1
|
Battillo DJ, Remchak MME, Shah AM, Malin SK. Impact of Insulin-Induced Relative Hypoglycemia on Vascular Insulin Sensitivity and Central Hemodynamics in Prediabetes. J Clin Endocrinol Metab 2025; 110:e423-e431. [PMID: 38491968 PMCID: PMC11747690 DOI: 10.1210/clinem/dgae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
CONTEXT Relative hypoglycemia (RH) is linked to sympathetic responses that can alter vascular function in individuals with type 2 diabetes. However, less is known about the role of RH on hemodynamics or metabolic insulin sensitivity in prediabetes. OBJECTIVE Determine if RH alters peripheral endothelial function or central hemodynamics to a greater extent in those with prediabetes vs normoglycemia. METHODS Seventy adults with obesity were classified using ADA criteria as prediabetes (n = 34 (28 F); HbA1c = 6.02% ± 0.1%) or normoglycemia (n = 36 (30 F); HbA1c = 5.4% ± 0.0%). Brachial artery endothelial function, skeletal muscle capillary perfusion, and aortic waveforms were assessed at 0 and 120 minutes of a euglycemic clamp (40 mU/m2/min, 90 mg/dL). Plasma nitrate/nitrite and endothelin-1 were measured as surrogates of nitric oxide-mediated vasodilation and vasoconstriction, respectively. RH was defined as the drop in glucose (%) from fasting to clamp steady state. RESULTS There were no differences in age, weight, or VO2max between groups. The prediabetes group had higher HbA1c (P < .01) and a greater drop in glucose in response to insulin (14% vs 8%; P = .03). Further, heart rate increased in normoglycemia compared to prediabetes (P < .01), while forward wave (Pf) decreased in prediabetes (P = .04). Insulin also tended to reduce arterial stiffness in normoglycemia vs prediabetes (P = .07), despite similar increases in preocclusion diameter (P = .02), blood flow (P = .02), and lower augmentation index (P ≤ .05). CONCLUSION Compared with normoglycemia, insulin-induced RH corresponded with a blunted rise in heart rate and drop in Pf during insulin infusion in adults with prediabetes, independent of changes in peripheral endothelial function.
Collapse
Affiliation(s)
- Daniel J Battillo
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Ankit M Shah
- Division of Endocrinology, Metabolism & Nutrition; Rutgers University, New Brunswick, NJ 08901, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Division of Endocrinology, Metabolism & Nutrition; Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Shariffi B, Harper JL, McMillan NJ, Gonsalves AM, Bond BJ, Pipkins AM, Shoemaker LN, Manrique-Acevedo C, Padilla J, Limberg JK. Effect of insulin on indices of cerebral blood flow and cerebrovascular compliance in young adults. Am J Physiol Heart Circ Physiol 2025; 328:H21-H28. [PMID: 39584591 PMCID: PMC11901331 DOI: 10.1152/ajpheart.00668.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Insulin has important vasodilatory effects in the peripheral circulation, but less is known about insulin's role in cerebrovascular control. Herein, we hypothesized both systemic (intravenous) and local (intranasal) insulin administration would increase indices of cerebral blood flow and reduce cerebrovascular compliance (Ci) in young adults. Participants were assigned to one of four separate protocols. Middle cerebral artery blood velocity (MCAv, transcranial Doppler ultrasound) and blood pressure (BP, finger photoplethysmography) were measured at baseline and at 1) 2 min of carbon dioxide (CO2) air breathing (high flow control), 2) 60 min of euglycemic intravenous insulin infusion (40 mU/m2 body surface area/min), 3) 60 min following 160 IU of intranasal insulin, 4) 60 minutes of time control. Ci was calculated (modified Windkessel model). Intravenous insulin increased serum insulin (6.0 ± 2.6 to 52.7 ± 12.7 μIU/mL, P < 0.001), whereas serum insulin was reduced following intranasal insulin (6.9 ± 4.5 to 4.9 ± 1.8 μIU/mL, P = 0.030). MCAv increased in response to CO2 (60 ± 13 to 69 ± 11 cm/s, P < 0.001) but was unchanged with time control (50 ± 7 to 49 ± 8, P = 0.658) and both insulin conditions (intravenous: 61 ± 13 to 62 ± 17 cm/s, P = 0.531; intranasal: 57 ± 12 to 51 ± 15 cm/s; p = 0.061). In contrast, Ci remained at baseline levels over time (P = 0.438) and was reduced from baseline under CO2 and both insulin conditions (CO2, P < 0.001; intravenous, P = 0.021; intranasal, P = 0.001). Contrary to our hypothesis, there was no effect of systemic or local insulin administration on resting MCAv in young adults; however, both systemic and local insulin administration reduced Ci. These findings advance our understanding of the cerebrovascular response to acute insulin exposure.NEW & NOTEWORTHY Insulin has important vasodilatory effects in the peripheral circulation, but less is known about the role of insulin in cerebrovascular control. Contrary to our hypothesis, there was no effect of systemic (intravenous) nor local (intranasal) insulin administration on middle cerebral artery blood velocity; however, both systemic and local insulin administration reduced cerebrovascular compliance. Our findings advance our understanding of the cerebrovascular response to insulin and may have implications in the context of known metabolic disturbances.
