chest pains during exercise or rest with no significant findings on angiogram. Catamenial angina is menstruation-associated recurrent nonexertional left-sided chest pain alongside diaphoresis, hot flushes, and persistent lethargy. Pathophysiology of both anginas revolve around decreased levels of estrogen. Estrogen is known to act via genomic and nongenomic pathways on cardiomyocytes, endothelial cells, and smooth muscle cells to exert its cardioprotective effect. These cardioprotective effects could be lost during the postovulation phase and at the end of menstruation as well as during perimenopause or menopause owing to the decreased levels of estrogen. Evaluation should begin with a history and physical examination and focus on noninvasive tests such as exercise tolerance test, electrocardiogram, and echocardiogram. Reducing symptoms that cause discomfort and improving quality of life should be the main goal in management. Nitrates along with β blockers and analgesics for pain are the main pharmacologic modalities. Exercise training, smoking cessation, weight loss, and dietary changes are nonpharmacological modalities. Proper awareness and effective communication with patients or caregivers can lead to early diagnosis and treatment initiation.
Collapse
Affiliation(s)
- Sandy Goyette
- American University School of Medicine Aruba, Oranjestad, Aruba
| | - Tulika Mishra
- Department of Microbiology and Immunology, American University School of Medicine Aruba, Oranjestad, Aruba
| | - Farah Raza
- American University School of Medicine Aruba, Oranjestad, Aruba
| | - Zahra Naqvi
- American University School of Medicine Aruba, Oranjestad, Aruba
| | - Sarah Khan
- American University School of Medicine Aruba, Oranjestad, Aruba
| | - Abrar Khan
- Department of Anatomy and Dean of Basic Sciences, American University School of Medicine Aruba, Oranjestad, Aruba
| | - Pamphil Igman
- Department of Preventive Medicine and Biostatistics, American University School of Medicine Aruba, Oranjestad, Aruba
| | - Malpe Surekha Bhat
- Department of Biochemistry and Molecular Biology and Basic Medical Research, American University School of Medicine Aruba, Oranjestad, Aruba
| |
Collapse
|
6
|
Bhullar SK, Rabinovich-Nikitin I, Kirshenbaum LA. Oral hormonal contraceptives and cardiovascular risks in females. Can J Physiol Pharmacol 2024; 102:572-584. [PMID: 38781602 DOI: 10.1139/cjpp-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Oral hormonal contraception (OHC) is a widely employed method in females for the prevention of unintended pregnancies, as well as for the treatment of menstrual disorders, endometriosis, and polycystic ovarian syndrome. However, it is believed that with OHCs use, some females may have higher risk of cardiovascular diseases, such as hypertension, diabetes, myocardial infarction, thrombosis, and heart failure. Although such risks are infrequently detected in healthy young females with the use of oral contraceptives, slightly elevated risks of cardiovascular diseases have been observed among reproductive-aged healthy females. However, prolonged use of OHC has also been claimed to have protective cardiac effects and may contribute to reduced risk of cardiovascular disease. In fact, the debate on whether OHC administration increases the risk of cardiovascular diseases has been ongoing with inconsistent and controversial viewpoints. Nevertheless, a great deal of work has been carried out to understand the relationship between OHC use and the occurrence of cardiovascular risk in females who use OHC for preventing the unwanted pregnancy or treatment of other disorders. Therefore, in this review we summarize the most recent available evidence regarding the association between the use of oral hormonal contraceptives and the risk for cardiovascular disease in females who are using OHC to prevent unintended pregnancy.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Inna Rabinovich-Nikitin
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lorrie A Kirshenbaum
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Mohanty S, Batabyal S, Idigo C, Narcisse D, Kim S, Al-Saad H, Carlson M, Tchedre K, Dibas A. Engineered sensor actuator modulator as aqueous humor outflow actuator for gene therapy of primary open-angle glaucoma. J Transl Med 2024; 22:791. [PMID: 39198903 PMCID: PMC11350963 DOI: 10.1186/s12967-024-05581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Glaucoma, a blinding eye disease with optic neuropathy, is usually associated with elevated intraocular pressure (IOP). The currently available pharmacological and surgical treatments for glaucoma have significant limitations and side effects, which include systemic reactions to medications, patient non-compliance, eye infections, surgical device failure, and damage to the eye. Here, we present Sensor-Actuator-Modulator (SAM), an engineered double mutant version of the bacterial stretch-activated mechanosensitive channel of large conductance (MscL) that directly senses tension in the membrane lipid bilayer of cells and in response, transiently opens its large nonspecific pore to release cytoplasmic fluid. The heterologously expressed mechanosensitive SAM channel acts as a tension-activated pressure release valve in trabeculocytes. In the trabecular meshwork (TM), SAM is activated by membrane stretch caused by elevated IOP. We have identified several SAM variants that are activated at physiologically relevant pressures. Using this barogenetic technology, we have demonstrated that SAM is functional in cultured TM cells, and successfully transduced in vivo in TM cells by use of AAV2/8. Further, it is effective in enhancing aqueous humor outflow facility leading to lowering the IOP in a mouse model of ocular hypertension.
