1
|
Mattiazzi A, Jaquenod De Giusti C, Valverde CA. CaMKII at the crossroads: calcium dysregulation, and post-translational modifications driving cell death. J Physiol 2025. [PMID: 39907446 DOI: 10.1113/jp285941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates numerous proteins involved in excitation-contraction-relaxation coupling and cardiac excitability. However, its overactivation induces severe Ca2+/handling alterations, playing a significant role in the pathogenesis of diseases such as hypertrophy, arrhythmias and cell death, which can ultimately lead to heart failure. Being a suitable target for various aberrant signals that characterize several diseases, such as Ca2+ overload, oxidative stress or excessive glycosylation, CaMKII shifts under these conditions from a physiological regulator to a pathological molecule. In this review, we explore the evolution of knowledge regarding the role of CaMKII activation on cell death across different pathological contexts, focusing on the converging mechanisms that transform the enzyme from an ally into a villain.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
2
|
Shaftoe JB, Geddes-McAlister J, Gillis TE. Integrated cellular response of the zebrafish (Danio rerio) heart to temperature change. J Exp Biol 2024; 227:jeb247522. [PMID: 39091230 DOI: 10.1242/jeb.247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or 1 week exposure to 20°C from 27°C; or at multiple points during 6 weeks of acclimation to 20°C from 27°C. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signalling, the activation of stretch-sensitive pathways, cellular remodelling via ubiquitin-dependent pathways and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3 and surfeit locus protein 4, involved in lipid transport, lipid metabolism and lipid membrane remodelling. Gill opercular movements suggest that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition was affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
3
|
Appleby S, Aitken-Buck HM, Holdaway MS, Byers MS, Frampton CM, Paton LN, Richards AM, Lamberts RR, Pemberton CJ. Cardiac effects of myoregulin in ischemia-reperfusion. Peptides 2024; 174:171156. [PMID: 38246425 DOI: 10.1016/j.peptides.2024.171156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Myoregulin is a recently discovered micropeptide that controls calcium levels by inhibiting the intracellular calcium pump sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Keeping calcium levels balanced in the heart is essential for normal heart functioning, thus myoregulin has the potential to be a crucial regulator of cardiac muscle performance by reducing the rate of intracellular Ca2+ uptake. We provide the first report of myoregulin mRNA expression in human heart tissue, absence of expression in human plasma, and the effects of myoregulin on cardiac hemodynamics in an ex vivo Langendorff isolated rat heart model of ischemia/reperfusion. In this preliminary study, myoregulin provided a cardio-protective effect, as assessed by preservation of left ventricular contractility and relaxation, during ischemia/reperfusion. This study provides the foundation for future research in this area.
Collapse
Affiliation(s)
- Sarah Appleby
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - Hamish M Aitken-Buck
- Department of Physiology, HeartOtago, University of Otago, 270 Great King St, Dunedin 9016, New Zealand.
| | - Mark S Holdaway
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - Mathew S Byers
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - Chris M Frampton
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - Louise N Paton
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | - A Mark Richards
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand; Department of Cardiology, Te Whatu Ora Waitaha, 2 Riccarton Avenue, Christchurch 8011, New Zealand; Cardiovascular Research Institute, National University of Singapore, 1E Kent Ridge Road, Singapore.
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, University of Otago, 270 Great King St, Dunedin 9016, New Zealand.
| | - Christopher J Pemberton
- Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| |
Collapse
|
4
|
Louradour J, Ottersberg R, Segiser A, Olejnik A, Martínez-Salazar B, Siegrist M, Egle M, Barbieri M, Nimani S, Alerni N, Döring Y, Odening KE, Longnus S. Simultaneous assessment of mechanical and electrical function in Langendorff-perfused ex-vivo mouse hearts. Front Cardiovasc Med 2023; 10:1293032. [PMID: 38028448 PMCID: PMC10663365 DOI: 10.3389/fcvm.2023.1293032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The Langendorff-perfused ex-vivo isolated heart model has been extensively used to study cardiac function for many years. However, electrical and mechanical function are often studied separately-despite growing proof of a complex electro-mechanical interaction in cardiac physiology and pathology. Therefore, we developed an isolated mouse heart perfusion system that allows simultaneous recording of electrical and mechanical function. Methods Isolated mouse hearts were mounted on a Langendorff setup and electrical function was assessed via a pseudo-ECG and an octapolar catheter inserted in the right atrium and ventricle. Mechanical function was simultaneously assessed via a balloon inserted into the left ventricle coupled with pressure determination. Hearts were then submitted to an ischemia-reperfusion protocol. Results At baseline, heart rate, PR and QT intervals, intra-atrial and intra-ventricular conduction times, as well as ventricular effective refractory period, could be measured as parameters of cardiac electrical function. Left ventricular developed pressure (DP), left ventricular work (DP-heart rate product) and maximal velocities of contraction and relaxation were used to assess cardiac mechanical function. Cardiac arrhythmias were observed with episodes of bigeminy during which DP was significantly increased compared to that of sinus rhythm episodes. In addition, the extrasystole-triggered contraction was only 50% of that of sinus rhythm, recapitulating the "pulse deficit" phenomenon observed in bigeminy patients. After ischemia, the mechanical function significantly decreased and slowly recovered during reperfusion while most of the electrical parameters remained unchanged. Finally, the same electro-mechanical interaction during episodes of bigeminy at baseline was observed during reperfusion. Conclusion Our modified Langendorff setup allows simultaneous recording of electrical and mechanical function on a beat-to-beat scale and can be used to study electro-mechanical interaction in isolated mouse hearts.
Collapse
Affiliation(s)
- Julien Louradour
- Department of Physiology, Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
| | - Rahel Ottersberg
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian Segiser
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Agnieszka Olejnik
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Berenice Martínez-Salazar
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mark Siegrist
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuel Egle
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Miriam Barbieri
- Department of Physiology, Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
| | - Saranda Nimani
- Department of Physiology, Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
| | - Nicolò Alerni
- Department of Physiology, Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Heart Alliance Munich, Munich, Germany
| | - Katja E. Odening
- Department of Physiology, Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
- Department of Cardiology, Translational Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah Longnus
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Manning JR, Wijeratne AB, Oloizia BB, Zhang Y, Greis KD, Schultz JEJ. Phosphoproteomic analysis identifies phospho-Threonine-17 site of phospholamban important in low molecular weight isoform of fibroblast growth factor 2-induced protection against post-ischemic cardiac dysfunction. J Mol Cell Cardiol 2020; 148:1-14. [PMID: 32853649 DOI: 10.1016/j.yjmcc.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/04/2020] [Accepted: 08/09/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Among its many biological roles, fibroblast growth factor 2 (FGF2) protects the heart from dysfunction and damage associated with an ischemic attack. Our laboratory demonstrated that its protection against myocardial dysfunction occurs by the low molecular weight (LMW) isoform of FGF2, while the high molecular weight (HMW) isoforms are associated with a worsening in post-ischemic recovery of cardiac function. LMW FGF2-mediated cardioprotection is facilitated by activation of multiple kinases, including PKCalpha, PKCepsilon, and ERK, and inhibition of p38 and JNK. OBJECTIVE Yet, the substrates of those kinases associated with LMW FGF2-induced cardioprotection against myocardial dysfunction remain to be elucidated. METHODS AND RESULTS To identify substrates in LMW FGF2 improvement of post-ischemic cardiac function, mouse hearts expressing only LMW FGF2 were subjected to ischemia-reperfusion (I/R) injury and analyzed by a mass spectrometry (MS)-based quantitative phosphoproteomic strategy. MS analysis identified 50 phosphorylation sites from 7 sarcoendoplasmic reticulum (SR) proteins that were significantly altered in I/R-treated hearts only expressing LMW FGF2 compared to those hearts lacking FGF2. One of those phosphorylated SR proteins identified was phospholamban (PLB), which exhibited rapid, increased phosphorylation at Threonine-17 (Thr17) after I/R in hearts expressing only LMW FGF2; this was further validated using Selected Reaction Monitoring-based MS workflow. To demonstrate a mechanistic role of phospho-Thr17 PLB in LMW FGF2-mediated cardioprotection, hearts only expressing LMW FGF2 and those expressing only LMW FGF2 with a mutant PLB lacking phosphorylatable Thr17 (Thr17Ala PLB) were subjected to I/R. Hearts only expressing LMW FGF2 showed significantly improved recovery of cardiac function following I/R (p < 0.05), and this functional improvement was significantly abrogated in hearts expressing LMW FGF2 and Thr17Ala PLB (p < 0.05). CONCLUSION The findings indicate that LMW FGF2 modulates intracellular calcium handling/cycling via regulatory changes in SR proteins essential for recovery from I/R injury, and thereby protects the heart from post-ischemic cardiac dysfunction.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Aruna B Wijeratne
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Brian B Oloizia
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Yu Zhang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America
| | - Jo El J Schultz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America.
