1
|
Panwar A, Malik SO, Adib M, Lopaschuk GD. Cardiac energy metabolism in diabetes: emerging therapeutic targets and clinical implications. Am J Physiol Heart Circ Physiol 2025; 328:H1089-H1112. [PMID: 40192025 DOI: 10.1152/ajpheart.00615.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Patients with diabetes are at an increased risk for developing diabetic cardiomyopathy and other cardiovascular complications. Alterations in cardiac energy metabolism in patients with diabetes, including an increase in mitochondrial fatty acid oxidation and a decrease in glucose oxidation, are important contributing factors to this increase in cardiovascular disease. A switch from glucose oxidation to fatty acid oxidation not only decreases cardiac efficiency due to increased oxygen consumption but it can also increase reactive oxygen species production, increase lipotoxicity, and redirect glucose into other metabolic pathways that, combined, can lead to heart dysfunction. Currently, there is a lack of therapeutics available to treat diabetes-induced heart failure that specifically target cardiac energy metabolism. However, it is becoming apparent that part of the benefit of existing agents such as GLP-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors may be related to their effects on cardiac energy metabolism. In addition, direct approaches aimed at inhibiting cardiac fatty acid oxidation or increasing glucose oxidation hold future promise as potential therapeutic approaches to treat diabetes-induced cardiovascular disease.
Collapse
Affiliation(s)
- Archee Panwar
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sufyan O Malik
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhtasim Adib
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Luong TVT, Yang S, Kim J. Lipotoxicity as a therapeutic target in the type 2 diabetic heart. J Mol Cell Cardiol 2025; 201:105-121. [PMID: 40020774 DOI: 10.1016/j.yjmcc.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Cardiac lipotoxicity, characterized by excessive lipid accumulation in the cardiac tissue, is a critical contributor to the pathogenesis of diabetic heart. Recent research has highlighted the key mechanisms underlying lipotoxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, and cell apoptosis, which ultimately impair the cardiac function. Various therapeutic interventions have been developed to target these pathways, mitigate lipotoxicity, and improve cardiovascular outcomes in diabetic patients. Given the global escalation in the prevalence of diabetes and the urgent demand for effective therapeutic approaches, this review focuses on how targeting cardiac lipotoxicity may be a promising avenue for treating diabetes.
Collapse
Affiliation(s)
- Trang Van T Luong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seonbu Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Hu X, Lv J, Zhao Y, Li X, Qi W, Wang X. Important regulatory role of mitophagy in diabetic microvascular complications. J Transl Med 2025; 23:269. [PMID: 40038741 DOI: 10.1186/s12967-025-06307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Microvascular complications of diabetes pose a significant threat to global health, mainly including diabetic kidney disease (DKD), diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN), and diabetic cardiomyopathy (DCM), which can ultimately lead to kidney failure, blindness, disability, and heart failure. With the increasing prevalence of diabetes, the search for new therapeutic targets for diabetic microvascular complications is imminent. Mitophagy is a widespread and strictly maintained process of self-renewal and energy metabolism that plays an important role in reducing inflammatory responses, inhibiting reactive oxygen species accumulation, and maintaining cellular energy metabolism. Hyperglycemia results in impaired mitophagy, which leads to mitochondrial dysfunction and ultimately exacerbates disease progression. This article summarizes the relevant molecular mechanisms of mitophagy and reviews the current status of research on regulating mitophagy as a potential treatment for diabetic microvascular complications, attempting to give new angles on the treatment of diabetic microvascular complications.
Collapse
Affiliation(s)
- Xiangjie Hu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiao Lv
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunyun Zhao
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130017, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130017, China.
| | - Xiuge Wang
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
4
|
Zhu H, Pan J, Wen J, Dang X, Chen X, Fan Y, Lu W, Jiang W. Type 2 diabetes mellitus' impact on heart failure patients' exercise tolerance: a focus on maximal fat oxidation during exercise. Front Cardiovasc Med 2025; 12:1485755. [PMID: 39995969 PMCID: PMC11847838 DOI: 10.3389/fcvm.2025.1485755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Objective To explore the impact of type 2 diabetes mellitus (T2DM) on exercise tolerance and fat oxidation capacity in patients with heart failure (HF). Methods We retrospectively analyzed 108 Chinese patients with HF who were divided into a diabetic group (T2DM group, n = 47) and a non-diabetic group (non-T2DM group, n = 61). All subjects completed cardiopulmonary exercise testing (CPX). We determined their fat oxidation (FATox) by indirect calorimetry. Results In the HF patients, the peak oxygen uptake (VO2) value was 14.76 ± 3.27 ml/kg/min in the T2DM group and 17.76 ± 4.64 ml/kg/min in the non-T2DM group. After adjusting for age, sex, body mass index (BMI), log N-terminal pro-B type natriuretic peptide (log NT-proBNP), left ventricular ejection fraction (LVEF), hemoglobin, renal function, coronary heart disease and hypertension, the peak VO2 was lower in the T2DM group compared to the non-T2DM group with a mean difference (MD) of -2.0 ml/kg/min [95% confidence interval (CI), -3.18 to -0.82, P < 0.01]. The VO2 at anaerobic threshold (AT VO2) was also lower in the T2DM group than in the non-T2DM group, with a MD of -1.11 ml/kg/min (95% CI -2.04 to -0.18, P < 0.05). Regarding the fat oxidation capacity during CPX, the T2DM group's maximal fat oxidation (MFO) was lower than that of the non-T2DM group (0.143 ± 0.055 vs. 0.169 ± 0.061 g/min, P < 0.05). In addition, the T2DM group had lower FATox at exercise intensity levels of 40% (P < 0.05) and 50% (P < 0.05) of peak VO2, compared to the non-T2DM group. Conclusions T2DM is associated with a decrease in exercise tolerance and fat oxidation capacity in patients with heart failure. Thus, it could be useful to develop exercises of appropriate intensity to optimize physical and metabolic health.
Collapse
Affiliation(s)
- Huiying Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jianchao Pan
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianxuan Wen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojing Dang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiankun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Unit of Methodology in Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yunxiang Fan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Heart Failure Center/Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Weihui Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Heart Failure Center/Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wei Jiang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Kakkar C, Sharma V, Mannan A, Gupta G, Singh S, Kumar P, Dua K, Kaur A, Singh S, Dhiman S, Singh TG. Diabetic Cardiomyopathy: An Update on Emerging Pathological Mechanisms. Curr Cardiol Rev 2025; 21:88-107. [PMID: 39501954 DOI: 10.2174/011573403x331870241025094307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 04/25/2025] Open
Abstract
Diabetic Cardiomyopathy (DCM) is a notable consequence of diabetes mellitus, distinguished by cardiac dysfunction that occurs separately from coronary artery disease or hypertension. A recent study has revealed an intricate interaction of pathogenic processes that contribute to DCM. Important aspects involve the dysregulation of glucose metabolism, resulting in heightened oxidative stress and impaired mitochondrial function. In addition, persistent high blood sugar levels stimulate inflammatory pathways, which contribute to the development of heart fibrosis and remodelling. Additionally, changes in the way calcium is managed and the presence of insulin resistance are crucial factors in the formation and advancement of DCM. This may be due to the involvement of many molecular mechanistic pathways such as NLRP3, NF-κB, PKC, and MAPK with their downstream associated signaling pathways. Gaining a comprehensive understanding of these newly identified pathogenic pathways is crucial in order to design precise therapy approaches that can enhance the results for individuals suffering from diabetes. In addition, this review offers an in-depth review of not just pathogenic pathways and molecular mechanistic pathways but also diagnostic methods, treatment options, and clinical trials.
Collapse
Affiliation(s)
- Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaurav Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
| | - Sachin Singh
- Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
| | - Puneet Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
6
|
Yeo JL, Dattani A, Bilak JM, Wood AL, Athithan L, Deshpande A, Singh A, Arnold JR, Brady EM, Adlam D, Biglands JD, Kellman P, Xue H, Yates T, Davies MJ, Gulsin GS, McCann GP. Sex differences and determinants of coronary microvascular function in asymptomatic adults with type 2 diabetes. J Cardiovasc Magn Reson 2024; 27:101132. [PMID: 39647765 PMCID: PMC11761338 DOI: 10.1016/j.jocmr.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is a significant complication in type 2 diabetes (T2D) and may be more common in women. We aimed to evaluate the sex differences and sex-specific clinical determinants of CMD in adults with T2D without prevalent cardiovascular disease. METHODS Single center pooled analysis of four prospective studies comparing asymptomatic people with T2D and controls. All subjects underwent comprehensive cardiovascular phenotyping with myocardial perfusion reserve (MPR) quantified with perfusion cardiovascular magnetic resonance (CMR). Participants with silent coronary disease were excluded. Multivariable linear regression was performed to identify determinants of MPR with an interaction term for sex. RESULTS Four hundred and seventy-nine T2D (age 57 ± 11 years, 42% [202/479] women) were compared with 116 controls (age 53 ± 11 years, 41% [48/116] women). Men with T2D, but not women, demonstrated worse systolic function and higher extracellular volume fraction than controls. MPR was significantly lower in T2D than controls (women, 2.6 ± 0.9 vs 3.3 ± 1.0, p < 0.001; men, 3.1 ± 0.9 vs 3.5 ± 1.0, p = 0.004), and lower in women than men with T2D (p < 0.001). More women than men with T2D had MPR <2.5 (46% [79/202] vs 26% [64/277], p < 0.001). There was a significant interaction between sex and body mass index (BMI) for MPR (p interaction <0.001). Following adjustment for clinical risk factors, inverse association with MPR were BMI in women (β = -0.17, p = 0.045) and systolic blood pressure in men (β = -0.14, p = 0.049). CONCLUSION Among asymptomatic adults with T2D, women had a greater prevalence of CMD than men. Risk factors modestly but significantly associated with CMD in asymptomatic people with T2D were BMI among women and systolic blood pressure among men.