Collapse
Affiliation(s)
| | - Subrata Batabyal
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Chinenye Idigo
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Darryl Narcisse
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Sanghoon Kim
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Houssam Al-Saad
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Michael Carlson
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Kissaou Tchedre
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Adnan Dibas
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| |
Collapse
|
8
|
Kielb J, Saffak S, Weber J, Baensch L, Shahjerdi K, Celik A, Farahat N, Riek S, Chavez-Talavera O, Grandoch M, Polzin A, Kelm M, Dannenberg L. Transformation or replacement - Effects of hormone therapy on cardiovascular risk. Pharmacol Ther 2024; 254:108592. [PMID: 38286163 DOI: 10.1016/j.pharmthera.2024.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024]
Abstract
Hormone therapy (HT) is important and frequently used both regarding replacement therapy (HRT) and gender affirming therapy (GAHT). While HRT has been effective in addressing symptoms related to hormone shortage, several side effects have been described. In this context, there are some studies that show increased cardiovascular risk. However, there are also studies reporting protective aspects of HT. Nevertheless, the exact impact of HT on cardiovascular risk and the underlying mechanisms remain poorly understood. This article explores the relationship between diverse types of HT and cardiovascular risk, focusing on mechanistic insights of the underlying hormones on platelet and leukocyte function as well as on effects on endothelial and adipose tissue cells.
Collapse
Affiliation(s)
- Julia Kielb
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Süreyya Saffak
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Jessica Weber
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Leonard Baensch
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Khatereh Shahjerdi
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Aylin Celik
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Nora Farahat
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Sally Riek
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Oscar Chavez-Talavera
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany.
| |
Collapse
|
9
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
10
|
Blankfield RP. Is fluid retention a cardiovascular risk factor? Clin Hemorheol Microcirc 2024; 88:277-288. [PMID: 39302357 PMCID: PMC11492017 DOI: 10.3233/ch-242128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Endothelial dysfunction, the earliest manifestation of atherosclerosis, can be initiated by both biochemicals and biomechanical forces. Atherosclerosis occurs predominantly at arterial branch points, arterial bifurcations and the curved segments of great arteries. These are the regions that blood flows turbulently. Turbulence promotes endothelial dysfunction by reducing shear stress upon endothelial cells. The endothelial glycocalyx mediates the effect of shear stress upon the endothelium. A mathematical analysis of cardiovascular hemodynamics demonstrates that fluid retention increases turbulence of blood flow. While there is no empirical data confirming this relationship, fluid retention is associated with adverse cardiovascular events. Every medical condition that causes fluid retention is associated with increased risk of both atherosclerotic cardiovascular disease and venous thromboembolic disease. In addition, most medications that cause fluid retention are associated with increased adverse cardiovascular effects. Calcium channel blockers (CCBs) and pioglitazone are exceptions to this generalization. Even though data regarding CCBs and pioglitazone contradict the hypothesis that fluid retention is a cardiovascular risk factor, these medications have favorable cardiovascular properties which may outweigh the negative effect of fluid retention. Determining whether or not fluid retention is a cardiovascular risk factor would require empirical data demonstrating a relationship between fluid retention and turbulence of blood flow. While this issue should be relevant to cardiovascular researchers, clinicians and patients, it is especially pertinent to the pharmaceutical industry. Four-dimensional magnetic resonance imaging and vector flow Doppler ultrasound have the capability to quantify turbulence of blood flow. These technologies could be utilized to settle the matter.