| |
Collapse
|
6
|
Valverde CA, Mazzocchi G, Di Carlo MN, Ciocci Pardo A, Salas N, Ragone MI, Felice JI, Cely-Ortiz A, Consolini AE, Portiansky E, Mosca S, Kranias EG, Wehrens XHT, Mattiazzi A. Ablation of phospholamban rescues reperfusion arrhythmias but exacerbates myocardium infarction in hearts with Ca2+/calmodulin kinase II constitutive phosphorylation of ryanodine receptors. Cardiovasc Res 2020; 115:556-569. [PMID: 30169578 DOI: 10.1093/cvr/cvy213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS Abnormal Ca2+ release from the sarcoplasmic reticulum (SR), associated with Ca2+-calmodulin kinase II (CaMKII)-dependent phosphorylation of RyR2 at Ser2814, has consistently been linked to arrhythmogenesis and ischaemia/reperfusion (I/R)-induced cell death. In contrast, the role played by SR Ca2+ uptake under these stress conditions remains controversial. We tested the hypothesis that an increase in SR Ca2+ uptake is able to attenuate reperfusion arrhythmias and cardiac injury elicited by increased RyR2-Ser2814 phosphorylation. METHODS AND RESULTS We used WT mice, which have been previously shown to exhibit a transient increase in RyR2-Ser2814 phosphorylation at the onset of reperfusion; mice with constitutive pseudo-phosphorylation of RyR2 at Ser2814 (S2814D) to exacerbate CaMKII-dependent reperfusion arrhythmias and cardiac damage, and phospholamban (PLN)-deficient-S2814D knock-in (SDKO) mice resulting from crossbreeding S2814D with phospholamban knockout deficient (PLNKO) mice. At baseline, S2814D and SDKO mice had structurally normal hearts. Moreover none of the strains were arrhythmic before ischaemia. Upon cardiac I/R, WT, and S2814D hearts exhibited abundant arrhythmias that were prevented by PLN ablation. In contrast, PLN ablation increased infarct size compared with WT and S2814D hearts. Mechanistically, the enhanced SR Ca2+ sequestration evoked by PLN ablation in SDKO hearts prevented arrhythmogenic events upon reperfusion by fragmenting SR Ca2+ waves into non-propagated and non-arrhythmogenic events (mini-waves). Conversely, the increase in SR Ca2+ sequestration did not reduce but rather exacerbated I/R-induced SR Ca2+ leak, as well as mitochondrial alterations, which were greatly avoided by inhibition of RyR2. These results indicate that the increase in SR Ca2+ uptake is ineffective in preventing the enhanced SR Ca2+ leak of PLN ablated myocytes from either entering into nearby mitochondria and/or activating additional CaMKII pathways, contributing to cardiac damage. CONCLUSION Our results demonstrate that increasing SR Ca2+ uptake by PLN ablation can prevent the arrhythmic events triggered by CaMKII-dependent phosphorylation of RyR2-induced SR Ca2+ leak. These findings underscore the benefits of increasing SERCA2a activity in the face of SR Ca2+ triggered arrhythmias. However, enhanced SERCA2a cannot prevent but rather exacerbates I/R cardiac injury.
Collapse
Affiliation(s)
- Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Gabriela Mazzocchi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Mariano N Di Carlo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Nehuen Salas
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - María Ines Ragone
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alicia E Consolini
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Enrique Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - Susana Mosca
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine (in Cardiology), Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| |
Collapse
|
7
|
Federico M, Valverde CA, Mattiazzi A, Palomeque J. Unbalance Between Sarcoplasmic Reticulum Ca 2 + Uptake and Release: A First Step Toward Ca 2 + Triggered Arrhythmias and Cardiac Damage. Front Physiol 2020; 10:1630. [PMID: 32038301 PMCID: PMC6989610 DOI: 10.3389/fphys.2019.01630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or different partners' proteins. These control mechanisms guarantee a precise equilibrium between SR Ca2+ reuptake and release. The review then discusses how disruption of this balance alters SR Ca2+ handling and may constitute a first step toward cardiac damage and malignant arrhythmias. In the last part of the review, this concept is exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy, digitalis intoxication and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Marilén Federico
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
8
|
Su SB, Zhou WJ, Li JL, Zhou QM, Cai FF, Chen XL, Lu YY, Zhao M. Ginsenoside Rb1 pretreatment attenuates myocardial ischemia by reducing calcium/calmodulin-dependent protein kinase II-medicated calcium release. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_24_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Daniels LJ, Varma U, Annandale M, Chan E, Mellor KM, Delbridge LMD. Myocardial Energy Stress, Autophagy Induction, and Cardiomyocyte Functional Responses. Antioxid Redox Signal 2019; 31:472-486. [PMID: 30417655 DOI: 10.1089/ars.2018.7650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Energy stress in the myocardium occurs in a variety of acute and chronic pathophysiological contexts, including ischemia, nutrient deprivation, and diabetic disease settings of substrate disturbance. Although the heart is highly adaptive and flexible in relation to fuel utilization and routes of adenosine-5'-triphosphate (ATP) generation, maladaptations in energy stress situations confer functional deficit. An understanding of the mechanisms that link energy stress to impaired myocardial performance is crucial. Recent Advances: Emerging evidence suggests that, in parallel with regulated enzymatic pathways that control intracellular substrate supply, other processes of "bulk" autophagic macromolecular breakdown may be important in energy stress conditions. Recent findings indicate that cargo-specific autophagic activity may be important in different stress states. In particular, induction of glycophagy, a glycogen-specific autophagy, has been described in acute and chronic energy stress situations. The impact of elevated cardiomyocyte glucose flux relating to glycophagy dysregulation on contractile function is unknown. Critical Issues: Ischemia- and diabetes-related cardiac adverse events comprise the majority of cardiovascular disease morbidity and mortality. Current therapies involve management of systemic comorbidities. Cardiac-specific adjunct treatments targeted to manage myocardial energy stress responses are lacking. Future Directions: New knowledge is required to understand the mechanisms involved in selective recruitment of autophagic responses in the cardiomyocyte energy stress response. In particular, exploration of the links between cell substrate flux, calcium ion (Ca2+) flux, and phagosomal cargo flux is required. Strategies to target specific fuel "bulk" management defects in cardiac energy stress states may be of therapeutic value.
Collapse
Affiliation(s)
- Lorna J Daniels
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Upasna Varma
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Marco Annandale
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Eleia Chan
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand.,2 Department of Physiology, University of Melbourne, Melbourne, Australia.,3 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Lea M D Delbridge
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Chung YJ, Luo A, Park KC, Loonat AA, Lakhal-Littleton S, Robbins PA, Swietach P. Iron-deficiency anemia reduces cardiac contraction by downregulating RyR2 channels and suppressing SERCA pump activity. JCI Insight 2019; 4:125618. [PMID: 30779710 PMCID: PMC6483648 DOI: 10.1172/jci.insight.125618] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency is present in ~50% of heart failure (HF) patients. Large multicenter trials have shown that treatment of iron deficiency with i.v. iron benefits HF patients, but the underlying mechanisms are not known. To investigate the actions of iron deficiency on the heart, mice were fed an iron-depleted diet, and some received i.v. ferric carboxymaltose (FCM), an iron supplementation used clinically. Iron-deficient animals became anemic and had reduced ventricular ejection fraction measured by magnetic resonance imaging. Ca2+ signaling, a pathway linked to the contractile deficit in failing hearts, was also significantly affected. Ventricular myocytes isolated from iron-deficient animals produced smaller Ca2+ transients from an elevated diastolic baseline but had unchanged sarcoplasmic reticulum (SR) Ca2+ load, trigger L-type Ca2+ current, or cytoplasmic Ca2+ buffering. Reduced fractional release from the SR was due to downregulated RyR2 channels, detected at protein and message levels. The constancy of diastolic SR Ca2+ load is explained by reduced RyR2 permeability in combination with right-shifted SERCA activity due to dephosphorylation of its regulator phospholamban. Supplementing iron levels with FCM restored normal Ca2+ signaling and ejection fraction. Thus, 2 Ca2+-handling proteins previously implicated in HF become functionally impaired in iron-deficiency anemia, but their activity is rescued by i.v. iron supplementation.