Collapse
Affiliation(s)
- Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Anna M Gonsalves
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Braden J Bond
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Aubrey M Pipkins
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Leena N Shoemaker
- School of Kinesiology, Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Camila Manrique-Acevedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
3
|
McMillan NJ, Jacob DW, Shariffi B, Harper JL, Foster GE, Manrique-Acevedo C, Padilla J, Limberg JK. Effect of acute intranasal insulin administration on muscle sympathetic nerve activity in healthy young adults. Am J Physiol Heart Circ Physiol 2024; 327:H000. [PMID: 38787381 PMCID: PMC11390129 DOI: 10.1152/ajpheart.00253.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Systemic insulin increases muscle sympathetic nerve activity (MSNA) via both central actions within the brainstem and peripheral activation of the arterial baroreflex. Augmented MSNA during hyperinsulinemia likely restrains peripheral vasodilation and contributes to the maintenance of blood pressure (BP). However, in the absence of insulin action within the peripheral vasculature, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans remains unknown. Herein, we hypothesized intranasal insulin administration would increase MSNA and BP in healthy young adults. Participants were assigned to time control [TC, n = 13 (5 females/8 males), 28 ± 1 yr] or 160 IU of intranasal insulin administered over 5 min [n = 15 (5 females/10 males), 26 ± 2 yr]; five (1 female/4 males) participants completed both conditions. MSNA (fibular microneurography), BP (finger photoplethysmography), and leg blood flow (LBF, femoral Doppler ultrasound) were assessed at baseline, and 15 and 30 min following insulin administration. Leg vascular conductance [LVC = (LBF ÷ mean BP) × 100] was calculated. Venous insulin and glucose concentrations remained unchanged throughout (P > 0.05). Following intranasal insulin administration, MSNA (burst frequency; baseline = 100%; minute 15, 121 ± 8%; minute 30, 118 ± 6%; P = 0.009, n = 7) and mean BP (baseline = 100%; minute 15, 103 ± 1%; minute 30, 102 ± 1%; P = 0.003) increased, whereas LVC decreased (baseline = 100%; minute 15, 93 ± 3%; minute 30, 99 ± 3%; P = 0.03). In contrast, MSNA, mean BP, and LVC were unchanged in TC participants (P > 0.05). We provide the first evidence that intranasal insulin administration in healthy young adults acutely increases MSNA and BP and decreases LVC. These results enhance mechanistic understanding of the sympathetic and peripheral hemodynamic response to insulin.NEW & NOTEWORTHY Systemic insulin increases muscle sympathetic nerve activity (MSNA) via central actions within the brainstem and peripheral activation of the arterial baroreflex. In the absence of peripheral insulin action, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans was unknown. We provide the first evidence that intranasal insulin administration increases MSNA and blood pressure and reduces leg vascular conductance. These results enhance mechanistic understanding of the sympathetic and hemodynamic response to insulin.