Collapse
Affiliation(s)
- Robert P. Blankfield
- Department of Family Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
11
|
Abstract
Endothelial cells are important constituents of blood vessels and play a critical role in vascular homeostasis. They do not only control the exchanges between the blood and the surrounding tissues, but are also essential in regulating blood flow, modulating immune-cell trafficking and controlling vascular growth and repair. Endothelial dysfunction leads to cardiovascular diseases and is characterized by deficiency in secretion of vasodilator molecules, elevated reactive oxygen species (ROS), expression of adhesion molecules and excretion of proinflammatory cytokines. The sex hormones, estrogens, androgens and progestogens, regulate endothelial functions. Because cardiovascular disease risk increases after menopause, it is believed that female hormones, estrogens and progestogens promote endothelial cell health and function whereas androgens, the male hormones, might be detrimental. However, as illustrated in the present review, the picture might not be that simple. In addition, sex influences endothelial cell physiology independently of sex hormones but at genetic level.
Collapse
Affiliation(s)
- Jerome Robert
- University Hospital of Zurich, Institute of Clinical Chemistry, Wagistrasse 14, 8952, Schlieren, Switzerland.
| |
Collapse
|
12
|
Yassaghi Y, Jeddi S, Yousefzadeh N, Kashfi K, Ghasemi A. Long-term inorganic nitrate administration protects against myocardial ischemia-reperfusion injury in female rats. BMC Cardiovasc Disord 2023; 23:411. [PMID: 37605135 PMCID: PMC10441752 DOI: 10.1186/s12872-023-03425-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The favorable effects of nitrate against myocardial ischemia-reperfusion injury (MIRI) have primarily focused on male rats and in short term. Here we determine the impact of long-term nitrate intervention on baseline cardiac function and the resistance to MIRI in female rats. METHODS Female Wistar rats were randomly divided into untreated and nitrate-treated (100 mg/L sodium nitrate in drinking water for 9 months) groups (n = 14/group). At intervention end, levels of serum progesterone, nitric oxide metabolites (NOx), heart NOx concentration, and mRNA expressions of NO synthase isoforms (NOS), i.e., endothelial (eNOS), neuronal (nNOS), and inducible (iNOS), were measured. Isolated hearts were exposed to ischemia, and cardiac function indices (CFI) recorded. When the ischemia-reperfusion (IR) period ended, infarct size, NO metabolites, eNOS, nNOS, and iNOS expression were measured. RESULTS Nitrate-treated rats had higher serum progesterone (29.8%, P = 0.013), NOx (31.6%, P = 0.035), and higher heart NOx (60.2%, P = 0.067), nitrite (131%, P = 0.018), and eNOS expression (200%, P = 0.005). Nitrate had no significant effects on baseline CFI but it increased recovery of left ventricular developed pressure (LVDP, 19%, P = 0.020), peak rate of positive (+ dp/dt, 16%, P = 0.006) and negative (-dp/dt, 14%, P = 0.014) changes in left ventricular pressure and decreased left ventricular end-diastolic pressure (LVEDP, 17%, P < 0.001) and infarct size (34%, P < 0.001). After the IR, the two groups had significantly different heart nitrite, nitrate, NOx, and eNOS and iNOS mRNA expressions. CONCLUSIONS Long-term nitrate intervention increased the resistance to MIRI in female rats; this was associated with increased heart eNOS expression and circulating progesterone before ischemia and blunting ischemia-induced increased iNOS and decreased eNOS after MIRI.