Collapse
Affiliation(s)
- Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Antao Luo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Aminah A Loonat
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Chin KY, Silva LS, Darby IA, Ng DC, Woodman OL. Protection against reperfusion injury by 3′,4′-dihydroxyflavonol in rat isolated hearts involves inhibition of phospholamban and JNK2. Int J Cardiol 2018; 254:265-271. [DOI: 10.1016/j.ijcard.2017.11.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
|
12
|
Ledee D, Kang MA, Kajimoto M, Purvine S, Brewer H, Pasa-Tolic L, Portman MA. Quantitative cardiac phosphoproteomics profiling during ischemia-reperfusion in an immature swine model. Am J Physiol Heart Circ Physiol 2017; 313:H125-H137. [PMID: 28455290 PMCID: PMC5538860 DOI: 10.1152/ajpheart.00842.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023]
Abstract
Ischemia-reperfusion (I/R) results in altered metabolic and molecular responses, and phosphorylation is one of the most noted regulatory mechanisms mediating signaling mechanisms during physiological stresses. To expand our knowledge of the potential phosphoproteomic changes in the myocardium during I/R, we used Isobaric Tags for Relative and Absolute Quantitation-based analyses in left ventricular samples obtained from porcine hearts under control or I/R conditions. The data are available via ProteomeXchange with identifier PXD006066. We identified 1,896 phosphopeptides within left ventricular control and I/R porcine samples. Significant differential phosphorylation between control and I/R groups was discovered in 111 phosphopeptides from 86 proteins. Analysis of the phosphopeptides using Motif-x identified five motifs: (..R..S..), (..SP..), (..S.S..), (..S…S..), and (..S.T..). Semiquantitative immunoblots confirmed site location and directional changes in phosphorylation for phospholamban and pyruvate dehydrogenase E1, two proteins known to be altered by I/R and identified by this study. Novel phosphorylation sites associated with I/R were also identified. Functional characterization of the phosphopeptides identified by our methodology could expand our understanding of the signaling mechanisms involved during I/R damage in the heart as well as identify new areas to target therapeutic strategies.NEW & NOTEWORTHY We used Isobaric Tags for Relative and Absolute Quantitation technology to investigate the phosphoproteomic changes that occur in cardiac tissue under ischemia-reperfusion conditions. The results of this study provide an extensive catalog of phosphoproteins, both predicted and novel, associated with ischemia-reperfusion, thereby identifying new pathways for investigation.
Collapse
Affiliation(s)
- Dolena Ledee
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Min A Kang
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | - Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | - Samuel Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington; and
| | - Heather Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington; and
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington; and
| | - Michael A Portman
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington;
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Perez V, D'Annunzio V, Valdez LB, Zaobornyj T, Bombicino S, Mazo T, Carbajosa NL, Gironacci MM, Boveris A, Sadoshima J, Gelpi RJ. Thioredoxin-1 Attenuates Ventricular and Mitochondrial Postischemic Dysfunction in the Stunned Myocardium of Transgenic Mice. Antioxid Redox Signal 2016; 25:78-88. [PMID: 27000416 DOI: 10.1089/ars.2015.6459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM We evaluated the effect of thioredoxin1 (Trx1) system on postischemic ventricular and mitochondrial dysfunction using transgenic mice overexpressing cardiac Trx1 and a dominant negative (DN-Trx1) mutant (C32S/C35S) of Trx1. Langendorff-perfused hearts were subjected to 15 min of ischemia followed by 30 min of reperfusion (R). We measured left ventricular developed pressure (LVDP, mmHg), left ventricular end diastolic pressure (LVEDP, mmHg), and t63 (relaxation index, msec). Mitochondrial respiration, SERCA2a, phospholamban (PLB), and phospholamban phosphorylation (p-PLB) Thr17 expression (Western blot) were also evaluated. RESULTS At 30 min of reperfusion, Trx1 improved contractile state (LVDP: Trx1: 57.4 ± 4.9 vs. Wt: 27.1 ± 6.3 and DN-Trx1: 29.2 ± 7.1, p < 0.05); decreased myocardial stiffness (LVEDP: Wt: 24.5 ± 4.8 vs. Trx1: 11.8 ± 2.9, p < 0.05); and improved the isovolumic relaxation (t63: Wt: 63.3 ± 3.2 vs. Trx1: 51.4 ± 1.9, p < 0.05). DN-Trx1 mice aggravated the myocardial stiffness and isovolumic relaxation. Only the expression of p-PLB Thr17 increased at 1.5 min R in Wt and DN-Trx1 groups. At 30 min of reperfusion, state 3 mitochondrial O2 consumption was impaired by 13% in Wt and by 33% in DN-Trx1. ADP/O ratios for Wt and DN-Trx1 decrease by 25% and 28%, respectively; whereas the Trx1 does not change after ischemia and reperfusion (I/R). Interestingly, baseline values of complex I activity were increased in Trx1 mice; they were 24% and 47% higher than in Wt and DN-Trx1 mice, respectively (p < 0.01). INNOVATION AND CONCLUSION These results strongly suggest that Trx1 ameliorates the myocardial effects of I/R by improving the free radical-mediated damage in cardiac and mitochondrial function, opening the possibility of new therapeutic strategies in coronary artery disease. Antioxid. Redox Signal. 25, 78-88.
Collapse
Affiliation(s)
- Virginia Perez
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Veronica D'Annunzio
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Laura B Valdez
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Tamara Zaobornyj
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Silvina Bombicino
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Tamara Mazo
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Nadia Longo Carbajosa
- 4 Department of Biological Chemistry and IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Mariela M Gironacci
- 4 Department of Biological Chemistry and IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Alberto Boveris
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Junichi Sadoshima
- 5 Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University , Newark, New Jersey
| | - Ricardo J Gelpi
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
14
|
Gao Z, Sierra A, Zhu Z, Koganti SRK, Subbotina E, Maheshwari A, Anderson ME, Zingman LV, Hodgson-Zingman DM. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury. PLoS One 2016; 11:e0151337. [PMID: 26964104 PMCID: PMC4786327 DOI: 10.1371/journal.pone.0151337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35–40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of CaMKII-dependent downregulation of KATP channel expression as a mechanism for vulnerability to injury in failing hearts points to strategies targeting this interaction for potential preventives or treatments.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Sierra
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Zhiyong Zhu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Siva Rama Krishna Koganti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ekaterina Subbotina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ankit Maheshwari
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark E. Anderson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
| | - Leonid V. Zingman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Denice M. Hodgson-Zingman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
15
|
Bell JR, Raaijmakers AJA, Janssens JV, Delbridge LMD. CaMKIIδand cardiomyocyte Ca2+signalling new perspectives on splice variant targeting. Clin Exp Pharmacol Physiol 2015; 42:1327-32. [DOI: 10.1111/1440-1681.12489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/29/2022]
Affiliation(s)
- James R Bell
- Department of Physiology; University of Melbourne; Victoria Australia
| | | | | | - Lea MD Delbridge
- Department of Physiology; University of Melbourne; Victoria Australia
| |
Collapse
|
16
|
Bell JR, Erickson JR, Delbridge LM. Ca(2+) /calmodulin dependent kinase II: a critical mediator in determining reperfusion outcomes in the heart? Clin Exp Pharmacol Physiol 2015; 41:940-6. [PMID: 25283076 DOI: 10.1111/1440-1681.12301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022]
Abstract
Ischaemic heart disease is a major cause of death and disability in the Western world, and a substantial health burden. Cardiomyocyte Ca(2+) overload is known to significantly contribute to contractile dysfunction and myocyte death in ischaemia and reperfusion, and significant advancements have been made in identifying the downstream mediators and cellular origins of this Ca(2+) mismanagement. Ca(2+) /calmodulin-dependent kinase II (CaMKII) is recognized as an important mediator linking pathological changes in subcellular environments to modifications in cardiomyocyte Ca(2+) handling. Activated in response to fluctuations in cellular Ca(2+) and to various post-translational modifications, CaMKII targets numerous Ca(2+) channels/transporters involved in Ca(2+) handling and contractile function regulation. CaMKII is activated early in reperfusion, where it exacerbates Ca(2+) leak from the sarcoplasmic reticulum and promotes the onset of ventricular arrhythmias. Inhibiting CaMKII can increase functional recovery in reperfusion and reduce apoptotic/necrotic death, at least partly through indirect and direct influences on mitochondrial Ca(2+) levels and function. Yet, CaMKII can also have beneficial actions in ischaemia and reperfusion, in part by providing inotropic support for the stunned myocardium and contributing as an intermediate to cardioprotective preconditioning signalling cascades. There is considerable potential in targeting CaMKII as a part of a surgical reperfusion strategy, though further mechanistic understanding of the relationship between CaMKII activation status and the extent of ischaemia/reperfusion injury are required to fully establish an optimal pharmacological approach.