Collapse
Affiliation(s)
- Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Glen E Foster
- School of Health and Exercise Sciences, Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, Canada
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Takeshita Y, Nomura C, Murai H, Mukai Y, Hirai T, Hamaoka T, Tokuno S, Tanaka T, Goto H, Nakano Y, Usui S, Nakajima K, Takamura M, Takamura T. Study Protocol for the Pleiotropic Effects of Sodium-Glucose Cotransporter 2 Inhibitor on Organ-Specific Sympathetic Nerve Activity and Insulin Sensitivity in Participants with Type 2 Diabetes. Diabetes Ther 2024; 15:269-280. [PMID: 37883004 PMCID: PMC10786788 DOI: 10.1007/s13300-023-01497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Hyperinsulinemia and hyperglycemia are associated with exaggerated systemic sympathetic nerve activity (SNA) in patients with type 2 diabetes. Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower insulin levels, whereas sulfonylureas increase insulin levels. We will test whether these two classes of antidiabetic agents have different effects on SNA. METHODS The present study is an ongoing, 24-week, one-center (only Kanazawa University Hospital), open-label, randomized, parallel trial (jRCTs 041200035). Participants with type 2 diabetes with multiple atherosclerosis risk factors are randomly assigned in a 1:1 manner to receive 2.5 mg luseogliflozin or 0.5 mg glimepiride once daily. The sample size was calculated to be 14 in each group, with a significance level of 0.05 and a power of 0.80. The design required 40 evaluable study participants. Our primary endpoint will be the change in muscle SNA (MSNA). The secondary endpoints included organ-specific insulin sensitivity measured by a hyperinsulinemic-euglycemic clamp study using an artificial pancreas combined with a stable isotope-labeled glucose infusion, bioelectrical impedance analysis, and organ-specific (cardiac, renal, and hepatic) 123I-meta-iodobenzylguanidine (MIBG) innervation imaging. PLANNED OUTCOMES Study recruitment started in April 2020 and will end in June 2024, with 40 participants randomized into the two groups. The treatment follow-up of the participants is currently ongoing and is due to finish by March 2025. TRIAL REGISTRATION The study protocol has been approved by the Certified Review Board, Kanazawa University, Ishikawa, Japan, in accordance with the guidelines stipulated in the Declaration of Helsinki (CRB4180005, 2019-001). This trial is registered with the Japan Registry of Clinical Trials, jRCTs 041200035.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Chiaki Nomura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hisayoshi Murai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yusuke Mukai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tadayuki Hirai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takuto Hamaoka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Shota Tokuno
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takeo Tanaka
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
- Department of Comprehensive Metabology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
5
|
Adel B, Elgharbawy NM, Shahin MM, Abo-Elfadl AA, Saad KM. Insulin-euglycemia therapy in acute aluminum phosphide poisoning: a randomized clinical trial. Clin Toxicol (Phila) 2023; 61:1032-1039. [PMID: 38096041 DOI: 10.1080/15563650.2023.2279495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/31/2023] [Indexed: 01/26/2024]
Abstract
Introduction: Aluminum phosphide is a pesticide that is used in developing countries. Aluminum phosphide poisoning has a high mortality rate and there is no known antidote. This study aimed to evaluate the safety and efficacy of insulin-euglycemia therapy in the management of patients with acute aluminum phosphide poisoning.Methods: This trial was prospectively registered in the Pan African Clinical Trials Registry (PACTR202008534546951). A total of 108 patients were randomly allocated to two groups. The intervention group received insulin-euglycemia therapy in addition to standard treatment (norepinephrine and supportive care); the control group received standard treatment plus placebo. The main outcome measures were survival, blood pressure, and laboratory investigations.Results: The two groups had similar baseline parameters. Insulin-euglycemia therapy was associated with a significant reduction in mortality compared with that in the control group (64.8 percent and 96.3 percent, respectively; P value <0.001). Patients randomized to insulin-euglycemia also required lower doses of vasopressors (median was 7 mg versus 26 mg in control group; P value 0.006) and fewer patients needed intubation (61.1 percent versus 81.5 percent in the control group; P value 0.019). Insulin-euglycemia therapy significantly improved blood pressure (systolic, diastolic, and mean arterial pressure) (median at 6h post-admission was 80 mmHg, 55 mmHg and 65 mmHg compared with 20 mmHg, 10 mmHg and 13 mmHg in the control group respectively; P value <0.001) and bicarbonate and lactate concentrations.Conclusion: Insulin-euglycemia therapy appears to be a safe and effective treatment option for patients with aluminum phosphide poisoning. Vasopressor only therapy was associated with very poor outcomes in acute aluminum phosphide poisoning.