Collapse
Affiliation(s)
- Younes Yassaghi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran.
| |
Collapse
|
13
|
PCSK9 Promotes Endothelial Dysfunction During Sepsis Via the TLR4/MyD88/NF-κB and NLRP3 Pathways. Inflammation 2023; 46:115-128. [PMID: 35930089 DOI: 10.1007/s10753-022-01715-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Endothelial dysfunction often accompanies sepsis. We aimed to explore the role of PCSK9 in septic endothelial dysfunction. Sepsis was induced by lipopolysaccharide (LPS) treatment of human umbilical vein endothelial cells (HUVECs) in vitro and cecal ligation and puncture (CLP) surgery in mice in vivo. Evolocumab (EVC) and Pep 2-8, PCSK9 inhibitors, were subsequently used to determine the role of PCSK9 in sepsis-induced endothelial dysfunction in vitro and in vivo, respectively. In addition, the TLR4 agonist, Kdo2-Lipid A ammonium (KLA), was used to determine the related mechanism. Protein expression of eNOS, VE-cadherin, PCSK9, TLR4, MyD88, p-p65, p65, NLRP3, ASC, and caspase-1 p20 in mice aortas and HUVECs was measured by western blotting, while mRNA expression of TNFα, IL-1β, and IL-18 was determined by qRT-PCR. The level of inflammatory cytokines of mouse aortas was visualized by immunohistochemistry. Vasodilation of the aorta was detected by vascular reactivity experiments. The 96-h survival rate after CLP was assessed. Our findings showed that the expression of eNOS and VE-cadherin decreased, and PCSK9 expression increased, in septic HUVECs or mice. Inhibition of PCSK9 increased eNOS and VE-cadherin expression. Activation of the TLR4/MyD88/NF-κB and NLRP3 pathways may be responsible for PCSK9-induced endothelial dysfunction in sepsis. Vascular reactivity tests and survival studies showed that inhibition of PCSK9 could prevent the decrease in endothelium-dependent vasodilation function and improve the survival rates of septic mice. In summary, our results suggested that increased PCSK9 expression during sepsis activated the TLR4/MyD88/NF-κB and NLRP3 pathways to induce inflammation, which resulted in vascular endothelial dysfunction and decreased survival rates. Thus, inhibition of PCSK9 may be a potential clinical therapeutic target to improve vascular endothelial function in sepsis.
Collapse
|
14
|
Liu H, Yu L, Ding Y, Peng M, Deng Y. Progesterone Enhances the Invasion of Trophoblast Cells by Activating PI3K/AKT Signaling Pathway to Prevent Preeclampsia. Cell Transplant 2023; 32:9636897221145682. [PMID: 36593749 PMCID: PMC9830574 DOI: 10.1177/09636897221145682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We aimed to explore whether the effect of progesterone on preeclampsia via the PI3K/AKT signaling pathway. First, we studied the role of progesterone in preeclampsia patients and HTR-8/Svneo cells by adding progesterone. Then PI3K inhibitor LY294002 was added. The effects of progesterone on preeclampsia were also studied in animals by constructing a preeclampsia rat model. CCK-8 and Transwell assay were applied to measure cell viability and invasion ability. ELISA was performed to measure progesterone, MMP-2, MMP-9, pro-inflammatory factors TNF-α, IL-1β, and anti-inflammatory factors IL-4, IL-10, and IL-13 levels. HE staining was used to detect the pathological changes in uterine spiral artery. Western blot was performed to detect Cyclin D1, PCNA, MMP-2, MMP-9, inflammatory factors TNF-α, IL-1β, IL-4, IL-10, IL-13, and PI3K/AKT signaling pathway related proteins AKT, p-AKT, PI3K, and p-PI3K expressions. Progesterone could reduce blood pressure and urine protein in pregnant women with preeclampsia. TNF-α and IL-1β levels were decreased, but IL-4, IL-10, IL-13, cyclin D1, and PCNA levels were increased in pregnant women with preeclampsia after using progesterone. After the use of progesterone, the symptoms of the PE model group were improved. Among them, the lumen of the placental uterine spiral artery was enlarged, and the fibrinoid necrosis of the uterine wall and acute atherosclerotic lesions were relieved. In addition, progesterone promoted HTR-8/Svneo cells proliferation and invasion. However, high expression of MMP-2, MMP-9, p-AKT, and p-PI3K in Normal and preeclampsia groups caused by progesterone was weakened after adding LY294002, indicating that progesterone could activate PI3K/AKT signaling pathway to regulate HTR-8/Svneo cells. Progesterone decreased urine protein and blood pressure of preeclampsia rats in a concentration-dependent manner. Moreover, progesterone activated the PI3K/AKT signaling pathway and inhibited the inflammatory response in preeclampsia rats.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ling Yu
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiling Ding
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China,Yiling Ding, Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Renmin Middle Road 139, Changsha 410005, Hunan, China.