Collapse
Affiliation(s)
- James R Bell
- Department of Physiology, University of Melbourne, Melbourne, Vic., Australia
| | | | | |
Collapse
|
17
|
Smith LE, White MY. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl 2015; 8:506-21. [PMID: 24961403 DOI: 10.1002/prca.201400052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/27/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) in one of the leading causes of mortality and morbidity worldwide, accounting for both primary diseases of the heart and vasculature and arising as a co-morbidity with numerous pathologies, including type 2 diabetes mellitus (T2DM). There has been significant emphasis on the role of the genome in CVD, aiding in the definition of 'at-risk' patients. The extent of disease penetrance however, can be influenced by environmental factors that are not detectable by investigating the genome alone. By targeting the transcriptome in response to CVD, the interplay between genome and environment is more apparent, however this implies the level of protein expression without reference to proteolytic turnover, or potentially more importantly, without defining the role of PTMs in the development of disease. Here, we discuss the role of both brief and irreversible PTMs in the setting of myocardial ischemia/reperfusion injury. Key proteins involved in calcium regulation have been observed as differentially modified by phosphorylation/O-GlcNAcylation or phosphorylation/redox modifications, with the level of interplay dependent on the physiological or pathophysiological state. The ability to modify crucial sites to produce the desired functional output is modulated by the presence of other PTMs as exemplified in the T2DM heart, where hyperglycemia results in aberrant O-GlcNAcylation and advanced glycation end products. By using the signalling events predicted to be critical to post-conditioning, an intervention with great promise for the cardioprotection of the ischemia/reperfusion injured heart, as an example, we discuss the level of PTMs and their interplay. The inability of post-conditioning to protect the diabetic heart may be regulated by aberrant PTMs influencing those sites necessary for protection.
Collapse
Affiliation(s)
- Lauren E Smith
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
18
|
Bell JR, Bernasochi GB, Wollermann AC, Raaijmakers AJA, Boon WC, Simpson ER, Curl CL, Mellor KM, Delbridge LMD. Myocardial and cardiomyocyte stress resilience is enhanced in aromatase-deficient female mouse hearts through CaMKIIδ activation. Endocrinology 2015; 156:1429-40. [PMID: 25625588 DOI: 10.1210/en.2014-1700] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of sex steroids in cardioprotection is contentious, with large clinical trials investigating hormone supplementation failing to deliver outcomes expected from observational studies. Mechanistic understanding of androgen/estrogen myocardial actions is lacking. Using a genetic model of aromatase tissue deficiency (ArKO) in female mice, the goal of this investigation was to evaluate the capacity of a shift in cardiac endogenous steroid conversion to influence ischemia-reperfusion resilience by optimizing cardiomyocyte Ca2+ handling responses. In isolated normoxic cardiomyocytes, basal Ca2+ transient amplitude and extent of shortening were greater in ArKO myocytes, with preservation of diastolic Ca2+ levels. Isolated ArKO cardiomyocytes exposed to a high Ca2+ load exhibited greater Ca2+ transient and contractile amplitudes, associated with a greater postrest spontaneous sarcoplasmic reticulum Ca2+ load-release. Microarray differential gene expression analysis of normoxic ventricular tissues from ArKO vs wild-type identified a significant influence of aromatase on genes involved in cardiac Ca2+ handling and signaling [including calmodulin dependent kinase II (CaMKII)-δ], myofilament structure and function, glucose uptake and signaling, and enzymes controlling phosphorylation-specific posttranslational modification status. CaMKII expression was not changed in ventricular tissues, although CaMKIIδ activation and phosphorylation of downstream targets was enhanced in ArKO hearts subjected to ischemia-reperfusion. Overall, this investigation shows that relative withdrawal of estrogen in favor of testosterone through genetically induced tissue aromatase deficiency in females modifies the gene expression profile to effect inotropic support via optimized Ca2+ handling in response to stress, with a modest impact on basal function. Consideration of aromatase inhibition, acutely or chronically, may have a role in cardioprotection, of particular relevance to women.
Collapse
Affiliation(s)
- James R Bell
- Cardiac Phenomics Laboratory (J.R.B., G.B.B., A.C.W., A.J.A.R., C.L.C., K.M.M., L.M.D.D.), Department of Physiology, and The Florey Institute of Neuroscience and Mental Health (W.C.B.), University of Melbourne, Victoria 3010, Australia; Monash Institute of Medical Research-Prince Henry's Institute of Medical Research (E.R.S.), Clayton 3168, Victoria, Australia; and Department of Physiology (K.M.M.), University of Auckland, 1142 Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 2015; 308:H1177-91. [PMID: 25747749 DOI: 10.1152/ajpheart.00007.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022]
Abstract
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such as Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation but also in cell death, transcriptional activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina;
| | - Rosana A Bassani
- Centro de Engenharia Biomédica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ariel L Escobar
- Biological Engineering and Small Scale Technologies, School of Engineering, University of California, Merced, California; and
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Vila Petroff
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
20
|
Di Carlo MN, Said M, Ling H, Valverde CA, De Giusti VC, Sommese L, Palomeque J, Aiello EA, Skapura DG, Rinaldi G, Respress JL, Brown JH, Wehrens XHT, Salas MA, Mattiazzi A. CaMKII-dependent phosphorylation of cardiac ryanodine receptors regulates cell death in cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2014; 74:274-83. [PMID: 24949568 PMCID: PMC4131282 DOI: 10.1016/j.yjmcc.2014.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022]
Abstract
Ca(2+)-calmodulin kinase II (CaMKII) activation is deleterious in cardiac ischemia/reperfusion (I/R). Moreover, inhibition of CaMKII-dependent phosphorylations at the sarcoplasmic reticulum (SR) prevents CaMKII-induced I/R damage. However, the downstream targets of CaMKII at the SR level, responsible for this detrimental effect, remain unclear. In the present study we aimed to dissect the role of the two main substrates of CaMKII at the SR level, phospholamban (PLN) and ryanodine receptors (RyR2), in CaMKII-dependent I/R injury. In mouse hearts subjected to global I/R (45/120min), phosphorylation of the primary CaMKII sites, S2814 on cardiac RyR2 and of T17 on PLN, significantly increased at the onset of reperfusion whereas PKA-dependent phosphorylation of RyR2 and PLN did not change. Similar results were obtained in vivo, in mice subjected to regional myocardial I/R (1/24h). Knock-in mice with an inactivated serine 2814 phosphorylation site on RyR2 (S2814A) significantly improved post-ischemic mechanical recovery, reduced infarct size and decreased apoptosis. Conversely, knock-in mice, in which CaMKII site of RyR2 is constitutively activated (S2814D), significantly increased infarct size and exacerbated apoptosis. In S2814A and S2814D mice subjected to regional myocardial ischemia, infarct size was also decreased and increased respectively. Transgenic mice with double-mutant non-phosphorylatable PLN (S16A/T17A) in the PLN knockout background (PLNDM) also showed significantly increased post-ischemic cardiac damage. This effect cannot be attributed to PKA-dependent PLN phosphorylation and was not due to the enhanced L-type Ca(2+) current, present in these mice. Our results reveal a major role for the phosphorylation of S2814 site on RyR2 in CaMKII-dependent I/R cardiac damage. In contrast, they showed that CaMKII-dependent increase in PLN phosphorylation during reperfusion opposes rather than contributes to I/R damage.
Collapse
Affiliation(s)
- Mariano N Di Carlo
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Haiyun Ling
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0636, USA
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Leandro Sommese
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Darlene G Skapura
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Gustavo Rinaldi
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Jonathan L Respress
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0636, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Margarita A Salas
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
21
|
Bell JR, Vila-Petroff M, Delbridge LMD. CaMKII-dependent responses to ischemia and reperfusion challenges in the heart. Front Pharmacol 2014; 5:96. [PMID: 24834054 PMCID: PMC4018566 DOI: 10.3389/fphar.2014.00096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/16/2014] [Indexed: 12/04/2022] Open
Abstract
Ischemic heart disease is a leading cause of death, and there is considerable imperative to identify effective therapeutic interventions. Cardiomyocyte Ca2+ overload is a major cause of ischemia and reperfusion injury, initiating a cascade of events culminating in cardiomyocyte death, myocardial dysfunction, and occurrence of lethal arrhythmias. Responsive to fluctuations in intracellular Ca2+, Ca2+/calmodulin-dependent protein kinase II (CaMKII) has emerged as an enticing therapeutic target in the management of ischemic heart injury. CaMKII is activated early in ischemia and to a greater extent in the first few minutes of reperfusion, at a time when reperfusion arrhythmias are particularly prominent. CaMKII phosphorylates and upregulates many of the key proteins involved in intracellular Na+ and Ca2+ loading in ischemia and reperfusion. Experimentally, selective inhibition of CaMKII activity reduces cardiomyocyte death and arrhythmic incidence post-ischemia. New evidence is emerging that CaMKII actions in ischemia and reperfusion involve specific splice variant targeted actions, selective and localized post-translational modifications, and organelle-directed substrate interactions. A more complete mechanistic understanding of CaMKII mode of action in ischemia and reperfusion is required to optimize intervention opportunities. This review summarizes the current experimentally derived understanding of CaMKII participation in mediating the pathophysiology of the heart in ischemia and in reperfusion, and highlights priority future research directions.