Collapse
Affiliation(s)
- Jian L Yeo
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Abhishek Dattani
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Joanna M Bilak
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Alice L Wood
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Lavanya Athithan
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aparna Deshpande
- Radiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Anvesha Singh
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - J Ranjit Arnold
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Emer M Brady
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - John D Biglands
- NIHR Leeds Biomedical Research Centre and Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Thomas Yates
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, United Kingdom
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, United Kingdom
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom.
| |
Collapse
|
7
|
Adao DMT, Ching C, Fish JE, Simmons CA, Billia F. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin Sci (Lond) 2024; 138:1395-1419. [PMID: 39492693 DOI: 10.1042/cs20241084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity. Investingating the role of cross-talk is critical in developing an understanding of tissue homeostasis, regeneration, and disease pathogenesis, with the potential to identify novel targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Doris M T Adao
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario, Canada, M5S 3G8
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| |
Collapse
|
8
|
Ma H, Zhao J, Zheng Y, Wang J, Anwar Y, He Y, Wang J. Potential mechanisms of metabolic reprogramming induced by ischemia-reperfusion injury in diabetic myocardium. J Diabetes 2024; 16:e70018. [PMID: 39450829 PMCID: PMC11503499 DOI: 10.1111/1753-0407.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE This study aimed to explore metabolic reprogramming in diabetic myocardium subjected to ischemia-reperfusion injury (I/RI) and potential mechanisms. BACKGROUND Increased vulnerability after I/RI in diabetic myocardium is a major cause of the high prevalence of perioperative adverse cardiac events, and the specific alterations in energy metabolism after I/RI in diabetic myocardium and the impact on increased vulnerability are not fully understood. METHODS Metabolomic methods were used to explore the differences and characteristics of metabolites in the heart tissues of four groups, and then, single-cell RNA sequencing (ScRNA-seq) was used to explore the potential mechanism of metabolic reprogramming. RESULTS It was found that the fatty acid metabolism of db/db mouse I/RI (DMI) showed a significant upward trend, especially the metabolites of ultra-long and medium-long-chain fatty acids; the metabolic flow analysis found that the U-13C glucose M + 6 was significantly higher in the C57BL mouse sham operation (NM) group than in the db/db mouse sham operation (DM) group, and in the C57BL mouse I/RI (NMI) than in the DMI group. Compared with the NMI group, the intermediate metabolites of glycolysis and tricarboxylic acid (TCA) cycle were significantly reduced in the DMI group; all comparisons were statistically significant (p < 0.05), indicating that the glucose uptake of diabetic myocardetis, the ability of glucose glycolysis after I/RI, and the contribution of glucose to TCA were significantly reduced. The results of ScRNA-seq revealed that the number of Cluster 0 myocardial isoforms was significantly increased in diabetic myocardium, and the differential genes were mainly enriched in fatty acid metabolism, and the PPARA signaling pathway was found to be over-activated and involved in the regulation of metabolic reprogramming of diabetic myocardial I/RI. CONCLUSION Metabolic reprogramming of diabetic myocardial I/RI may be the main cause of increased myocardial vulnerability. The number of myocardial subtype Cluster 0 increased significantly, and PPARA PPARA is a ligand-activated receptor of the nuclear hormone receptor family that plays a central regulatory role in lipid metabolism. signaling pathway activation may be a potential mechanism for reprogramming metabolism in diabetic myocardium.
Collapse
Affiliation(s)
- Haping Ma
- The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous RegionÜrümqiChina
| | - Jiyao Zhao
- The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous RegionÜrümqiChina
| | - Yan Zheng
- The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous RegionÜrümqiChina
| | - Junjie Wang
- The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous RegionÜrümqiChina
| | - Yultuz Anwar
- The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous RegionÜrümqiChina
| | - Yuxuan He
- The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous RegionÜrümqiChina
| | - Jiang Wang
- The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Uygur Autonomous RegionÜrümqiChina
| |
Collapse
|
9
|
Kufazvinei TTJ, Chai J, Boden KA, Channon KM, Choudhury RP. Emerging opportunities to target inflammation: myocardial infarction and type 2 diabetes. Cardiovasc Res 2024; 120:1241-1252. [PMID: 39027945 DOI: 10.1093/cvr/cvae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/05/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
After myocardial infarction (MI), patients with type 2 diabetes have an increased rate of adverse outcomes, compared to patients without. Diabetes confers a 1.5-2-fold increase in early mortality and, importantly, this discrepancy has been consistent over recent decades, despite advances in treatment and overall survival. Certain assumptions have emerged to explain this increased risk, such as differences in infarct size or coronary artery disease severity. Here, we re-evaluate that evidence and show how contemporary analyses using state-of-the-art characterization tools suggest that the received wisdom tells an incomplete story. Simultaneously, epidemiological and mechanistic biological data suggest additional factors relating to processes of diabetes-related inflammation might play a prominent role. Inflammatory processes after MI mediate injury and repair and are thus a potential therapeutic target. Recent studies have shown how diabetes affects immune cell numbers and drives changes in the bone marrow, leading to pro-inflammatory gene expression and functional suppression of healing and repair. Here, we review and re-evaluate the evidence around adverse prognosis in patients with diabetes after MI, with emphasis on how targeting processes of inflammation presents unexplored, yet valuable opportunities to improve cardiovascular outcomes in this vulnerable patient group.
Collapse
Affiliation(s)
- Tafadzwa T J Kufazvinei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Jason Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Katherine A Boden
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
10
|
Mendez DA, Soñanez-Organis JG, Yang X, Vazquez-Anaya G, Nishiyama A, Ortiz RM. Exogenous thyroxine increases cardiac GLUT4 translocation in insulin resistant OLETF rats. Mol Cell Endocrinol 2024; 590:112254. [PMID: 38677465 DOI: 10.1016/j.mce.2024.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
During insulin resistance, the heart undergoes a metabolic shift in which fatty acids (FA) account for roughly about 99% of the ATP production. This metabolic shift is indicative of impaired glucose metabolism. A shift in FA metabolism with impaired glucose tolerance can increase reactive oxygen species (ROS), lipotoxicity, and mitochondrial dysfunction, ultimately leading to cardiomyopathy. Thyroid hormones (TH) may improve the glucose intolerance by increasing glucose reabsorption and metabolism in peripheral tissues, but little is known on its effects on cardiac tissue during insulin resistance. In the present study, insulin resistant Otsuka Long Evans Tokushima Fatty (OLETF) rats were used to assess the effects of exogenous thyroxine (T4) on glucose metabolism in cardiac tissue. Rats were assigned to four groups: (1) lean, Long Evans Tokushima Otsuka (LETO; n=6), (2) LETO + T4 (8 μg/100 g BM/d × 5 wks; n = 7), (3) untreated OLETF (n = 6), and (4) OLETF + T4 (8 μg/100 g BM/d × 5 wks; n = 7). T4 increased GLUT4 gene expression by 85% in OLETF and increased GLUT4 protein translocation to the membrane by 294%. Additionally, T4 increased p-AS160 by 285%, phosphofructokinase-1 (PFK-1) mRNA, the rate limiting step in glycolysis, by 98% and hexokinase II by 64% in OLETF. T4 decreased both CPT2 mRNA and protein expression in OLETF. The results suggest that exogenous T4 has the potential to increase glucose uptake and metabolism while simultaneously reducing fatty acid transport in the heart of insulin resistant rats. Thus, L-thyroxine may have therapeutic value to help correct the impaired substrate metabolism associated with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dora A Mendez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| | - José G Soñanez-Organis
- Division of Science and Engineering, Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Navojoa, SON, Mexico
| | - Xue Yang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Guillermo Vazquez-Anaya
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Rudy M Ortiz
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
11
|
Tamayo I, Lee HJ, Aslam MI, Liu JJ, Ragi N, Karanam V, Maity S, Saliba A, Treviño E, Zheng H, Lim SC, Lanzer JD, Bjornstad P, Tuttle K, Bedi KC, Margulies KB, Ramachandran V, Abdel-Latif A, Saez-Rodriguez J, Iyengar R, Bopassa JC, Sharma K. Endogenous adenine is a potential driver of the cardiovascular-kidney-metabolic syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.19.24312277. [PMID: 39228698 PMCID: PMC11370547 DOI: 10.1101/2024.08.19.24312277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mechanisms underlying the cardiovascular-kidney-metabolic (CKM) syndrome are unknown, although key small molecule metabolites may be involved. Bulk and spatial metabolomics identified adenine to be upregulated and specifically enriched in coronary blood vessels in hearts from patients with diabetes and left ventricular hypertrophy. Single nucleus gene expression studies revealed that endothelial methylthioadenosine phosphorylase (MTAP) was increased in human hearts with hypertrophic cardiomyopathy. The urine adenine/creatinine ratio in patients was predictive of incident heart failure with preserved ejection fraction. Heart adenine and MTAP gene expression was increased in a 2-hit mouse model of hypertrophic heart disease and in a model of diastolic dysfunction with diabetes. Inhibition of MTAP blocked adenine accumulation in the heart, restored heart dysfunction in mice with type 2 diabetes and prevented ischemic heart damage in a rat model of myocardial infarction. Mechanistically, adenine-induced impaired mitophagy was reversed by reduction of mTOR. These studies indicate that endogenous adenine is in a causal pathway for heart failure and ischemic heart disease in the context of CKM syndrome.