| | - Mei Peng
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yali Deng
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Dietrich E, Jomard A, Osto E. Crosstalk between high-density lipoproteins and endothelial cells in health and disease: Insights into sex-dependent modulation. Front Cardiovasc Med 2022; 9:989428. [PMID: 36304545 PMCID: PMC9594152 DOI: 10.3389/fcvm.2022.989428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Intense research in vascular biology has advanced our knowledge of molecular mechanisms of its onset and progression until complications; however, several aspects of the patho-physiology of atherosclerosis remain to be further elucidated. Endothelial cell homeostasis is fundamental to prevent atherosclerosis as the appearance of endothelial cell dysfunction is considered the first pro-atherosclerotic vascular modification. Physiologically, high density lipoproteins (HDLs) exert protective actions for vessels and in particular for ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute to the regulation of vascular lipid metabolism, and have immune-modulatory, anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent differences are increasingly recognized as important, although not fully elucidated, factors in cardiovascular health and disease patho-physiology. In this review, we highlight the importance of sex hormones and sex-specific gene expression in the regulation of HDL and EC cross-talk and their contribution to cardiovascular disease.
Collapse
Affiliation(s)
- Elisa Dietrich
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Anne Jomard
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Willemars MMA, Nabben M, Verdonschot JAJ, Hoes MF. Evaluation of the Interaction of Sex Hormones and Cardiovascular Function and Health. Curr Heart Fail Rep 2022; 19:200-212. [PMID: 35624387 PMCID: PMC9329157 DOI: 10.1007/s11897-022-00555-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/02/2022]
Abstract
Purpose of Review Sex hormones drive development and function of reproductive organs or the development of secondary sex characteristics but their effects on the cardiovascular system are poorly understood. In this review, we identify the gaps in our understanding of the interaction between sex hormones and the cardiovascular system. Recent Findings Studies are progressively elucidating molecular functions of sex hormones in specific cell types in parallel with the initiation of crucial large randomized controlled trials aimed at improving therapies for cardiovascular diseases (CVDs) associated with aberrant levels of sex hormones. Summary In contrast with historical assumptions, we now understand that men and women show different symptoms and progression of CVDs. Abnormal levels of sex hormones pose an independent risk for CVD, which is apparent in conditions like Klinefelter syndrome, androgen insensitivity syndrome, and menopause. Moreover, sex hormone–based therapies remain understudied and may not be beneficial for cardiovascular health.