Collapse
Affiliation(s)
- James R Bell
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| | - Martin Vila-Petroff
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata La Plata, Argentina
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
22
|
Mattiazzi A, Kranias EG. The role of CaMKII regulation of phospholamban activity in heart disease. Front Pharmacol 2014; 5:5. [PMID: 24550830 PMCID: PMC3913884 DOI: 10.3389/fphar.2014.00005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023] Open
Abstract
Phospholamban (PLN) is a phosphoprotein in cardiac sarcoplasmic reticulum (SR) that is a reversible regulator of the Ca2+-ATPase (SERCA2a) activity and cardiac contractility. Dephosphorylated PLN inhibits SERCA2a and PLN phosphorylation, at either Ser16 by PKA or Thr17 by Ca2+-calmodulin-dependent protein kinase (CaMKII), reverses this inhibition. Through this mechanism, PLN is a key modulator of SR Ca2+ uptake, Ca2+ load, contractility, and relaxation. PLN phosphorylation is also the main determinant of β1-adrenergic responses in the heart. Although phosphorylation of Thr17 by CaMKII contributes to this effect, its role is subordinate to the PKA-dependent increase in cytosolic Ca2+, necessary to activate CaMKII. Furthermore, the effects of PLN and its phosphorylation on cardiac function are subject to additional regulation by its interacting partners, the anti-apoptotic HAX-1 protein and Gm or the anchoring unit of protein phosphatase 1. Regulation of PLN activity by this multimeric complex becomes even more important in pathological conditions, characterized by aberrant Ca2+-cycling. In this scenario, CaMKII-dependent PLN phosphorylation has been associated with protective effects in both acidosis and ischemia/reperfusion. However, the beneficial effects of increasing SR Ca2+ uptake through PLN phosphorylation may be lost or even become deleterious, when these occur in association with alterations in SR Ca2+ leak. Moreover, a major characteristic in human and experimental heart failure (HF) is depressed SR Ca2+ uptake, associated with decreased SERCA2a levels and dephosphorylation of PLN, leading to decreased SR Ca2+ load and impaired contractility. Thus, the strategy of altering SERCA2a and/or PLN levels or activity to restore perturbed SR Ca2+ uptake is a potential therapeutic tool for HF treatment. We will review here the role of CaMKII-dependent phosphorylation of PLN at Thr17 on cardiac function under physiological and pathological conditions.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Facultad de Medicina, Centro de Investigaciones Cardiovasculares, Conicet La Plata-Universidad Nacional de La Plata La Plata, Argentina
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
23
|
Vostrikov VV, Mote KR, Verardi R, Veglia G. Structural dynamics and topology of phosphorylated phospholamban homopentamer reveal its role in the regulation of calcium transport. Structure 2013; 21:2119-30. [PMID: 24207128 DOI: 10.1016/j.str.2013.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/07/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023]
Abstract
Phospholamban (PLN) inhibits the sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA), thereby regulating cardiac diastole. In membranes, PLN assembles into homopentamers that in both the phosphorylated and nonphosphorylated states have been proposed to form ion-selective channels. Here, we determined the structure of the phosphorylated pentamer using a combination of solution and solid-state nuclear magnetic resonance methods. We found that the pinwheel architecture of the homopentamer is preserved upon phosphorylation, with each monomer having an L-shaped conformation. The TM domains form a hydrophobic pore approximately 24 Å long and 2 Å in diameter, which is inconsistent with canonical Ca²⁺-selective channels. Phosphorylation, however, enhances the conformational dynamics of the cytoplasmic region of PLN, causing partial unwinding of the amphipathic helix. We propose that PLN oligomers act as storage for active monomers, keeping SERCA function within a physiological window.
Collapse
Affiliation(s)
- Vitaly V Vostrikov
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
24
|
Adameova A, Carnicka S, Rajtik T, Szobi A, Nemcekova M, Svec P, Ravingerova T. Upregulation of CaMKIIδ during ischaemia–reperfusion is associated with reperfusion-induced arrhythmias and mechanical dysfunction of the rat heart: involvement of sarcolemmal Ca2+-cycling proteins. Can J Physiol Pharmacol 2012; 90:1127-34. [DOI: 10.1139/y2012-019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) has been implicated in development of different phenotypes of myocardial ischaemia–reperfusion injury, its involvement in arrhythmogenesis and cardiac stunning is not sufficiently elucidated. Moreover, the mechanisms by which CaMKIIδ mediates disturbances in excitation–contraction coupling, are not exactly known. To investigate this, KN-93 (0.5 µmol/L), a CaMKII inhibitor, was administered before induction of global ischaemia and reperfusion in isolated Langendorff-perfused rat hearts. Expression of CaMKIIδ and the sarcollemal Ca2+-cycling proteins, known to be activated during reperfusion, was analyzed using immunoblotting. KN-93 reduced reperfusion-induced ectopic activity and the incidence of ventricular fibrillation. Likewise, the severity of arrhythmias was lower in KN-treated hearts. During the pre-ischaemia phase, neither inotropic nor chronotropic effects were elicited by KN-93, whereas post-ischaemic contractile recovery was significantly improved. Ischaemia–reperfusion increased the expression of CaMKIIδ and sodium–calcium exchanger (NCX1) proteins without any influence on the protein content of alpha 1c, a pore-forming subunit of L-type calcium channels (LTCCs). On the other hand, inhibition of CaMKII normalized changes in the expression of CaMKIIδ and NCX1. Taken together, CaMKIIδ seems to regulate its own turnover and to be an important component of cascade integrating NCX1, rather than LTCCs that promote ischaemia–reperfusion-induced contractile dysfunction and arrhythmias.
Collapse
Affiliation(s)
- Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Odbojarov 10, 832 32, Slovak Republic
| | - Slavka Carnicka
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence SAS NOREG; Bratislava, Slovak Republic
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Odbojarov 10, 832 32, Slovak Republic
| | - Adrian Szobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Odbojarov 10, 832 32, Slovak Republic
| | - Martina Nemcekova
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence SAS NOREG; Bratislava, Slovak Republic
| | - Pavel Svec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Odbojarov 10, 832 32, Slovak Republic
| | - Tana Ravingerova
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence SAS NOREG; Bratislava, Slovak Republic
| |
Collapse
|
25
|
Ca2+/calmodulin-dependent protein kinase inhibition suppresses post-ischemic arrhythmogenesis and mediates sinus bradycardic recovery in reperfusion. Int J Cardiol 2012; 159:112-8. [DOI: 10.1016/j.ijcard.2011.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/10/2011] [Accepted: 02/10/2011] [Indexed: 11/20/2022]
|
26
|
Koch SE, Gao X, Haar L, Jiang M, Lasko VM, Robbins N, Cai W, Brokamp C, Varma P, Tranter M, Liu Y, Ren X, Lorenz JN, Wang HS, Jones WK, Rubinstein J. Probenecid: novel use as a non-injurious positive inotrope acting via cardiac TRPV2 stimulation. J Mol Cell Cardiol 2012; 53:134-44. [PMID: 22561103 DOI: 10.1016/j.yjmcc.2012.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/28/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
Abstract
Probenecid is a highly lipid soluble benzoic acid derivative originally used to increase serum antibiotic concentrations. It was later discovered to have uricosuric effects and was FDA approved for gout therapy. It has recently been found to be a potent agonist of transient receptor potential vanilloid 2 (TRPV2). We have shown that this receptor is in the cardiomyocyte and report a positive inotropic effect of the drug. Using echocardiography, Langendorff and isolated myocytes, we measured the change in contractility and, using TRPV2(-/-) mice, proved that the effect was mediated by TRPV2 channels in the cardiomyocytes. Analysis of the expression of Ca(2+) handling and β-adrenergic signaling pathway proteins showed that the contractility was not increased through activation of the β-ADR. We propose that the response to probenecid is due to activation of TRPV2 channels secondary to SR release of Ca(2+).