Collapse
Affiliation(s)
- Ian Tamayo
- Center for Precision Medicine, University of Texas Health San Antonio
| | - Hak Joo Lee
- Center for Precision Medicine, University of Texas Health San Antonio
| | - M. Imran Aslam
- Division of Cardiology, University of Texas Health San Antonio
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Varsha Karanam
- Division of Cardiology, University of Texas Health San Antonio
| | - Soumya Maity
- Center for Precision Medicine, University of Texas Health San Antonio
| | - Afaf Saliba
- Center for Precision Medicine, University of Texas Health San Antonio
| | - Esmeralda Treviño
- Center for Precision Medicine, University of Texas Health San Antonio
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jan D. Lanzer
- Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | | | - Katherine Tuttle
- Department of Medicine, University of Washington, Seattle, WA, USA, Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, Washington
| | - Kenneth C. Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vasan Ramachandran
- Division of Cardiology, University of Texas Health San Antonio
- School of Public Health University of Texas Health San Antonio and University of Texas San Antonio
| | | | - Julio Saez-Rodriguez
- Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jean C. Bopassa
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health San Antonio
| |
Collapse
|
12
|
Lee CS, Shang R, Wang F, Khayambashi P, Wang H, Araujo G, Puri K, Vlodavsky I, Hussein B, Rodrigues B. Heparanase Stimulation of Physiologic Cardiac Hypertrophy Is Suppressed After Chronic Diabetes, Resulting in Cardiac Remodeling and Dysfunction. Diabetes 2024; 73:1300-1316. [PMID: 38771953 DOI: 10.2337/db24-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
In addition to controlling smooth muscle tone in coronary vessels, endothelial cells also influence subjacent cardiomyocyte growth. Because heparanase, with exclusive expression in endothelial cells, enables extracellular matrix remodeling, angiogenesis, metabolic reprogramming, and cell survival, it is conceivable that it could also encourage development of cardiac hypertrophy. Global heparanase overexpression resulted in physiologic cardiac hypertrophy, likely an outcome of HSPG clustering and activation of hypertrophic signaling. The heparanase autocrine effect of releasing neuregulin-1 could have also contributed to this overexpression. Hyperglycemia induced by streptozotocin-induced diabetes sensitized the heart to flow-induced release of heparanase and neuregulin-1. Despite this excess secretion, progression of diabetes caused significant gene expression changes related to mitochondrial metabolism and cell death that led to development of pathologic hypertrophy and heart dysfunction. Physiologic cardiac hypertrophy was also observed in rats with cardiomyocyte-specific vascular endothelial growth factor B overexpression. When perfused, hearts from these animals released significantly higher amounts of both heparanase and neuregulin-1. However, subjecting these animals to diabetes triggered robust transcriptome changes related to metabolism and a transition to pathologic hypertrophy. Our data suggest that in the absence of mechanisms that support cardiac energy generation and prevention of cell death, as seen after diabetes, there is a transition from physiologic to pathologic cardiac hypertrophy and a decline in cardiac function. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Chae Syng Lee
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Shang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fulong Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Parisa Khayambashi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hualin Wang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gala Araujo
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Simsek Papur O, Glatz JFC, Luiken JJFP. Protein kinase-D1 and downstream signaling mechanisms involved in GLUT4 translocation in cardiac muscle. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119748. [PMID: 38723678 DOI: 10.1016/j.bbamcr.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Molecular Medicine, Institute of Health Science, Dokuz Eylül University, Izmir, Turkey
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands.
| |
Collapse
|
14
|
Shang R, Rodrigues B. Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13199. [PMID: 39081272 PMCID: PMC11286490 DOI: 10.3389/jpps.2024.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Worldwide, the prevalence of obesity and diabetes have increased, with heart disease being their leading cause of death. Traditionally, the management of obesity and diabetes has focused mainly on weight reduction and controlling high blood glucose. Unfortunately, despite these efforts, poor medication management predisposes these patients to heart failure. One instigator for the development of heart failure is how cardiac tissue utilizes different sources of fuel for energy. In this regard, the heart switches from using various substrates, to predominantly using fatty acids (FA). This transformation to using FA as an exclusive source of energy is helpful in the initial stages of the disease. However, over the progression of diabetes this has grave end results. This is because toxic by-products are produced by overuse of FA, which weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for regulating FA delivery to the heart, and its function during diabetes has not been completely revealed. In this review, the mechanisms by which LPL regulates fuel utilization by the heart in control conditions and following diabetes will be discussed in an attempt to identify new targets for therapeutic intervention. Currently, as treatment options to directly target diabetic heart disease are scarce, research on LPL may assist in drug development that exclusively targets fuel utilization by the heart and lipid accumulation in macrophages to help delay, prevent, or treat cardiac failure, and provide long-term management of this condition during diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Wu Y, Zhang J, Wang W, Wu D, Kang Y, Fu L. MARK4 aggravates cardiac dysfunction in mice with STZ-induced diabetic cardiomyopathy by regulating ACSL4-mediated myocardial lipid metabolism. Sci Rep 2024; 14:12978. [PMID: 38839927 PMCID: PMC11153581 DOI: 10.1038/s41598-024-64006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic cardiomyopathy is a specific type of cardiomyopathy. In DCM, glucose uptake and utilization are impaired due to insulin deficiency or resistance, and the heart relies more heavily on fatty acid oxidation for energy, resulting in myocardial lipid toxicity-related injury. MARK4 is a member of the AMPK-related kinase family, and improves ischaemic heart failure through microtubule detyrosination. However, the role of MARK4 in cardiac regulation of metabolism is unclear. In this study, after successful establishment of a diabetic cardiomyopathy model induced by streptozotocin and a high-fat diet, MARK4 expression was found to be significantly increased in STZ-induced DCM mice. After AAV9-shMARK4 was administered through the tail vein, decreased expression of MARK4 alleviated diabetic myocardial damage, reduced oxidative stress and apoptosis, and facilitated cardiomyocyte mitochondrial fusion, and promoted myocardial lipid oxidation metabolism. In addition, through the RNA-seq analysis of differentially expressed genes, we found that MARK4 deficiency promoted lipid decomposition and oxidative metabolism by downregulating the expression of ACSL4, thus reducing myocardial lipid accumulation in the STZ-induced DCM model.