Collapse
Affiliation(s)
- Basma Adel
- Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta, Egypt
| | | | - Marwa Mohamed Shahin
- Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta, Egypt
| | - Arwa Ahmed Abo-Elfadl
- Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta, Egypt
| | - Khaled Mahmoud Saad
- Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Young BE, Padilla J, Shoemaker JK, Curry TB, Fadel PJ, Limberg JK. Sympathetic transduction to blood pressure during euglycemic-hyperinsulinemia in young healthy adults: role of burst amplitude. Am J Physiol Regul Integr Comp Physiol 2023; 324:R536-R546. [PMID: 36802950 PMCID: PMC10027119 DOI: 10.1152/ajpregu.00162.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Insulin acts centrally to stimulate sympathetic vasoconstrictor outflow to skeletal muscle and peripherally to promote vasodilation. Given these divergent actions, the "net effect" of insulin on the transduction of muscle sympathetic nerve activity (MSNA) into vasoconstriction and thus, blood pressure (BP) remains unclear. We hypothesized that sympathetic transduction to BP would be attenuated during hyperinsulinemia compared with baseline. In 22 young healthy adults, MSNA (microneurography), and beat-to-beat BP (Finometer or arterial catheter) were continuously recorded, and signal-averaging was performed to quantify the mean arterial pressure (MAP) and total vascular conductance (TVC; Modelflow) responses following spontaneous bursts of MSNA at baseline and during a euglycemic-hyperinsulinemic clamp. Hyperinsulinemia significantly increased MSNA burst frequency and mean burst amplitude (baseline: 46 ± 6 au; insulin: 65 ± 16 au, P < 0.001) but did not alter MAP. The peak MAP (baseline: 3.2 ± 1.5 mmHg; insulin: 3.0 ± 1.9 mmHg, P = 0.67) and nadir TVC (P = 0.45) responses following all MSNA bursts were not different between conditions indicating preserved sympathetic transduction. However, when MSNA bursts were segregated into quartiles based on their amplitudes at baseline and compared with similar amplitude bursts during hyperinsulinemia, the peak MAP and TVC responses were blunted (e.g., largest burst quartile: MAP, baseline: Δ4.4 ± 1.7 mmHg; hyperinsulinemia: Δ3.0 ± 0.8 mmHg, P = 0.02). Notably, ∼15% of bursts during hyperinsulinemia exceeded the size of any burst at baseline, yet the MAP/TVC responses to these larger bursts (MAP, Δ4.9 ± 1.4 mmHg) did not differ from the largest baseline bursts (P = 0.47). These findings indicate that increases in MSNA burst amplitude contribute to the overall maintenance of sympathetic transduction during hyperinsulinemia.
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | | | - Timothy B Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
7
|
Manrique-Acevedo C, Soares RN, Smith JA, Park LK, Burr K, Ramirez-Perez FI, McMillan NJ, Ferreira-Santos L, Sharma N, Olver TD, Emter CA, Parks EJ, Limberg JK, Martinez-Lemus LA, Padilla J. Impact of sex and diet-induced weight loss on vascular insulin sensitivity in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2023; 324:R293-R304. [PMID: 36622084 PMCID: PMC9942885 DOI: 10.1152/ajpregu.00249.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Rogerio N Soares
- NextGen Precision Health, University of Missouri, Columbia, Missouri
| | - James A Smith
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri
| | | | - Neil J McMillan
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Neekun Sharma
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Craig A Emter
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Elizabeth J Parks
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Pettit-Mee RJ, Power G, Cabral-Amador FJ, Ramirez-Perez FI, Nogueira Soares R, Sharma N, Liu Y, Christou DD, Kanaley JA, Martinez-Lemus LA, Manrique-Acevedo CM, Padilla J. Endothelial HSP72 is not reduced in type 2 diabetes nor is it a key determinant of endothelial insulin sensitivity. Am J Physiol Regul Integr Comp Physiol 2022; 323:R43-R58. [PMID: 35470695 DOI: 10.1152/ajpregu.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired endothelial insulin signaling and consequent blunting of insulin-induced vasodilation is a feature of type 2 diabetes (T2D) that contributes to vascular disease and glycemic dysregulation. However, the molecular mechanisms underlying endothelial insulin resistance remain poorly known. Herein, we tested the hypothesis that endothelial insulin resistance in T2D is attributed to reduced expression of heat shock protein 72(HSP72). HSP72 is a cytoprotective chaperone protein that can be upregulated with heating and is reported to promote insulin sensitivity in metabolically active tissues, in part via inhibition of JNK activity. Accordingly, we further hypothesized that, in T2D individuals, seven days of passive heat treatment via hot water immersion to waist-level would improve leg blood flow responses to an oral glucose load (i.e., endogenous insulin stimulation) via induction of endothelial HSP72. In contrast, we found that: 1) endothelial insulin resistance in T2D mice and humans was not associated with reduced HSP72 in aortas and venous endothelial cells, respectively; 2) after passive heat treatment, improved leg blood flow responses to an oral glucose load did not parallel with increased endothelial HSP72; 3) downregulation of HSP72 (via small-interfering RNA) or upregulation of HSP72 (via heating) in cultured endothelial cells did not impair or enhance insulin signaling, respectively, nor was JNK activity altered. Collectively, these findings do not support the hypothesis that reduced HSP72 is a key driver of endothelial insulin resistance in T2D but provide novel evidence that lower-body heating may be an effective strategy for improving leg blood flow responses to glucose ingestion-induced hyperinsulinemia.