Collapse
Affiliation(s)
- Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Said M, Becerra R, Valverde CA, Kaetzel MA, Dedman JR, Mundiña-Weilenmann C, Wehrens XH, Vittone L, Mattiazzi A. Calcium-calmodulin dependent protein kinase II (CaMKII): a main signal responsible for early reperfusion arrhythmias. J Mol Cell Cardiol 2011; 51:936-44. [PMID: 21888910 DOI: 10.1016/j.yjmcc.2011.08.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/28/2011] [Accepted: 08/12/2011] [Indexed: 11/19/2022]
Abstract
To explore whether CaMKII-dependent phosphorylation events mediate reperfusion arrhythmias, Langendorff perfused hearts were submitted to global ischemia/reperfusion. Epicardial monophasic or transmembrane action potentials and contractility were recorded. In rat hearts, reperfusion significantly increased the number of premature beats (PBs) relative to pre-ischemic values. This arrhythmic pattern was associated with a significant increase in CaMKII-dependent phosphorylation of Ser2814 on Ca(2+)-release channels (RyR2) and Thr17 on phospholamban (PLN) at the sarcoplasmic reticulum (SR). These phenomena could be prevented by the CaMKII-inhibitor KN-93. In transgenic mice with targeted inhibition of CaMKII at the SR membranes (SR-AIP), PBs were significantly decreased from 31±6 to 5±1 beats/3min with a virtually complete disappearance of early-afterdepolarizations (EADs). In mice with genetic mutation of the CaMKII phosphorylation site on RyR2 (RyR2-S2814A), PBs decreased by 51.0±14.7%. In contrast, the number of PBs upon reperfusion did not change in transgenic mice with ablation of both PLN phosphorylation sites (PLN-DM). The experiments in SR-AIP mice, in which the CaMKII inhibitor peptide is anchored in the SR membrane but also inhibits CaMKII regulation of L-type Ca(2+) channels, indicated a critical role of CaMKII-dependent phosphorylation of SR proteins and/or L-type Ca(2+) channels in reperfusion arrhythmias. The experiments in RyR2-S2814A further indicate that up to 60% of PBs related to CaMKII are dependent on the phosphorylation of RyR2-Ser2814 site and could be ascribed to delayed-afterdepolarizations (DADs). Moreover, phosphorylation of PLN-Thr17 and L-type Ca(2+) channels might contribute to reperfusion-induced PBs, by increasing SR Ca(2+) content and Ca(2+) influx.
Collapse
Affiliation(s)
- M Said
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Salas MA, Valverde CA, Sánchez G, Said M, Rodriguez JS, Portiansky EL, Kaetzel MA, Dedman JR, Donoso P, Kranias EG, Mattiazzi A. The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury. J Mol Cell Cardiol 2010; 48:1298-306. [PMID: 20060004 DOI: 10.1016/j.yjmcc.2009.12.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/27/2009] [Accepted: 12/20/2009] [Indexed: 02/01/2023]
Abstract
Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) plays an important role mediating apoptosis/necrosis during ischemia-reperfusion (IR). We explored the mechanisms of this deleterious effect. Langendorff perfused rat and transgenic mice hearts with CaMKII inhibition targeted to sarcoplasmic reticulum (SR-AIP) were subjected to global IR. The onset of reperfusion increased the phosphorylation of Thr(17) site of phospholamban, without changes in total protein, consistent with an increase in CaMKII activity. Instead, there was a proportional decrease in the phosphorylation of Ser2815 site of ryanodine receptors (RyR2) and the amount of RyR2 at the onset of reperfusion, i.e. the ratio Ser2815/RyR2 did not change. Inhibition of the reverse Na(+)/Ca(2+)exchanger (NCX) mode (KBR7943) diminished phospholamban phosphorylation, reduced apoptosis/necrosis and enhanced mechanical recovery. CaMKII-inhibition (KN-93), significantly decreased phospholamban phosphorylation, infarct area, lactate dehydrogenase release (LDH) (necrosis), TUNEL positive nuclei, caspase-3 activity, Bax/Bcl-2 ratio and Ca(2+)-induced mitochondrial swelling (apoptosis), and increased contractile recovery when compared with non-treated IR hearts or IR hearts pretreated with the inactive analog, KN-92. Blocking SR Ca(2+) loading and release (thapsigargin/dantrolene), mitochondrial Ca(2+) uniporter (ruthenium red/RU360), or mitochondrial permeability transition pore (cyclosporine A), significantly decreased infarct size, LDH release and apoptosis. SR-AIP hearts failed to show an increase in the phosphorylation of Thr(17) of phospholamban at the onset of reflow and exhibited a significant decrease in infarct size, apoptosis and necrosis respect to controls. The results reveal an apoptotic-necrotic pathway mediated by CaMKII-dependent phosphorylations at the SR, which involves the reverse NCX mode and the mitochondria as trigger and end effectors, respectively, of the cascade.
Collapse
Affiliation(s)
- Margarita A Salas
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, 60 y 120, (1900) La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vila-Petroff M, Mundiña-Weilenmann C, Lezcano N, Snabaitis AK, Huergo MA, Valverde CA, Avkiran M, Mattiazzi A. Ca(2+)/calmodulin-dependent protein kinase II contributes to intracellular pH recovery from acidosis via Na(+)/H(+) exchanger activation. J Mol Cell Cardiol 2009; 49:106-12. [PMID: 20026127 DOI: 10.1016/j.yjmcc.2009.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 12/20/2022]
Abstract
The Na(+)/H(+) exchanger (NHE-1) plays a key role in pH(i) recovery from acidosis and is regulated by pH(i) and the ERK1/2-dependent phosphorylation pathway. Since acidosis increases the activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in cardiac muscle, we examined whether CaMKII activates the exchanger by using pharmacological tools and highly specific genetic approaches. Adult rat cardiomyocytes, loaded with the pH(i) indicator SNARF-1/AM were subjected to different protocols of intracellular acidosis. The rate of pH(i) recovery from the acid load (dpH(i)/dt)-an index of NHE-1 activity in HEPES buffer or in NaHCO(3) buffer in the presence of inhibition of anion transporters-was significantly decreased by the CaMKII inhibitors KN-93 or AIP. pH(i) recovery from acidosis was faster in CaMKII-overexpressing myocytes than in overexpressing beta-galactosidase myocytes (dpH(i)/dt: 0.195+/-0.04 vs. 0.045+/-0.010 min(-)(1), respectively, n=8) and slower in myocytes from transgenic mice with chronic cardiac CaMKII inhibition (AC3-I) than in controls (AC3-C). Inhibition of CaMKII and/or ERK1/2 indicated that stimulation of NHE-1 by CaMKII was independent of and additive to the ERK1/2 cascade. In vitro studies with fusion proteins containing wild-type or mutated (Ser/Ala) versions of the C-terminal domain of NHE-1 indicate that CaMKII phosphorylates NHE-1 at residues other than the canonical phosphorylation sites for the kinase (Ser648, Ser703, and Ser796). These results provide new mechanistic insights and unequivocally demonstrate a role of the already multifunctional CaMKII on the regulation of the NHE-1 activity. They also prove clinically important in multiple disorders which, like ischemia/reperfusion injury or hypertrophy, are associated with increased NHE-1 and CaMKII.
Collapse
Affiliation(s)
- Martín Vila-Petroff
- Centro de Investigaciones Cardiovasculares, CCT-La Plata CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120 (1900) La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Catalucci D, Latronico MVG, Ceci M, Rusconi F, Young HS, Gallo P, Santonastasi M, Bellacosa A, Brown JH, Condorelli G. Akt increases sarcoplasmic reticulum Ca2+ cycling by direct phosphorylation of phospholamban at Thr17. J Biol Chem 2009; 284:28180-28187. [PMID: 19696029 DOI: 10.1074/jbc.m109.036566] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiomyocytes adapt to physical stress by increasing their size while maintaining cell function. The serine/threonine kinase Akt plays a critical role in this process of adaptation. We previously reported that transgenic overexpression of an active form of Akt (Akt-E40K) in mice results in increased cardiac contractility and cell size, as well as improved sarcoplasmic reticulum (SR) Ca(2+) handling. Because it is not fully elucidated, we decided to study the molecular mechanism by which Akt-E40K overexpression improves SR Ca(2+) handling. To this end, SR Ca(2+) uptake and the phosphorylation status of phospholamban (PLN) were evaluated in heart extracts from wild-type and Akt-E40K mice and mice harboring inducible and cardiac specific knock-out of phosphatidylinositol-dependent kinase-1, the upstream activator of Akt. Moreover, the effect of Akt was assessed in vitro by overexpressing a mutant Akt targeted preferentially to the SR, and by biochemical assays to evaluate potential interaction with PLN. We found that when activated, Akt interacts with and phosphorylates PLN at Thr(17), the Ca(2+)-calmodulin-dependent kinase IIdelta site, whereas silencing Akt signaling, through the knock-out of phosphatidylinositol-dependent kinase-1, resulted in reduced phosphorylation of PLN at Thr(17). Furthermore, overexpression of SR-targeted Akt in cardiomyocytes improved Ca(2+) handling without affecting cell size. Thus, we describe here a new mechanism whereby the preferential translocation of Akt to the SR is responsible for enhancement of contractility without stimulation of hypertrophy.