Collapse
Affiliation(s)
- Yi Wu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jingqi Zhang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Weiyi Wang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Dongdong Wu
- The First Affiliated Hospital of Jinzhou Medical University, 157 Renmin Street, Guta District, Jinzhou, 121000, China
| | - Yang Kang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Lu Fu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
16
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Zeng Y, Li Y, Jiang W, Hou N. Molecular mechanisms of metabolic dysregulation in diabetic cardiomyopathy. Front Cardiovasc Med 2024; 11:1375400. [PMID: 38596692 PMCID: PMC11003275 DOI: 10.3389/fcvm.2024.1375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious complications of diabetes mellitus, has become recognized as a cardiometabolic disease. In normoxic conditions, the majority of the ATP production (>95%) required for heart beating comes from mitochondrial oxidative phosphorylation of fatty acids (FAs) and glucose, with the remaining portion coming from a variety of sources, including fructose, lactate, ketone bodies (KB) and branched chain amino acids (BCAA). Increased FA intake and decreased utilization of glucose and lactic acid were observed in the diabetic hearts of animal models and diabetic patients. Moreover, the polyol pathway is activated, and fructose metabolism is enhanced. The use of ketones as energy sources in human diabetic hearts also increases significantly. Furthermore, elevated BCAA levels and impaired BCAA metabolism were observed in the hearts of diabetic mice and patients. The shift in energy substrate preference in diabetic hearts results in increased oxygen consumption and impaired oxidative phosphorylation, leading to diabetic cardiomyopathy. However, the precise mechanisms by which impaired myocardial metabolic alterations result in diabetes mellitus cardiac disease are not fully understood. Therefore, this review focuses on the molecular mechanisms involved in alterations of myocardial energy metabolism. It not only adds more molecular targets for the diagnosis and treatment, but also provides an experimental foundation for screening novel therapeutic agents for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yue Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wenyue Jiang
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
18
|
Vilariño-García T, Polonio-González ML, Pérez-Pérez A, Ribalta J, Arrieta F, Aguilar M, Obaya JC, Gimeno-Orna JA, Iglesias P, Navarro J, Durán S, Pedro-Botet J, Sánchez-Margalet V. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int J Mol Sci 2024; 25:2338. [PMID: 38397015 PMCID: PMC10888594 DOI: 10.3390/ijms25042338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent disease worldwide, estimated to affect 1 in every 11 adults; among them, 90-95% of cases are type 2 diabetes mellitus. This is partly attributed to the surge in the prevalence of obesity, which has reached epidemic proportions since 2008. In these patients, cardiovascular (CV) risk stands as the primary cause of morbidity and mortality, placing a substantial burden on healthcare systems due to the potential for macrovascular and microvascular complications. In this context, leptin, an adipocyte-derived hormone, plays a fundamental role. This hormone is essential for regulating the cellular metabolism and energy balance, controlling inflammatory responses, and maintaining CV system homeostasis. Thus, leptin resistance not only contributes to weight gain but may also lead to increased cardiac inflammation, greater fibrosis, hypertension, and impairment of the cardiac metabolism. Understanding the relationship between leptin resistance and CV risk in obese individuals with type 2 DM (T2DM) could improve the management and prevention of this complication. Therefore, in this narrative review, we will discuss the evidence linking leptin with the presence, severity, and/or prognosis of obesity and T2DM regarding CV disease, aiming to shed light on the potential implications for better management and preventive strategies.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen del Rocio University Hospital, University of Seville, Seville 41013, Spain;
| | - María L. Polonio-González
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, University Rovira i Vigili, IISPV, CIBERDEM, 43007 Tarragona, Spain;
| | - Francisco Arrieta
- Endocrinology and Nutrition Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
| | - Manuel Aguilar
- Endocrinology and Nutrition Service, Puerta del Mar University Hospital, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz University (UCA), 11001 Cádiz, Spain;
| | - Juan C. Obaya
- Chopera Helath Center, Alcobendas Primary Care,Alcobendas 28100 Madrid, Spain;
| | - José A. Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clinico Universitario Lozano Blesa, 15 50009 Zaragoza, Spain;
| | - Pedro Iglesias
- Endocrinology and Nutrition Service, Puerta de Hierro University Hospital, Majadahonda, 28220 Madrid, Spain;
| | - Jorge Navarro
- Hospital Clínico Universitario de Valencia,46011 Valencia, Spain;
| | - Santiago Durán
- Endodiabesidad Clínica Durán & Asociados,41018 Seville, Spain;
| | - Juan Pedro-Botet
- Lipids and Cardiovascular Risk Unit, Hospital del Mar, Autonomous University of Barcelona, 08003 Barcelona, Spain;
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
- Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocío/Virgen Macarena, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
19
|
Kuznetsova T, Daels Y, Ntalianis E, Santana EJ, Sabovčik F, Haddad F, Cauwenberghs N. Clinical and biochemical predictors of longitudinal changes in left atrial structure and function: A general population study. Echocardiography 2024; 41:e15780. [PMID: 38372342 DOI: 10.1111/echo.15780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/20/2024] Open
Abstract
PURPOSE There is a need for better understanding the factors that modulate left atrial (LA) dysfunction. Therefore, we determined associations of clinical and biochemical biomarkers with serial changes in echocardiographic indexes of LA function in the general population. METHODS We measured LA maximal and minimal volume indexes (LAVImax and LAVImin) by echocardiography and LA reservoir strain (LARS) by two-dimensional speckle-tracking in 627 participants (mean age 50.8 years, 51.2% women) at baseline and after 4.8 years. RESULTS During follow-up, LARS decreased significantly in men (-.90%, P = .033) but not in women (-.23%, P = .60). In stepwise regression analysis, stronger decrease in LARS over time was associated with male sex, a higher age, body mass index (BMI), mean arterial pressure (MAP) and serum insulin at baseline and with a greater increase in BMI and MAP over time (P ≤ .018). Similarly, an increased risk of developing or retaining abnormal LARS was observed in older participants, in subjects with a higher baseline BMI, MAP, heart rate (HR), troponin T and ΔMAP, and in those who used β-blockers at baseline. Both LAVImax and LAVImin increased significantly over time (P ≤ .0007). This increase was associated with a higher baseline age, pulse pressure and a lower HR at baseline and a greater increase in pulse pressure over time (P ≤ .029). Higher serum insulin and D-dimer were independently associated with a stronger increase in LAVImin (P ≤ .0034). CONCLUSION Subclinical worsening in LA dysfunction was associated with older age, hypertension, obesity, insulin resistance and troponin T levels. Cardiovascular risk management strategies may delay LA deterioration.
Collapse
Affiliation(s)
- Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Yne Daels
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Evangelos Ntalianis
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Everton J Santana
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
| | - František Sabovčik
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Francois Haddad
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
| | - Nicholas Cauwenberghs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Zhang F, Lin JJ, Tian HN, Wang J. Effect of exercise on improving myocardial mitochondrial function in decreasing diabetic cardiomyopathy. Exp Physiol 2024; 109:190-201. [PMID: 37845840 PMCID: PMC10988701 DOI: 10.1113/ep091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a significant cause of heart failure in patients with diabetes, and its pathogenesis is closely related to myocardial mitochondrial injury and functional disability. Studies have shown that the development of diabetic cardiomyopathy is related to disorders in mitochondrial metabolic substrates, changes in mitochondrial dynamics, an imbalance in mitochondrial Ca2+ regulation, defects in the regulation of microRNAs, and mitochondrial oxidative stress. Physical activity may play a role in resistance to the development of diabetic cardiomyopathy by improving myocardial mitochondrial biogenesis, the level of autophagy and dynamic changes in fusion and division; enhancing the ability to cope with oxidative stress; and optimising the metabolic substrates of the myocardium. This paper puts forward a new idea for further understanding the specific mitochondrial mechanism of the occurrence and development of diabetic cardiomyopathy and clarifying the role of exercise-mediated myocardial mitochondrial changes in the prevention and treatment of diabetic cardiomyopathy. This is expected to provide a new theoretical basis for exercise to reduce diabetic cardiomyopathy symptoms.
Collapse
Affiliation(s)
- Feng Zhang
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| | - Jian jian Lin
- PE Teaching and Research OfficeUniversity of International RelationshipBeijingChina
| | - Hao nan Tian
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| | - Jun Wang
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| |
Collapse
|
21
|
Shang R, Lee CS, Wang H, Dyer R, Noll C, Carpentier A, Sultan I, Alitalo K, Boushel R, Hussein B, Rodrigues B. Reduction in Insulin Uncovers a Novel Effect of VEGFB on Cardiac Substrate Utilization. Arterioscler Thromb Vasc Biol 2024; 44:177-191. [PMID: 38150518 DOI: 10.1161/atvbaha.123.319972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Chae Syng Lee
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Hualin Wang
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Roger Dyer
- Department of Pediatrics (R.D.), University of British Columbia, Vancouver
| | - Christophe Noll
- Department of Medicine, Université de Sherbrooke, QC, Canada (C.N., A.C.)
| | - André Carpentier
- Department of Medicine, Université de Sherbrooke, QC, Canada (C.N., A.C.)
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Finland (I.S., K.A.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Finland (I.S., K.A.)
| | - Robert Boushel
- School of Kinesiology (R.B.), University of British Columbia, Vancouver
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| |
Collapse
|
22
|
Kopp EL, Deussen DN, Cuomo R, Lorenz R, Roth DM, Mahata SK, Patel HH. Modeling and Phenotyping Acute and Chronic Type 2 Diabetes Mellitus In Vitro in Rodent Heart and Skeletal Muscle Cells. Cells 2023; 12:2786. [PMID: 38132105 PMCID: PMC10741513 DOI: 10.3390/cells12242786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular respiration, mitochondrial morphometry, and the associated function in different T2D-mimicking conditions in rodent skeletal (C2C12) and cardiac (H9C2) myotubes. The physiological controls included 5 mM of glucose with 20 mM of mannitol as osmotic controls. To mimic hyperglycemia, cells were exposed to 25 mM of glucose. Further treatments included insulin, palmitate, or both. After short-term (24 h) or long-term (96 h) exposure, we performed radioactive glucose uptake and mitochondrial function assays. The mitochondrial size and relative frequencies were assessed with morphometric analyses using electron micrographs. C2C12 and H9C2 cells that were treated short- or long-term with insulin and/or palmitate and HG showed IR. C2C12 myotubes exposed to T2D-mimicking conditions showed significantly decreased ATP-linked respiration and spare respiratory capacity and less cytoplasmic area occupied by mitochondria, implying mitochondrial dysfunction. In contrast, the H9C2 myotubes showed elevated ATP-linked and maximal respiration and increased cytoplasmic area occupied by mitochondria, indicating a better adaptation to stress and compensatory lipid oxidation in a T2D environment. Both cell lines displayed elevated fractions of swollen/vacuolated mitochondria after T2D-mimicking treatments. Our stable and reproducible in vitro model of T2D rapidly induced IR, changes in the ATP-linked respiration, shifts in energetic phenotypes, and mitochondrial morphology, which are comparable to the muscles of patients suffering from T2D. Thus, our model should allow for the study of disease mechanisms and potential new targets and allow for the screening of candidate therapeutic compounds.