Collapse
Affiliation(s)
- Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | | | | | | | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Ying Liu
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Luis A Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO, United States.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila M Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine University of Missouri, Columbia, MO, United States.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
McMillan NJ, Soares RN, Harper JL, Shariffi B, Moreno-Cabañas A, Curry TB, Manrique-Acevedo C, Padilla J, Limberg JK. Role of the arterial baroreflex in the sympathetic response to hyperinsulinemia in adult humans. Am J Physiol Endocrinol Metab 2022; 322:E355-E365. [PMID: 35187960 PMCID: PMC8993537 DOI: 10.1152/ajpendo.00391.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) increases during hyperinsulinemia, primarily attributed to central nervous system effects. Whether peripheral vasodilation induced by insulin further contributes to increased MSNA via arterial baroreflex-mediated mechanisms requires further investigation. Accordingly, we examined baroreflex modulation of the MSNA response to hyperinsulinemia. We hypothesized that rescuing peripheral resistance with coinfusion of the vasoconstrictor phenylephrine would attenuate the MSNA response to hyperinsulinemia. We further hypothesized that the insulin-mediated increase in MSNA would be recapitulated with another vasodilator (sodium nitroprusside, SNP). In 33 young healthy adults (28 M/5F), MSNA (microneurography) and arterial blood pressure (BP, Finometer/brachial catheter) were measured, and total peripheral resistance (TPR, ModelFlow) and baroreflex sensitivity were calculated at rest and during intravenous infusion of insulin (n = 20) or SNP (n = 13). A subset of participants receiving insulin (n = 7) was coinfused with phenylephrine. Insulin infusion decreased TPR (P = 0.01) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity or BP (P > 0.05). Coinfusion with phenylephrine returned TPR and MSNA to baseline, with no effect on arterial baroreflex sensitivity (P > 0.05). Similar to insulin, SNP decreased TPR (P < 0.02) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity (P > 0.12). Acute hyperinsulinemia shifts the baroreflex stimulus-response curve to higher MSNA without changing sensitivity, likely due to insulin's peripheral vasodilatory effects. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.NEW & NOTEWORTHY We hypothesized that elevation in muscle sympathetic nervous system activity (MSNA) during hyperinsulinemia is mediated by its peripheral vasodilator effect on the arterial baroreflex. Using three separate protocols in humans, we observed increases in both MSNA and cardiac output during hyperinsulinemia, which we attributed to the baroreflex response to peripheral vasodilation induced by insulin. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.
Collapse
Affiliation(s)
- Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Alfonso Moreno-Cabañas
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | - Timothy B Curry
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Limberg JK, Soares RN, Padilla J. Role of the Autonomic Nervous System in the Hemodynamic Response to Hyperinsulinemia-Implications for Obesity and Insulin Resistance. Curr Diab Rep 2022; 22:169-175. [PMID: 35247145 PMCID: PMC9012695 DOI: 10.1007/s11892-022-01456-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Herein, we summarize recent advances which provide new insights into the role of the autonomic nervous system in the control of blood flow and blood pressure during hyperinsulinemia. We also highlight remaining gaps in knowledge as it pertains to the translation of findings to relevant human chronic conditions such as obesity, insulin resistance, and type 2 diabetes. RECENT FINDINGS Our findings in insulin-sensitive adults show that increases in muscle sympathetic nerve activity with hyperinsulinemia do not result in greater sympathetically mediated vasoconstriction in the peripheral circulation. Both an attenuation of α-adrenergic-receptor vasoconstriction and augmented β-adrenergic vasodilation in the setting of high insulin likely explain these findings. In the absence of an increase in sympathetically mediated restraint of peripheral vasodilation during hyperinsulinemia, blood pressure is supported by increases in cardiac output in insulin-sensitive individuals. We highlight a dynamic interplay between central and peripheral mechanisms during hyperinsulinemia to increase sympathetic nervous system activity and maintain blood pressure in insulin-sensitive adults. Whether these results translate to the insulin-resistant condition and implications for long-term cardiovascular regulation warrants further exploration.