Collapse
Affiliation(s)
- Myrthe M A Willemars
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Job A J Verdonschot
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Martijn F Hoes
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands. .,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands. .,Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
17
|
Santa S, Doku DA, Olwal CO, Brown CA, Tagoe EA, Quaye O. Paradox of COVID-19 in pregnancy: are pregnant women more protected against or at elevated risk of severe COVID-19? Future Microbiol 2022; 17:803-812. [PMID: 35510478 PMCID: PMC9070559 DOI: 10.2217/fmb-2021-0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many underlying medical conditions have been linked to worse COVID-19 prognosis. Based on reports on SARS-CoV-1 and Middle East respiratory syndrome infections, pregnancy has been considered a predisposing factor to severe COVID-19, with pregnant women being a high-risk group for several physiological reasons. Specifically, pregnant women undergo physiological adaptations that predispose them to severe respiratory viral diseases, including SARS-CoV-2. However, a significant amount of evidence suggests that the clinical outcome of COVID-19 among pregnant women is not different from the general population. In view of this, this report discusses the physiological conditions in pregnant women that adversely affect their immunity, cardiovascular homeostasis, and their endothelial and coagulopathic functions, thereby making them more prone to severe viral infections. We also discuss how these physiological adaptations appear to paradoxically offer protection against severe COVID-19 among pregnant women.
Collapse
Affiliation(s)
- Sheila Santa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Derek A Doku
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana.,West African Genetic Medicine Center, University of Ghana, Accra, Ghana
| | - Charles O Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles A Brown
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel A Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
18
|
he A, Yu H, Hu Y, Chen H, Li X, Shen J, Zhuang R, Chen Y, Richard SB, Luo M, Lv D. Honokiol improves endothelial function in type 2 diabetic rats via alleviating oxidative stress and insulin resistance. Biochem Biophys Res Commun 2022; 600:109-116. [DOI: 10.1016/j.bbrc.2022.02.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
|
19
|
Hwang CL, Okazaki K, Shibata S, Liu YL, Fu Q. Menstrual cycle effects on sympathetic neural burst amplitude distribution during orthostasis in young women. Clin Auton Res 2021; 31:767-773. [PMID: 34669075 PMCID: PMC11382632 DOI: 10.1007/s10286-021-00832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Fluctuations in ovarian hormones during the menstrual cycle impact muscle sympathetic nerve activity burst frequency and burst incidence at rest. The purpose of this study was to investigate menstrual cycle effects on sympathetic neural burst amplitude distribution during an orthostatic challenge in young women. METHODS This study included 11 healthy women (33 ± 10 years [mean ± standard deviation]). Muscle sympathetic nerve activity was measured in the supine position as baseline measurement and during 5 min of 60° upright tilting, during the early follicular phase (low estrogen and progesterone) and mid-luteal phase (high estrogen and progesterone) of the menstrual cycle. Relative burst amplitude distribution of muscle sympathetic nerve activity was characterized by the mean, median, skewness, and kurtosis. RESULTS From the supine to upright position, mean and median values of relative burst amplitude increased (both P < 0.05), regardless of phases of the menstrual cycle (P = 0.5 and P = 0.7, respectively). In comparison, during the early follicular phase, skewness and kurtosis remained unchanged (P = 0.6 and P = 0.3, respectively) and kurtosis decreased (1.25 ± 1.11 supine vs. - 0.03 ± 0.73 upright; P = 0.02); there was no change in skewness during the mid-luteal phase (P = 0.4). CONCLUSIONS In response to orthostasis, while the symmetry and tailedness/peakness of burst amplitude distribution do not change during the early follicular phase, the distribution during the mid-luteal phase becomes flatter with a lower but broader peak. The latter result suggests that the firing probability of large axon action potentials in response to orthostatic challenge is higher when estrogen and progesterone levels are elevated. The role of changes in sympathetic neural burst amplitude distribution in orthostatic tolerance remains to be determined.
Collapse
Affiliation(s)
- Chueh-Lung Hwang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kazunobu Okazaki
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shigeki Shibata
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu-Lun Liu
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA.