Collapse
Affiliation(s)
- Elena L. Kopp
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- Faculty of Medicine, University of Munich (LMU Munich), 80539 Munich, Germany
| | - Daniel N. Deussen
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- Faculty of Medicine, University of Munich (LMU Munich), 80539 Munich, Germany
| | - Raphael Cuomo
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Reinhard Lorenz
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80539 Munich, Germany
| | - David M. Roth
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Hemal H. Patel
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
23
|
Bao J, Gao Z, Hu Y, Ye L, Wang L. Transient receptor potential vanilloid type 1: cardioprotective effects in diabetic models. Channels (Austin) 2023; 17:2281743. [PMID: 37983306 PMCID: PMC10761101 DOI: 10.1080/19336950.2023.2281743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Cardiovascular disease, especially heart failure (HF) is the leading cause of death in patients with diabetes. Individuals with diabetes are prone to a special type of cardiomyopathy called diabetic cardiomyopathy (DCM), which cannot be explained by heart diseases such as hypertension or coronary artery disease, and can contribute to HF. Unfortunately, the current treatment strategy for diabetes-related cardiovascular complications is mainly to control blood glucose levels; nonetheless, the improvement of cardiac structure and function is not ideal. The transient receptor potential cation channel subfamily V member 1 (TRPV1), a nonselective cation channel, has been shown to be universally expressed in the cardiovascular system. Increasing evidence has shown that the activation of TRPV1 channel has a potential protective influence on the cardiovascular system. Numerous studies show that activating TRPV1 channels can improve the occurrence and progression of diabetes-related complications, including cardiomyopathy; however, the specific mechanisms and effects are unclear. In this review, we summarize that TRPV1 channel activation plays a protective role in the heart of diabetic models from oxidation/nitrification stress, mitochondrial function, endothelial function, inflammation, and cardiac energy metabolism to inhibit the occurrence and progression of DCM. Therefore, TRPV1 may become a latent target for the prevention and treatment of diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Chambers ME, Nuibe EH, Reno-Bernstein CM. Brain Regulation of Cardiac Function during Hypoglycemia. Metabolites 2023; 13:1089. [PMID: 37887414 PMCID: PMC10608630 DOI: 10.3390/metabo13101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Hypoglycemia occurs frequently in people with type 1 and type 2 diabetes. Hypoglycemia activates the counter-regulatory response. Besides peripheral glucose sensors located in the pancreas, mouth, gastrointestinal tract, portal vein, and carotid body, many brain regions also contain glucose-sensing neurons that detect this fall in glucose. The autonomic nervous system innervates the heart, and during hypoglycemia, can cause many changes. Clinical and animal studies have revealed changes in electrocardiograms during hypoglycemia. Cardiac repolarization defects (QTc prolongation) occur during moderate levels of hypoglycemia. When hypoglycemia is severe, it can be fatal. Cardiac arrhythmias are thought to be the major mediator of sudden death due to severe hypoglycemia. Both the sympathetic and parasympathetic nervous systems of the brain have been implicated in regulating these arrhythmias. Besides cardiac arrhythmias, hypoglycemia can have profound changes in the heart and most of these changes are exacerbated in the setting of diabetes. A better understanding of how the brain regulates cardiac changes during hypoglycemia will allow for better therapeutic intervention to prevent cardiovascular death associated with hypoglycemia in people with diabetes. The aim of this paper is to provide a narrative review of what is known in the field regarding how the brain regulates the heart during hypoglycemia.
Collapse
Affiliation(s)
| | | | - Candace M. Reno-Bernstein
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (E.H.N.)
| |
Collapse
|
25
|
ALTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. Esculeoside A Decreases Diabetic Cardiomyopathy in Streptozotocin-Treated Rats by Attenuating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis: Impressive Role of Nrf2. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1830. [PMID: 37893548 PMCID: PMC10608477 DOI: 10.3390/medicina59101830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: This experiment evaluated the preventative influence of the tomato-derived Esculeoside A (ESA) on diabetic cardiomyopathy in type 1 diabetes mellitus (T1DM) in rats induced by streptozotocin (STZ). It also examined whether the activation of Nrf2 signaling affords this protection. Materials and Methods: Adult male Wistar control nondiabetic rats and rats with T1DM (STZ-T1DM) were given either carboxymethylcellulose as a vehicle or ESA (100 mg/kg) (eight rats/group) orally daily for 12 weeks. A group of STZ-T1DM rats was also treated with 100 mg/kg ESA and co-treated i.p. with 2 mg/kg (twice/week), brusatol, and Nrf2 inhibitors for 12 weeks. Results and Conclusions: Treatment with ESA prevented the gain in heart weight and cardiomyocyte hypertrophy and improved the left ventricular (LV) systolic and diastolic function (LV) in the STZ-T1DM rat group. Likewise, it reduced their serum levels of triglycerides, cholesterol, and low-density lipoproteins (LDL-c), as well as their LV mRNA, cytoplasmic total, and nuclear total levels of NF-κB. ESA also reduced the total levels of malondialdehyde, tumor necrosis factor-α, interleukine-6 (IL-6), Bax, cytochrome-c, and caspase-3 in the LV of the STZ-T1DM rats. In parallel, ESA enhanced the nuclear and cytoplasmic levels of Nrf2 and the levels of superoxide dismutase, glutathione, and heme oxygenase-1, but decreased the mRNA and cytoplasmic levels of keap-1 in the LVs of the STZ-T1DM rats. Interestingly, ESA did not affect the fasting insulin and glucose levels of the diabetic rats. All of these beneficially protective effects of ESA were not seen in the ESA-treated rats that received brusatol. In conclusion, ESA represses diabetic cardiomyopathy in STZ-diabetic hearts by activating the Nrf2/antioxidant/NF-κB axis.
Collapse
Affiliation(s)
- Jozaa Z. ALTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Dalal H. Aljabryn
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| |
Collapse
|
26
|
Li Q, Zhang S, Yang G, Wang X, Liu F, Li Y, Chen Y, Zhou T, Xie D, Liu Y, Zhang L. Energy metabolism: A critical target of cardiovascular injury. Biomed Pharmacother 2023; 165:115271. [PMID: 37544284 DOI: 10.1016/j.biopha.2023.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Cardiovascular diseases are the main killers threatening human health. Many studies have shown that abnormal energy metabolism plays a key role in the occurrence and development of acute and chronic cardiovascular diseases. Regulating cardiac energy metabolism is a frontier topic in the treatment of cardiovascular diseases. However, we are not very clear about the choice of different substrates, the specific mechanism of energy metabolism participating in the course of cardiovascular disease, and how to develop appropriate drugs to regulate energy metabolism to treat cardiovascular disease. Therefore, this paper reviews how energy metabolism participates in cardiovascular pathophysiological processes and potential drugs aimed at interfering energy metabolism.It is expected to provide good suggestions for promoting the clinical prevention and treatment of cardiovascular diseases from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingxiong Xie
- Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation Ministry of Education, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| |
Collapse
|
27
|
Wu T, Qu Y, Xu S, Wang Y, Liu X, Ma D. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. FASEB J 2023; 37:e23099. [PMID: 37462453 DOI: 10.1096/fj.202301012r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The abnormal lipid metabolism in diabetic cardiomyopathy can cause myocardial mitochondrial dysfunction, lipotoxicity, abnormal death of myocardial cells, and myocardial remodeling. Mitochondrial homeostasis and normal lipid metabolism can effectively slow down the development of diabetic cardiomyopathy. Recent studies have shown that SIRT6 may play an important role in the pathological changes of diabetic cardiomyopathy such as myocardial cell death, myocardial hypertrophy, and myocardial fibrosis by regulating mitochondrial oxidative stress and glucose and lipid metabolism. Therefore, understanding the function of SIRT6 and its role in the pathogenesis of diabetic cardiomyopathy is of great significance for exploring and developing new targets and drugs for the treatment of diabetic cardiomyopathy. This article reviews the latest findings of SIRT6 in the pathogenesis of diabetic cardiomyopathy, focusing on the regulation of mitochondria and lipid metabolism by SIRT6 to explore potential clinical treatments.