Collapse
Affiliation(s)
- Daniele Catalucci
- Istituto di Ricovero e Cura a Carattere Scientifico Multimedica, Milan 20138, Italy; Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Milan 20090, Italy; Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California 92093.
| | | | - Marcello Ceci
- Istituto di Ricovero e Cura a Carattere Scientifico Multimedica, Milan 20138, Italy
| | - Francesca Rusconi
- Istituto di Ricovero e Cura a Carattere Scientifico Multimedica, Milan 20138, Italy; Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Milan 20090, Italy
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paolo Gallo
- Istituto di Ricovero e Cura a Carattere Scientifico Multimedica, Milan 20138, Italy
| | - Marco Santonastasi
- Istituto di Ricovero e Cura a Carattere Scientifico Multimedica, Milan 20138, Italy
| | | | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Gianluigi Condorelli
- Istituto di Ricovero e Cura a Carattere Scientifico Multimedica, Milan 20138, Italy; Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California 92093; Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Milan 20090, Italy.
| |
Collapse
|
31
|
Kumar S, Hall RJC, Mani AR, Moore KP, Camici PG, Rimoldi OE, Williams AJ, Macleod KT. Myocardial stunning is associated with impaired calcium uptake by sarcoplasmic reticulum. Biochem Biophys Res Commun 2009; 387:77-82. [PMID: 19559670 DOI: 10.1016/j.bbrc.2009.06.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/20/2009] [Indexed: 11/29/2022]
Abstract
Myocardial stunning (temporary post-ischaemic contractile dysfunction) may be caused by oxidative stress and/or impaired myocyte calcium homeostasis. Regional myocardial stunning was induced in open-chest pigs (segment shortening reduced to 68.3+/-4.7% of baseline) by repetitive brief circumflex coronary occlusion (I/R). Reduced glutathione was depleted in stunned myocardium (1.34+/-0.06 vs. 1.77+/-0.11 nmol/mg, p=0.02 vs. remote myocardium) indicating regional oxidant stress, but no regional differences were observed in protein-bound 3-nitrotyrosine or S-nitrosothiol content. Repetitive I/R did not affect myocardial quantities of the sarcolemmal sodium-calcium exchanger, L-type channel, SR calcium ATPase and phospholamban, or the kinetics of ligand binding to L-type channels and SR calcium release channels. However, initial rates of oxalate-supported (45)Ca uptake by SR were impaired in stunned myocardium (41.3+/-13.5 vs. 73.0+/-15.6 nmol/min/mg protein, p=0.03). The ability of SR calcium ATPase to sequester cytosolic calcium is impaired in stunned myocardium. This is a potential mechanism underlying contractile dysfunction.
Collapse
Affiliation(s)
- Sanjay Kumar
- National Heart & Lung Institute, Imperial College, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Millart H, Alouane L, Oszust F, Chevallier S, Robinet A. Involvement of P2Y receptors in pyridoxal-5'-phosphate-induced cardiac preconditioning. Fundam Clin Pharmacol 2009; 23:279-92. [PMID: 19453760 DOI: 10.1111/j.1472-8206.2009.00677.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using an isolated non-working rat heart model, this study investigated the mechanisms of pharmacological pre-conditioning (PC) induced by P2Y receptor stimulation with pyridoxal-5'-phosphate (PLP). After 6-hydroxydopamine pretreatment and a 15-min stabilization period, isolated rat hearts were perfused for 25 min then subjected to 40 min of global ischemia and 30 min of reperfusion (I/R); exposed for 15 min to 0.05 microM PLP bracketed for 25 min with broad-spectrum P2 antagonists (suramin or PPADS) or with more specific P2Y antagonists (AMPalphaS or MRS2578), 1 microM each, followed by a 5-min PLP-free perfusion before I/R; treated during 25 min with either glybenclamide (GLY, 1 microM), 5-hydroxydecanoic acid (5-HD, 100 microM), U73122 (0.5 microM), H89 (1 microM), or KN93 (1 microM), with an infusion starting 5 min before PLP. The main endpoints were the rate-pressure product (RPP), creatine kinase (CK) release and area necrosis. Recovery of RPP, measured 5 min after reperfusion, was rapidly improved by PLP, blocked by the P2 antagonists, and decreased with the different inhibitors. Fifteen minutes after the end of ischemia, CK release reached maximal values in all groups. PLP provided significant protection, whereas the P2 antagonists, 5-HD, a mitochondrial selective K(ATP) antagonist and GLY a non-selective K(ATP) channel blocker, suppressed the protective effect on myocardial injury. The suppression of the cardioprotective effects of PLP by AMPalphaS, the PKA inhibitor (H89), and phospholipase C blocker (U73122) is in agreement with the P2Y11 receptor as a receptor for PLP-induced PC. The suppression of the cardioprotective effects of PLP by MRS2578 and U73122 is in agreement with the P2Y6 receptor as a receptor for PLP-induced PC. Pre-ischemic exposure to nanomolar concentrations of PLP is protective against I/R. P2Y11 and P2Y6 represents the most likely candidate receptors for PLP-induced cardiac PC.
Collapse
Affiliation(s)
- Hervé Millart
- Department of Pharmacology, E.A.3801, IFR53, Reims University Hospital 51, Rue Cognacq-Jay, 51095 Reims Cedex, France.
| | | | | | | | | |
Collapse
|
33
|
Reichelt ME, Willems L, Hack BA, Peart JN, Headrick JP. Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol 2008; 94:54-70. [DOI: 10.1113/expphysiol.2008.043554] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Talukder MAH, Kalyanasundaram A, Zuo L, Velayutham M, Nishijima Y, Periasamy M, Zweier JL. Is reduced SERCA2a expression detrimental or beneficial to postischemic cardiac function and injury? Evidence from heterozygous SERCA2a knockout mice. Am J Physiol Heart Circ Physiol 2008; 294:H1426-34. [PMID: 18203847 DOI: 10.1152/ajpheart.01016.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated that increased expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a improves myocardial contractility and Ca2+ handling at baseline and in disease conditions, including myocardial ischemia-reperfusion (I/R). Conversely, it has also been reported that pharmacological inhibition of SERCA might improve postischemic function in stunned hearts or in isolated myocardium following I/R. The goal of this study was to test how decreases in SERCA pump level/activity affect cardiac function following I/R. To address this question, we used a heterozygous SERCA2a knockout (SERCA2a+/-) mouse model with decreased SERCA pump levels and studied the effect of myocardial stunning (20-min ischemia followed by reperfusion) and infarction (30-min ischemia followed by reperfusion) following 60-min reperfusion. Our results demonstrate that postischemic myocardial relaxation was significantly impaired in SERCA2a+/- hearts with both stunning and infarction protocols. Interestingly, postischemic recovery of contractile function was comparable in SERCA2a+/- and wild-type hearts subjected to stunning. In contrast, following 30-min ischemia, postischemic contractile function was reduced in SERCA2a+/- hearts with significantly larger infarction. Rhod-2 spectrofluorometry revealed significantly higher diastolic intracellular Ca2+ in SERCA2a+/- hearts compared with wild-type hearts. Both at 30-min ischemia and 2-min reperfusion, intracellular Ca2+ levels were significantly higher in SERCA2a+/- hearts. Electron paramagnetic resonance spin trapping showed a similar extent of postischemic free-radical generation in both strains. These data provide direct evidence that functional SERCA2a level, independent of oxidative stress, is crucial for postischemic myocardial function and salvage during I/R.
Collapse
Affiliation(s)
- M A Hassan Talukder
- Davis Heart and Lung Research Institute, and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Mattiazzi A, Vittone L, Mundiña-Weilenmann C. Ca2+/calmodulin-dependent protein kinase: a key component in the contractile recovery from acidosis. Cardiovasc Res 2006; 73:648-56. [PMID: 17222810 DOI: 10.1016/j.cardiores.2006.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/01/2006] [Accepted: 12/04/2006] [Indexed: 11/24/2022] Open
Abstract
Intracellular acidosis exerts substantial effects on the contractile performance of the heart. Soon after the onset of acidosis, contractility diminishes, largely due to a decrease in myofilament Ca(2+) responsiveness. This decrease in contractility is followed by a progressive recovery that occurs despite the persistent acidosis. This recovery is the result of different mechanisms that converge to increase diastolic Ca(2+) levels and Ca(2+) transient amplitude. Recent experimental evidence indicates that activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an essential step in the sequence of events that increases the Ca(2+) transient amplitude and produces contractile recovery. CaMKII may act as an amplifier, providing compensatory pathways to offset the inhibitory effects of acidosis on many of the Ca(2+) handling proteins. CaMKII-induced phosphorylation of the SERCA2a regulatory protein phospholamban (PLN) has the potential to promote an increase in sarcoplasmic reticulum (SR) Ca(2+) uptake and SR Ca(2+) load, and is a likely candidate to mediate the mechanical recovery from acidosis. In addition, CaMKII-dependent phosphorylation of proteins other than PLN may also contribute to this recovery.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120. (1900) La Plata, Argentina.