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
21
|
Eagan LE, Chesney CA, Mascone SE, Shenouda N, Ranadive SM. Interleukin-6 is higher in naturally menstruating women compared with oral contraceptive pill users during the low-hormone phase. J Appl Physiol (1985) 2021; 131:544-552. [PMID: 34138651 DOI: 10.1152/japplphysiol.00921.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endogenous sex hormone concentrations vary between healthy naturally menstruating (non-OCP) and oral contraceptive pill-using (OCP) women, as well as across cycles. The aim of this study was to investigate potential differences in concentrations of inflammatory cytokine interleukin-6 (IL-6) and vasoconstrictive substance endothelin-1 (ET-1) and measures of vascular function among relatively lower- and higher-hormone phases of non-OCP and OCP women. Concentrations of estrogen, progesterone, IL-6, and ET-1 and measures of vascular function were collected in 22 women (22 ± 1 yr, OCP: n = 12) during the early follicular (EF, ≤5 days of menstruation onset) and early luteal (EL, 4 ± 2 days postovulation) phases of non-OCP subjects and were compared to the placebo pill (PP, ≤5 days of PP onset) and active pill (AP, ≤5 days of highest-dose AP) phases of OCP subjects. Vascular function was assessed via brachial artery flow-mediated dilation (%FMD). Concentrations of endogenous estrogen and progesterone were higher in the EL phase compared with the EF phase of non-OCP (P = 0.01) but were similar between phases of OCP (P > 0.05). IL-6 was higher in non-OCP during the EF phase compared with the EL phase (P = 0.03) as well as compared with OCP during the PP phase (P = 0.002) but was similar between groups during the EL and AP phases, respectively (P > 0.05). Concentrations of ET-1 and measures of %FMD were similar between groups and unaffected by phase (P > 0.05). Thus, there exists variation in inflammation between young, healthy non-OCP and OCP women during the lower-hormone phase, despite similarities in vascular function and concentrations of ET-1 between groups and phases.NEW & NOTEWORTHY We demonstrate that despite having similar macrovascular function and concentrations of the vasoconstrictive substance endothelin-1 (ET-1) healthy naturally menstruating women display higher concentrations of circulating IL-6 during the lower-hormone phase of their menstrual cycle compared with 1) the higher-hormone phase of their menstrual cycle and 2) the lower-hormone phase of healthy women using oral contraceptive pills.
Collapse
Affiliation(s)
- Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Sara E Mascone
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Ninette Shenouda
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
22
|
Zhao J, Liu Z, Chang Z. Lipopolysaccharide induces vascular endothelial cell pyroptosis via the SP1/RCN2/ROS signaling pathway. Eur J Cell Biol 2021; 100:151164. [PMID: 34004559 DOI: 10.1016/j.ejcb.2021.151164] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/02/2023] Open
Abstract
Endothelial cell pyroptosis is a novel cause of endothelial dysfunction in sepsis. Reticulocalbin-2 (RCN2) is involved in regulating vascular inflammation and plays an important role in the cardiovascular system. However, the role of RCN2 in inflammation-induced endothelial cell pyroptosis remains to be explored. Here, we found that RCN2 was upregulated after lipopolysaccharide (LPS) treatment in a concentration- and time-dependent manner. RCN2 knockdown resulted in a significant decrease in pyroptosis, reduced LDH and IL-1β release and ROS production and inhibited the expression of pyroptosis-related proteins (NLRP3, cleaved caspase-1, and cleaved GSDMD) (all p < 0.05). N-acetyl-L-cysteine (NAC) counteracted the effects of RCN2 on pyroptosis (all p < 0.01). The silencing of RCN2 antagonized the inhibitory effect of LPS on the phosphorylation of eNOS (p < 0.05). We predicted and confirmed that specificity protein-1(SP1) could directly bind to the RCN2 promoter and regulate RCN2. RCN2 overexpression rescued the inhibitory effect of SP1 inhibitor on HUVEC pyroptosis induced by LPS (all p < 0.05). These findings suggested that the activation of the SP1/RCN2/ROS signaling pathway could promote LPS-induced endothelial cell pyroptosis.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
23
|