Collapse
Affiliation(s)
- Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengjie Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Xue Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
28
|
Mohan UP, Pichiah PBT, Arunachalam S. Adriamycin downregulates the expression of KLF4 in cardiomyocytes in vitro and contributes to impaired cardiac energy metabolism in Adriamycin-induced cardiomyopathy. 3 Biotech 2023; 13:162. [PMID: 37152000 PMCID: PMC10160296 DOI: 10.1007/s13205-023-03584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
Adriamycin is a well-known anthracycline chemotherapeutic agent widely used in treating a variety of malignancies. However, Adriamycin's clinical use is limited due to its adverse side-effects, most importantly cardiomyopathy. Adriamycin-induced cardiotoxicity reportedly includes mitochondrial dysfunction. We hypothesize that modulation of KLF4, a key regulator of cardiac mitochondrial homeostasis might play a role in the development of Adriamycin-induced cardiomyopathy. Therefore, in the current work, we evaluated the interaction of Adriamycin with KLF4 and its subsequent downstream targets. Molecular docking revealed that Adriamycin interacts strongly with KLF4 at residues Thr 448, Arg 452, Ser 444 falls within C2H2 motif which is the active site. Quantitative real-time PCR also revealed that KLF4 is downregulated by Adriamycin in cardiomyocytes in vitro. The expression of KLF4 is downregulated in a dose-dependent manner, with a 0.12 ± 0.09-fold (p ≤ 0.05, n = 3) downregulation at a low dosage and 0.21 ± 0.02-fold (p ≤ 0.05, n = 3) downregulation at high dosage. Deficiency of KLF4 leads to an impairment of PPARγ that consequently supresses the proteins/enzymes involved in the fatty acid metabolism. Adriamycin-mediated suppression of KLF4 also affected the expression of PPARα in vitro. PPARα dysfunction is likely to cause defects in β-oxidation which ultimately results in impaired ATP synthesis. Cardiac cells are thus forced to switch over the substrate from free fatty acid to glucose. Moreover, Adriamycin elevates the expression of PPARβ due to downregulation of KLF4 leads to increased myocardial glucose utilization. Thus, a change in substrate preference affects the flexibility of metabolic network culminating in diminished energy production and other regulatory activities, altogether contributing to the development of cardiomyopathy. Thus, we conclude that the effect of Adriamycin on KLF4 disrupts mitochondrial homeostasis and lipid/glucose homeostasis resulting in a reduction of ATP synthesis which ultimately results in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Uma Priya Mohan
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar Dt., Tamilnadu, 626126 India
| | - P. B. Tirupathi Pichiah
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
| | - Sankarganesh Arunachalam
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar Dt., Tamilnadu, 626126 India
| |
Collapse
|
29
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
30
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. The Protective Effect of 11-Keto-β-Boswellic Acid against Diabetic Cardiomyopathy in Rats Entails Activation of AMPK. Nutrients 2023; 15:nu15071660. [PMID: 37049501 PMCID: PMC10097356 DOI: 10.3390/nu15071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
This study examined the protective effect of 11-keto-β-boswellic acid (AKBA) against streptozotocin (STZ)-induced diabetic cardiomyopathy (DC) in rats and examined the possible mechanisms of action. Male rats were divided into 5 groups (n = 8/each): (1) control, AKBA (10 mg/kg, orally), STZ (65 mg/kg, i.p.), STZ + AKBA (10 mg/kg, orally), and STZ + AKBA + compound C (CC/an AMPK inhibitor, 0.2 mg/kg, i.p.). AKBA improved the structure and the systolic and diastolic functions of the left ventricles (LVs) of STZ rats. It also attenuated the increase in plasma glucose, plasma insulin, and serum and hepatic levels of triglycerides (TGs), cholesterol (CHOL), and free fatty acids (FFAs) in these diabetic rats. AKBA stimulated the ventricular activities of phosphofructokinase (PFK), pyruvate dehydrogenase (PDH), and acetyl CoA carboxylase (ACC); increased levels of malonyl CoA; and reduced levels of carnitine palmitoyltransferase I (CPT1), indicating improvement in glucose and FA oxidation. It also reduced levels of malondialdehyde (MDA); increased mitochondria efficiency and ATP production; stimulated mRNA, total, and nuclear levels of Nrf2; increased levels of glutathione (GSH), heme oxygenase (HO-1), superoxide dismutase (SOD), and catalase (CAT); but reduced the expression and nuclear translocation of NF-κB and levels of tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These effects were concomitant with increased activities of AMPK in the LVs of the control and STZ-diabetic rats. Treatment with CC abolished all these protective effects of AKBA. In conclusion, AKBA protects against DC in rats, mainly by activating the AMPK-dependent control of insulin release, cardiac metabolism, and antioxidant and anti-inflammatory effects.
Collapse
|
31
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
32
|
Shahbazian M, Jafarynezhad F, Yadeghari M, Farhadi Z, Samani SL, Esmailidehaj M, Safari F, Azizian H. The effects of G protein-coupled receptor 30 (GPR30) on cardiac glucose metabolism in diabetic ovariectomized female rats. J Basic Clin Physiol Pharmacol 2023; 34:205-213. [PMID: 35170266 DOI: 10.1515/jbcpp-2021-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetic cardiometabolic disorders are characterized by significant changes in cardiac metabolism and are increased in postmenopausal women, which emphasize the role of 17β-estradiol (E2). Despite this, there are few safe and effective pharmacological treatments for these disorders. The role of G protein-coupled estrogen receptor (GPR30), which mediates the non-genomic effects of E2, is mostly unexplored. METHODS In this study, we used ovariectomy (menopausal model) and type 2 diabetic (T2D) rats' models to evaluate the preclinical action of G-1 (GPR30 agonist) against cardiometabolic disorders. T2D was induced by a high-fat diet and a low dose of streptozotocin. G-1 was administrated for six weeks after the establishment of T2D. RESULTS We found that G-1 counteracts the effects of T2D and ovariectomy by increasing the body weight, reducing fasting blood sugar, heart weight, and heart weight to body weight ratio. Also, both ovariectomy and T2D led to decreases in the cardiac protein levels of hexokinase 2 (HK2) and GLUT4, while G-1-treated female rats reversed these changes and only increased HK2 protein level. In addition, T2D and ovariectomy increased glucose and glycogen content in the heart, but G-1 treatment significantly reduced them. CONCLUSIONS In conclusion, our work demonstrates that G-1 as a selective GPR30 agonist is a viable therapeutic approach against T2D and cardiometabolic diseases in multiple preclinical female models.
Collapse
Affiliation(s)
- Mohammad Shahbazian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Jafarynezhad
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Yadeghari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Farhadi
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Lotfi Samani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
33
|
Petronilho A, Gois MDO, Sakaguchi C, Frade MCM, Roscani MG, Catai AM. Effects of Physical Exercise on Left Ventricular Function in Type 2 Diabetes Mellitus: A Systematic Review. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2023. [DOI: 10.36660/ijcs.20220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
34
|
Salau VF, Erukainure OL, Olofinsan KA, Msomi NZ, Ijomone OK, Islam MS. Ferulic acid mitigates diabetic cardiomyopathy via modulation of metabolic abnormalities in cardiac tissues of diabetic rats. Fundam Clin Pharmacol 2023; 37:44-59. [PMID: 35841183 PMCID: PMC10086938 DOI: 10.1111/fcp.12819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 01/25/2023]
Abstract
Cardiovascular abnormalities have been reported as a major contributor of diabetic mortality. The protective effect of ferulic acid on diabetic cardiomyopathy in fructose-streptozotocin induced type 2 diabetes (T2D) rat model was elucidated in this study. Type 2 diabetic rats were treated by oral administration of low (150 mg/kg b.w) and high (300 mg/kg b.w) doses of ferulic acid. Metformin was used as the antidiabetic drug. Rats were humanely euthanized after 5 weeks of treatment, and their blood and hearts were collected. Induction of T2D depleted the levels of reduced glutathione, glycogen, and HDL-cholesterol and the activities of superoxide dismutase, catalase, ENTPDase, and 5'nucleotidase. It simultaneously triggered increase in the levels of malondialdehyde, total cholesterol, triglyceride, LDL-cholesterol, creatinine kinase-MB as well as activities of acetylcholinesterase, angiotensin converting enzyme (ACE), ATPase, glucose-6-phopsphatase, fructose-1,6-bisphophatase, glycogen phosphorylase, and lipase. T2D induction further revealed an obvious degeneration of cardiac muscle morphology. However, treatment with ferulic acid markedly reversed the levels and activities of these biomarkers with concomitant improvement in myocardium structural morphology, which had favorable comparison with the standard drug, metformin. Additionally, T2D induction led to the depletion of 40%, 75%, and 33% of fatty acids, fatty esters, and steroids, respectively, with concomitant generation of eicosenoic acid, gamolenic acid, and vitamin E. Ferulic acid treatment restored eicosanoic acid, 2-hydroxyethyl ester, with concomitant generation of 6-octadecenoic acid, (Z)-, cis-11-eicosenoic acid, tridecanedioic acid, octadecanoic acid, 2-hydroxyethyl ester, ethyl 3-hydroxytridecanoate, dipalmitin, cholesterol isocaproate, cholest-5-ene, 3-(1-oxobuthoxy)-, cholesta-3,5-diene. These results suggest the cardioprotective potential of ferulic acid against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | | | - Nontokozo Z Msomi
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Olayemi K Ijomone
- Department of Anatomy, University of Medical Sciences, Ondo City, Nigeria
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
35
|
Shi W, Qin M, Wu S, Xu K, Zheng Q, Liu X. Value of estimated glucose disposal rate to detect prevalent left ventricular hypertrophy: implications from a general population. Postgrad Med 2023; 135:58-66. [PMID: 36174224 DOI: 10.1080/00325481.2022.2131153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Insulin resistance plays a pivotal role in developing left ventricular hypertrophy (LVH). Researchers have identified the estimated glucose disposal rate (eGDR) as a simple and cost-effective surrogate of insulin resistance. Our work aims to investigate the association between eGDR and the prevalent LVH and explore the incremental value of eGDR to detect prevalent LVH. METHODS The present work enrolled 3839 subjects from a cross-sectional survey conducted between October 2019 to April 2020 in the rural areas of southeastern China. eGDR was calculated based on waist-to-hip circumference ratio, hypertension, and glycated hemoglobin. RESULTS The prevalence of LVH was 17.30%. After adjusting demographic, anthropometric, laboratory, and medical history co-variates, each standard deviation increase of eGDR decreased a 29.6% risk of prevalent LVH. When dividing eGDR into quartiles, the top quartile had a 38.4% risk compared to the bottom quartile. Moreover, smooth curve fitting revealed that the association between eGDR and prevalent LVH was linear in the whole range of eGDR. Additionally, subgroup analysis demonstrated that our main finding was robust to age, sex, BMI, hypertension, and diabetes subgroups. Finally, ROC analysis exhibited a significant improvement by adding eGDR into LVH risk factors (0.780 vs. 0.803, P < 0.001), and category-free net reclassification index (0.702, P < 0.001) and integrated discrimination index (0.027, P < 0.001) also confirmed the improvement from eGDR to detect prevalent LVH. CONCLUSION Our analysis revealed a linear, robust association between eGDR and prevalent LVH and demonstrated the incremental value of eGDR to optimize the detection of prevalent LVH.