| | | | | |
Collapse
|
36
|
Vila-Petroff M, Salas MA, Said M, Valverde CA, Sapia L, Portiansky E, Hajjar RJ, Kranias EG, Mundiña-Weilenmann C, Mattiazzi A. CaMKII inhibition protects against necrosis and apoptosis in irreversible ischemia-reperfusion injury. Cardiovasc Res 2006; 73:689-98. [PMID: 17217936 DOI: 10.1016/j.cardiores.2006.12.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/14/2006] [Accepted: 12/04/2006] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of cardiac excitation-contraction coupling (ECC) as well as in apoptotic signaling and adverse remodeling. The goal of the present study is to investigate the role of CaMKII in irreversible ischemia and reperfusion (I/R) injury. METHODS Isovolumic Langendorff perfused rat hearts were subjected to global no-flow I/R (45 min/120 min), and isolated myocytes were subjected to a protocol of simulated I/R (45 min simulated ischemia/60 min reoxygenation) either in the absence or presence of CaMKII inhibition [KN-93 (KN) or the CaMKII inhibitory peptide (AIP)]. RESULTS In I/R hearts, an increase in CaMKII activity at the beginning of reperfusion was confirmed by the significantly increased phosphorylation of the Thr(17) site of phospholamban. In the presence of KN, contractile recovery at the end of reperfusion was almost double that of I/R hearts. This recovery was associated with a significant decrease in the extent of infarction, lactate dehydrogenase release (necrosis), TUNEL-positive cells, caspase-3 activity, and an increase in the Bcl-2/Bax ratio (apoptosis). In isolated myocytes, both KN and AIP prevented simulated I/R-induced spontaneous contractile activity and cell mortality. Similar results were obtained when inhibiting the reverse mode Na(+)/Ca(2+) exchanger (NCX) with KB-R7943, sarcoplasmic reticulum (SR) function with ryanodine and thapsigargin, or SR Ca(2+) release with tetracaine. In contrast, overexpression of CaMKII decreased cell viability from 52+/-3% to 26+/-2%. CONCLUSIONS Taken together, the present findings are the first to establish CaMKII as a fundamental component of a cascade of events integrating the NCX, the SR, and mitochondria that promote cellular apoptosis and necrosis in irreversible I/R injury.
Collapse
Affiliation(s)
- Martin Vila-Petroff
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, 60 y 120, (1900) La Plata, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hund TJ, Rudy Y. A role for calcium/calmodulin-dependent protein kinase II in cardiac disease and arrhythmia. Handb Exp Pharmacol 2006:201-20. [PMID: 16610345 DOI: 10.1007/3-540-29715-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
More than 20 years have passed since the discovery that a collection of specific calcium/calmodulin-dependent phosphorylation events is the result of a single multifunctional kinase. Since that time, we have learned a great deal about this multifunctional and ubiquitous kinase, known today as calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII is interesting not only for its widespread distribution and broad specificity but also for its biophysical properties, most notably its activation by the critical second messenger complex calcium/calmodulin and its autophosphorylating capability. A central role for CaMKII has been identified in regulating a diverse array of fundamental cellular activities. Furthermore, altered CaMKII activity profoundly impacts function in the brain and heart. Recent findings that CaMKII expression in the heart changes during hypertrophy, heart failure, myocardial ischemia, and infarction suggest that CaMKII may be a viable therapeutic target for patients suffering from common forms of heart disease.
Collapse
Affiliation(s)
- T J Hund
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, 660 S. Euclid Ave., Campus Box 8118, Saint Louis, MO 63118, USA.
| | | |
Collapse
|
38
|
Chen L, Lu XY, Li J, Fu JD, Zhou ZN, Yang HT. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol 2005; 290:C1221-9. [PMID: 16306124 DOI: 10.1152/ajpcell.00526.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that intermittent high-altitude (IHA) hypoxia significantly attenuates ischemia-reperfusion (I/R) injury-induced excessive increase in resting intracellular Ca(2+) concentrations ([Ca(2+)](i)). Because the sarcoplasmic reticulum (SR) and Na(+)/Ca(2+) exchanger (NCX) play crucial roles in regulating [Ca(2+)](i) and both are dysfunctional during I/R, we tested the hypothesis that IHA hypoxia may prevent I/R-induced Ca(2+) overload by maintaining Ca(2+) homeostasis via SR and NCX mechanisms. We thus determined the dynamics of Ca(2+) transients and cell shortening during preischemia and I/R injury in ventricular cardiomyocytes from normoxic and IHA hypoxic rats. IHA hypoxia did not affect the preischemic dynamics of Ca(2+) transients and cell shortening, but it significantly suppressed the I/R-induced increase in resting [Ca(2+)](i) levels and attenuated the depression of the Ca(2+) transients and cell shortening during reperfusion. Moreover, IHA hypoxia significantly attenuated I/R-induced depression of the protein contents of SR Ca(2+) release channels and/or ryanodine receptors (RyRs) and SR Ca(2+) pump ATPase (SERCA2) and SR Ca(2+) release and uptake. In addition, a delayed decay rate time constant of Ca(2+) transients and cell shortening of Ca(2+) transients observed during ischemia was accompanied by markedly inhibited NCX currents, which were prevented by IHA hypoxia. These findings indicate that IHA hypoxia may preserve Ca(2+) homeostasis and contraction by preserving RyRs and SERCA2 proteins as well as NCX activity during I/R.
Collapse
Affiliation(s)
- Le Chen
- Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, 225 Chong Qing Nan Rd., #1 Bldg., Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
39
|
García-Rivello H, Taranda J, Said M, Cabeza-Meckert P, Vila-Petroff M, Scaglione J, Ghio S, Chen J, Lai C, Laguens RP, Lloyd KC, Hertig CM. Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle. Am J Physiol Heart Circ Physiol 2005; 289:H1153-60. [PMID: 15863464 DOI: 10.1152/ajpheart.00048.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuregulin receptor tyrosine kinase Erb-b4, initially linked to early cardiac development, is shown here to play a critical role in adult cardiac function. In wild-type mice, Erb-b4 protein localized to Z lines and to intercalated disks, suggesting a role in subcellular and intercellular communications of cardiomyocytes. Conditional inactivation of erb-b4 in ventricular muscle cells led to a severe dilated cardiomyopathy, characterized by thinned ventricular walls with eccentric hypertrophy, reduced contractility, and delayed conduction. This cardiac dysfunction may account for premature death in adult erb-b4-knockout mice. This study establishes a critical role for Erb-b4 in the maintenance of normal postnatal cardiac structure and function.
Collapse
Affiliation(s)
- Hernán García-Rivello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xie Y, Zhu Y, Zhu WZ, Chen L, Zhou ZN, Yuan WJ, Yang HT. Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2005; 288:H2594-602. [PMID: 15637115 DOI: 10.1152/ajpheart.00926.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardioprotection by intermittent high-altitude (IHA) hypoxia against ischemia-reperfusion (I/R) injury is associated with Ca(2+) overload reduction. Phospholamban (PLB) phosphorylation relieves cardiac sarcoplasmic reticulum (SR) Ca(2+)-pump ATPase, a critical regulator in intracellular Ca(2+) cycling, from inhibition. To test the hypothesis that IHA hypoxia increases PLB phosphorylation and that such an effect plays a role in cardioprotection, we compared the time-dependent changes in the PLB phosphorylation at Ser(16) (PKA site) and Thr(17) (CaMKII site) in perfused normoxic rat hearts with those in IHA hypoxic rat hearts submitted to 30-min ischemia (I30) followed by 30-min reperfusion (R30). IHA hypoxia improved postischemic contractile recovery, reduced the maximum extent of ischemic contracture, and attenuated I/R-induced depression in Ca(2+)-pump ATPase activity. Although the PLB protein levels remained constant during I/R in both groups, Ser(16) phosphorylation increased at I30 and 1 min of reperfusion (R1) but decreased at R30 in normoxic hearts. IHA hypoxia upregulated the increase further at I30 and R1. Thr(17) phosphorylation decreased at I30, R1, and R30 in normoxic hearts, but IHA hypoxia attenuated the depression at R1 and R30. Moreover, PKA inhibitor H89 abolished IHA hypoxia-induced increase in Ser(16) phosphorylation, Ca(2+)-pump ATPase activity, and the recovery of cardiac performance after ischemia. CaMKII inhibitor KN-93 also abolished the beneficial effects of IHA hypoxia on Thr(17) phosphorylation, Ca(2+)-pump ATPase activity, and the postischemic contractile recovery. These findings indicate that IHA hypoxia mitigates I/R-induced depression in SR Ca(2+)-pump ATPase activity by upregulating dual-site PLB phosphorylation, which may consequently contribute to IHA hypoxia-induced cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Yan Xie
- Laboratory of Molecular Cardiology, Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical Univ., Shanghai, China
| | | | | | | | | | | | | |
Collapse
|