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO, 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Greenlund IM, Carter JR. Sympathetic neural responses to sleep disorders and insufficiencies. Am J Physiol Heart Circ Physiol 2022; 322:H337-H349. [PMID: 34995163 PMCID: PMC8836729 DOI: 10.1152/ajpheart.00590.2021] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Short sleep duration and poor sleep quality are associated with cardiovascular risk, and sympathetic nervous system (SNS) dysfunction appears to be a key contributor. The present review will characterize sympathetic function across several sleep disorders and insufficiencies in humans, including sleep deprivation, insomnia, narcolepsy, and obstructive sleep apnea (OSA). We will focus on direct assessments of sympathetic activation, e.g., plasma norepinephrine and muscle sympathetic nerve activity, but include heart rate variability (HRV) when direct assessments are lacking. The review also highlights sex as a key biological variable. Experimental models of total sleep deprivation and sleep restriction are converging to support several epidemiological studies reporting an association between short sleep duration and hypertension, especially in women. A systemic increase of SNS activity via plasma norepinephrine is present with insomnia and has also been confirmed with direct, regionally specific evidence from microneurographic studies. Narcolepsy is characterized by autonomic dysfunction via both HRV and microneurographic studies but with opposing conclusions regarding SNS activation. Robust sympathoexcitation is well documented in OSA and is related to baroreflex and chemoreflex dysfunction. Treatment of OSA with continuous positive airway pressure results in sympathoinhibition. In summary, sleep disorders and insufficiencies are often characterized by sympathoexcitation and/or sympathetic/baroreflex dysfunction, with several studies suggesting women may be at heightened risk.
Collapse
Affiliation(s)
- Ian M. Greenlund
- 1Department of Health and Human Development, Montana State University, Bozeman, Montana,2Department of Psychology, Montana State University, Bozeman, Montana
| | - Jason R. Carter
- 1Department of Health and Human Development, Montana State University, Bozeman, Montana,2Department of Psychology, Montana State University, Bozeman, Montana
| |
Collapse
|
13
|
Limberg JK, Soares RN, Power G, Harper JL, Smith JA, Shariffi B, Jacob DW, Manrique-Acevedo C, Padilla J. Hyperinsulinemia blunts sympathetic vasoconstriction: a possible role of β-adrenergic activation. Am J Physiol Regul Integr Comp Physiol 2021; 320:R771-R779. [PMID: 33851554 DOI: 10.1152/ajpregu.00018.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we report in a sample of healthy young men (n = 14) and women (n = 12) that hyperinsulinemia induces time-dependent decreases in total peripheral resistance and its contribution to the maintenance of blood pressure. In the same participants, we observe profound vasodilatory effects of insulin in the lower limb despite concomitant activation of the sympathetic nervous system. We hypothesized that this prominent peripheral vasodilation is possibly due to the ability of the leg vasculature to escape sympathetic vasoconstriction during systemic insulin stimulation. Consistent with this notion, we demonstrate in a subset of healthy men (n = 9) and women (n = 7) that systemic infusion of insulin blunts sympathetically mediated leg vasoconstriction evoked by a cold pressor test, a well-established sympathoexcitatory stimulus. Further substantiating this observation, we show in mouse aortic rings that insulin exposure suppresses epinephrine and norepinephrine-induced vasoconstriction. Notably, we found that such insulin-suppressing effects on catecholamine-induced constriction are diminished following β-adrenergic receptor blockade. In accordance, we also reveal that insulin augments β-adrenergic-mediated vasorelaxation in isolated arteries. Collectively, these findings support the idea that sympathetic vasoconstriction can be attenuated during systemic hyperinsulinemia in the leg vasculature of both men and women and that this phenomenon may be in part mediated by potentiation of β-adrenergic vasodilation neutralizing α-adrenergic vasoconstriction.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
14
|
Limberg JK, Padilla J. Reply to "Letter to the editor: Sympathetically mediated increases in cardiac output, or peripheral vasoconstriction as primary regulator of BP during hyperinsulinemia?". Am J Physiol Heart Circ Physiol 2020; 319:H394-H395. [PMID: 32748681 DOI: 10.1152/ajpheart.00578.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
15
|
Fadel PJ, Young BE, Holwerda SW, Keller DM. Letter to the editor: Sympathetically mediated increases in cardiac output, or peripheral vasoconstriction as primary regulator of BP during hyperinsulinemia? Am J Physiol Heart Circ Physiol 2020; 319:H392-H393. [PMID: 32748680 DOI: 10.1152/ajpheart.00563.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Seth W Holwerda
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|