Collapse
Affiliation(s)
- Wenrui Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qidong Zheng
- Department of Internal Medicine, Yuhuan Second People's Hospital, Yuhuan, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Therapeutic Potential of VEGF-B in Coronary Heart Disease and Heart Failure: Dream or Vision? Cells 2022; 11:cells11244134. [PMID: 36552897 PMCID: PMC9776740 DOI: 10.3390/cells11244134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary heart disease (CHD) is the leading cause of death around the world. Based on the roles of vascular endothelial growth factor (VEGF) family members to regulate blood and lymphatic vessels and metabolic functions, several therapeutic approaches have been attempted during the last decade. However proangiogenic therapies based on classical VEGF-A have been disappointing. Therefore, it has become important to focus on other VEGFs such as VEGF-B, which is a novel member of the VEGF family. Recent studies have shown the very promising potential of the VEGF-B to treat CHD and heart failure. The aim of this review article is to present the role of VEGF-B in endothelial biology and as a potential therapeutic agent for CHD and heart failure. In addition, key differences between the VEGF-A and VEGF-B effects on endothelial functions are demonstrated.
Collapse
|
37
|
Lee CS, Zhai Y, Shang R, Wong T, Mattison AJ, Cen HH, Johnson JD, Vlodavsky I, Hussein B, Rodrigues B. Flow-Induced Secretion of Endothelial Heparanase Regulates Cardiac Lipoprotein Lipase and Changes Following Diabetes. J Am Heart Assoc 2022; 11:e027958. [PMID: 36416172 PMCID: PMC9851453 DOI: 10.1161/jaha.122.027958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Lipoprotein lipase (LPL)-derived fatty acid is a major source of energy for cardiac contraction. Synthesized in cardiomyocytes, LPL requires translocation to the vascular lumen for hydrolysis of lipoprotein triglyceride, an action mediated by endothelial cell (EC) release of heparanase. We determined whether flow-mediated biophysical forces can cause ECs to secrete heparanase and thus regulate cardiac metabolism. Methods and Results Isolated hearts were retrogradely perfused. Confluent rat aortic ECs were exposed to laminar flow using an orbital shaker. Cathepsin L activity was determined using gelatin-zymography. Diabetes was induced in rats with streptozotocin. Despite the abundance of enzymatically active heparanase in the heart, it was the enzymatically inactive, latent heparanase that was exceptionally responsive to flow-induced release. EC exposed to orbital rotation exhibited a similar pattern of heparanase secretion, an effect that was reproduced by activation of the mechanosensor, Piezo1. The laminar flow-mediated release of heparanase from EC required activation of both the purinergic receptor and protein kinase D, a kinase that assists in vesicular transport of proteins. Heparanase influenced cardiac metabolism by increasing cardiomyocyte LPL displacement along with subsequent replenishment. The flow-induced heparanase secretion was augmented following diabetes and could explain the increased heparin-releasable pool of LPL at the coronary lumen in these diabetic hearts. Conclusions ECs sense fluid shear-stress and communicate this information to subjacent cardiomyocytes with the help of heparanase. This flow-induced mechanosensing and its dynamic control of cardiac metabolism to generate ATP, using LPL-derived fatty acid, is exquisitely adapted to respond to disease conditions, like diabetes.
Collapse
Affiliation(s)
- Chae Syng Lee
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Yajie Zhai
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Rui Shang
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Trevor Wong
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Aurora J. Mattison
- Department of Cellular and Physiological Sciences & Department of SurgeryDiabetes Focus Team, Life Sciences Institute, UBCVancouverBritish ColumbiaCanada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences & Department of SurgeryDiabetes Focus Team, Life Sciences Institute, UBCVancouverBritish ColumbiaCanada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences & Department of SurgeryDiabetes Focus Team, Life Sciences Institute, UBCVancouverBritish ColumbiaCanada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research CenterRappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Bahira Hussein
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Brian Rodrigues
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| |
Collapse
|
38
|
Pandey S, Madreiter-Sokolowski CT, Mangmool S, Parichatikanond W. High Glucose-Induced Cardiomyocyte Damage Involves Interplay between Endothelin ET-1/ET A/ET B Receptor and mTOR Pathway. Int J Mol Sci 2022; 23:13816. [PMID: 36430296 PMCID: PMC9699386 DOI: 10.3390/ijms232213816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Patients with type two diabetes mellitus (T2DM) are at increased risk for cardiovascular diseases. Impairments of endothelin-1 (ET-1) signaling and mTOR pathway have been implicated in diabetic cardiomyopathies. However, the molecular interplay between the ET-1 and mTOR pathway under high glucose (HG) conditions in H9c2 cardiomyoblasts has not been investigated. We employed MTT assay, qPCR, western blotting, fluorescence assays, and confocal microscopy to assess the oxidative stress and mitochondrial damage under hyperglycemic conditions in H9c2 cells. Our results showed that HG-induced cellular stress leads to a significant decline in cell survival and an impairment in the activation of ETA-R/ETB-R and the mTOR main components, Raptor and Rictor. These changes induced by HG were accompanied by a reactive oxygen species (ROS) level increase and mitochondrial membrane potential (MMP) loss. In addition, the fragmentation of mitochondria and a decrease in mitochondrial size were observed. However, the inhibition of either ETA-R alone by ambrisentan or ETA-R/ETB-R by bosentan or the partial blockage of the mTOR function by silencing Raptor or Rictor counteracted those adverse effects on the cellular function. Altogether, our findings prove that ET-1 signaling under HG conditions leads to a significant mitochondrial dysfunction involving contributions from the mTOR pathway.
Collapse
Affiliation(s)
- Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
39
|
Reno-Bernstein CM, Oxspring M, Bayles J, Huang EY, Holiday I, Fisher SJ. Vitamin E treatment in insulin-deficient diabetic rats reduces cardiac arrhythmias and mortality during severe hypoglycemia. Am J Physiol Endocrinol Metab 2022; 323:E428-E434. [PMID: 36198111 PMCID: PMC9639754 DOI: 10.1152/ajpendo.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
Abstract
In people with type 1 diabetes, hypoglycemia can induce cardiac arrhythmias. In rodent experiments, severe hypoglycemia can induce fatal cardiac arrhythmias, especially so in diabetic models. Increased oxidative stress associated with insulin-deficient diabetes was hypothesized to increase susceptibility to severe hypoglycemia-induced fatal cardiac arrhythmias. To test this hypothesis, Sprague-Dawley rats were made insulin deficient with streptozotocin and randomized into two groups: 1) control (n = 22) or 2) vitamin E treated (four doses of α-tocopherol, 400 mg/kg, n = 20). Following 1 week of treatment, rats were either tested for cardiac oxidative stress or underwent a hyperinsulinemic-severe hypoglycemic (10-15 mg/dL) clamp with electrocardiogram recording. As compared with controls, vitamin E-treated rats had threefold less cardiac oxidative stress, sixfold less mortality due to severe hypoglycemia, and sevenfold less incidence of heart block. In summary, vitamin E treatment and the associated reduction of cardiac oxidative stress in diabetic rats reduced severe hypoglycemia-induced fatal cardiac arrhythmias. These results indicate that in the setting of diabetes, pharmacological treatments that reduce oxidative stress may be an effective strategy to reduce the risk of severe hypoglycemia-induced fatal cardiac arrhythmias.NEW & NOTEWORTHY For people with type 1 diabetes, severe hypoglycemia can be fatal. We show in our animal model that insulin-deficient diabetic rats have fatal cardiac arrhythmias during severe hypoglycemia that are associated with increased cardiac oxidative stress. Importantly, treatment with vitamin E, to reduce oxidative stress, decreased fatal cardiac arrhythmias during severe hypoglycemia.