Hu S, Pi Q, Luo M, Cheng Z, Liang X, Luo S, Xia Y. Contribution of the NLRP3/IL-1β axis to impaired vasodilation in sepsis through facilitation of eNOS proteolysis and the protective role of melatonin. Int Immunopharmacol 2021; 93:107388. [PMID: 33529913 DOI: 10.1016/j.intimp.2021.107388] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Endothelial dysfunction is a typical characteristic of sepsis. Endothelial nitric oxide synthase (eNOS) is important for maintaining endothelial function. Our previous study reported that the NLRP3 inflammasome promoted endothelial dysfunction by enhancing inflammation. However, the effects of NLRP3 on eNOS require further investigation. Therefore, the present study aimed to investigate the role of NLRP3 on eNOS expression levels in cecal ligation and puncture-induced impaired endothelium-dependent vascular relaxation and to determine the protective effects of melatonin. eNOS expression levels were discovered to be downregulated in the mesenteric arteries of sepsis model mice. Inhibiting NLRP3 with 10 mg/ kg MCC950 or inhibiting IL-1β with 100 mg diacerein rescued the eNOS expression and improved endothelium-dependent vascular relaxation. In vitro, IL-1β stimulation downregulated eNOS expression levels in human aortic endothelial cells (HAECs) in a concentration- and time-dependent manner, while pretreatment with 1 µM of the proteasome inhibitor MG132 reversed this effect. In addition, treatment with 10 mg/kg MG132 also prevented the proteolysis of eNOS and improved endothelium-dependent vascular relaxation in vivo. Notably, treatment with 30 mg/kg melatonin downregulated NLRP3 expression levels and decreased IL-1β secretion, subsequently increasing the expression of eNOS and improving endothelium-dependent vascular relaxation. In conclusion, the findings of the present study indicated that the NLRP3/IL-1β axis may impair vasodilation by promoting the proteolysis of eNOS and melatonin may protect against sepsis-induced endothelial relaxation dysfunction by inhibiting the NLRP3/IL-1β axis, suggesting its pharmacological potential in sepsis.
Collapse
Affiliation(s)
- Shupeng Hu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Qiangzhong Pi
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Minghao Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Zhe Cheng
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoxue Liang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yong Xia
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China; Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, 473 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Yang X, Li X, Luo M, Guo Y, Li C, Lv D, Cheng Z, Huang L, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I promotes angiogenesis via activation of eNOS-VEGF signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113642. [PMID: 33264658 DOI: 10.1016/j.jep.2020.113642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tubeimoside I (TBM) is a triterpenoid saponin purified from tubeimu (tuber of Bolbostemma paniculatum (Maxim.) Franquet). In traditional Chinese medicine, tubeimu had been used to treat acute mastitis, snake bites, detoxication, inflammatory diseases, and tumors for over 1000 years. AIM OF THE STUDY This study aimed to investigate whether TBM could promote angiogenesis and how to promote angiogenesis. MATERIALS AND METHODS In vivo, the pro-angiogenic effects of TBM were examined using the hindlimb ischemia model. After the ischemia operation, 1 mg/kg/day TBM was given via intraperitoneal injection for 28 days and the recovery of blood flow was monitored by Doppler scanner every 7 days. The capillary density in gastrocnemius muscle was detected by immunofluorescence. Expression of related proteins were determined by western blotting. In vitro, the pro-angiogenic effects of TBM on HUVECs were examined by Cell Counting Kit-8, scratch assay, endothelial cell tube formation assay and western blotting. RESULTS TBM improved recovery from hindlimb ischemia in C57BL/6 mice. TBM promoted endothelial cell viability, migration and tube formation in HUVECs. TBM could activate eNOS-VEGF signaling pathway by enhancing expression of eNOS. And TBM's pro-angiogenesis effects could be abolished by L-NAME (an inhibitor of eNOS). CONCLUSIONS TBM promoted angiogenesis via the activation of eNOS-VEGF signaling pathway and TBM could be a novel agent for therapeutic angiogenesis in ischemic diseases.
Collapse
Affiliation(s)
- Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|