Collapse
Affiliation(s)
- Candace M Reno-Bernstein
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Milan Oxspring
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Justin Bayles
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Emily Yiqing Huang
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ivana Holiday
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Simon J Fisher
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
40
|
Lakomkin VL, Abramov AA, Lukoshkova EV, Prosvirnin AV, Kapelko VI. HEMODYNAMICS AND CARDIAC CONTRACTILE FUNCTION IN TYPE 1 DIABETES. KARDIOLOGIIA 2022; 62:33-37. [PMID: 36066985 DOI: 10.18087/cardio.2022.8.n1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
The cardiohemodynamics was studied 1 week after the administration of streptozotocin (60 mg / kg) or 2 weeks after a dose of 30 mg / kg. All rats had a significantly elevated level of glucose in the blood (up to 27-31 mM). In an echocardiographic study, about 1/3 of diabetic animals exhibited systolic dysfunction, and the remaining 2/3 - diastolic dysfunction with an increase in isovolumic relaxation time by 1.5 times. The catheterization of the left ventricle (LV) with a sensor that allows simultaneous measuring LV pressure and volume in both groups revealed decreased cardiac output by 25-31% and maximal ejection rate by 34-50%. However, LV developed pressure, the maximal rate of its development and the level of blood pressure remained within the control values, thus reduced LV ejection rate was probably due to increased arterial stiffness - a negative correlation was found between these indicators (r = - 0.70). The diastolic dysfunction group differed from systolic dysfunction by a significantly smaller end diastolic volume by 22%. Thus, in type 1 diabetes, LV remodeling with reduced end diastolic volume allows to maintain a normal ejection fraction in the presence of distinct heart failure.
Collapse
Affiliation(s)
- V L Lakomkin
- Federal State Budgetary Institution NATIONAL MEDICAL RESEARCH CENTRE OF CARDIOLOGY NAMED AFTER ACADEMICIAN E.I.CHAZOV. of the Ministry of Health of the Russian Federation
| | - A A Abramov
- Federal State Budgetary Institution NATIONAL MEDICAL RESEARCH CENTRE OF CARDIOLOGY NAMED AFTER ACADEMICIAN E.I.CHAZOV. of the Ministry of Health of the Russian Federation
| | - E V Lukoshkova
- Federal State Budgetary Institution NATIONAL MEDICAL RESEARCH CENTRE OF CARDIOLOGY NAMED AFTER ACADEMICIAN E.I.CHAZOV. of the Ministry of Health of the Russian Federation
| | - A V Prosvirnin
- Federal State Budgetary Institution NATIONAL MEDICAL RESEARCH CENTRE OF CARDIOLOGY NAMED AFTER ACADEMICIAN E.I.CHAZOV. of the Ministry of Health of the Russian Federation
| | - V I Kapelko
- Federal State Budgetary Institution NATIONAL MEDICAL RESEARCH CENTRE OF CARDIOLOGY NAMED AFTER ACADEMICIAN E.I.CHAZOV. of the Ministry of Health of the Russian Federation
| |
Collapse
|
41
|
Tao S, Yang D, Zhang L, Yu L, Wang Z, Li L, Zhang J, Yao R, Huang L, Shao M. Knowledge domain and emerging trends in diabetic cardiomyopathy: A scientometric review based on CiteSpace analysis. Front Cardiovasc Med 2022; 9:891428. [PMID: 36093165 PMCID: PMC9452758 DOI: 10.3389/fcvm.2022.891428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To review the literature related to diabetic cardiomyopathy (DCM), and investigate research hotspots and development trends of this field in the relevant studies based on CiteSpace software of text mining and visualization in scientific literature. Methods The relevant literature from the last 20 years was retrieved from the Web of Science (WoS) Core Collection database. After manual selection, each document record includes title, authors, year, organization, abstract, keywords, citation, descriptors, and identifiers. We imported the downloaded data into CiteSpace V (version 5.8.R2) to draw the knowledge map and conduct cooperative network analysis, cluster analysis, burst keyword analysis, and co-citation analysis. Results After manual screening, there were 3,547 relevant pieces of literature published in the last 18 years (from 2004 to 2021), including 2,935 articles and reviews, which contained 15,533 references, and the number was increasing year by year. The publications of DCM were dedicated by 778 authors of 512 institutions in 116 countries. The People's Republic of China dominated this field (1,117), followed by the USA (768) and Canada (176). In general, most articles were published with a focus on “oxidative stress,” “heart failure,” “diabetic cardiomyopathy,” “dysfunction,” “cardiomyopathy,” “expression,” “heart,” “mechanism,” and “insulin resistance.” Then, 10 main clusters were generated with a modularity Q of 0.6442 and a weighted mean silhouette of 0.8325 by the log-likelihood ratio (LLR) algorithm, including #0 heart failure, #1 perfused heart, #2 metabolic disease, #3 protective effect, #4 diabetic patient, #5 cardiac fibrosis, #6 vascular complication, #7 mitochondrial dynamics, #8 sarcoplasmic reticulum, and #9 zinc supplementation. The top five references with the strongest citation bursts include “Boudina and Abel”, “Jia et al.”, “Fang et al.”, “Poornima et al.”, and “Aneja et al.”. Conclusion The global field of DCM has expanded in the last 20 years. The People's Republic of China contributes the most. However, there is little cooperation among authors and institutions. Overall, this bibliometric study identified the hotspots in DCM research, including “stress state,” “energy metabolism,” “autophagy,” “apoptosis,” “inflammation,” “fibrosis,” “PPAR,” etc. Thus, further research focuses on these topics that may be more helpful to identify, prevent DCM and improve prophylaxis strategies to bring benefit to patients in the near future.
Collapse
Affiliation(s)
- Shiyi Tao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deshuang Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lanxin Zhang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jin Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiqi Yao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Li Huang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Mingjing Shao
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Mingjing Shao
| |
Collapse
|
42
|
Carbohydrate Metabolism in Diabetic Rat’s Heart – The Effects of Acetylsalicylic Acid and Heat Preconditioning as HSP70 Inducers. MACEDONIAN VETERINARY REVIEW 2022. [DOI: 10.2478/macvetrev-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The myocardium of diabetic subjects displays reduced HSP70 protein level and weak myocardial protection. However, the heart possesses an ability to produce heat shock proteins (HSPs) after exposure to sublethal heat stress. Acetylsalicylicacid (ASA) has the property of pharmacological induction of HSPs. We evaluated the common effects of single dose ASA-pretreatment, prior to heat preconditioning (HP), over carbohydrate metabolism-related enzymes and substrates in the heart of diabetic rats. Streptozotocin-diabetes caused significant decrease of HSP70 protein level, stimulation of the gluconeogenic processes and inhibition of glycolytic processes in the heart. HP-diabetic hearts have significantly higher HSP70 protein level, lower glycogen, glucose-6-phosphate content, glycogen phosphorylase and hexokinase activity, and higher glucose levels and PFK activity. ASA-pretreatment of HP-diabetic animals caused additional increase of HSP70, additional decrease of glycogen, glucose-6-phosphate, glycogen phosphorylase and hexokinase, and additional increase of glucose and PFK in the heart. In conclusion, HP is physiological inducer of HSP70 level in heart and tends to reverse carbohydrate - related disturbances in diabetic rats. ASA, given prior to HP, is a potent HSP70 co-inducer and causes additional increase of HSP70 protein level in heart. ASA, given in a combination to HP, have shown more evident protective effects against subsequent intense of stress.
Collapse
|
43
|
Jiang SJ. Roles of transient receptor potential channel 6 in glucose-induced cardiomyocyte injury. World J Diabetes 2022; 13:338-357. [PMID: 35582666 PMCID: PMC9052005 DOI: 10.4239/wjd.v13.i4.338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication of end-stage diabetes that presents symptoms such as cardiac hypertrophy and heart failure. The transient receptor potential channel 6 (TRPC6) protein is a very important selective calcium channel that is closely related to the development of various cardiomyopathies.
AIM To explore whether TRPC6 affects cardiomyocyte apoptosis and proliferation inhibition in DCM.
METHODS We compared cardiac function and myocardial pathological changes in wild-type mice and mice injected with streptozotocin (STZ), in addition to comparing the expression of TRPC6 and P-calmodulin-dependent protein kinase II (P-CaMKII) in them. At the same time, we treated H9C2 cardiomyocytes with high glucose and then evaluated the effects of addition of SAR, a TRPC6 inhibitor, and KN-93, a CaMKII inhibitor, to such H9C2 cells in a high-glucose environment.
RESULTS We found that STZ-treated mice had DCM, decreased cardiac function, necrotic cardiomyocytes, and limited proliferation. Western blot and immunofluorescence were used to detect the expression levels of various appropriate proteins in the myocardial tissue of mice and H9C2 cells. Compared to those in the control group, the expression levels of the apoptosis-related proteins cleaved caspase 3 and Bax were significantly higher in the experimental group, while the expression of the proliferation-related proteins proliferating cell nuclear antigen (PCNA) and CyclinD1 was significantly lower. In vivo and in vitro, the expression of TRPC6 and P-CaMKII increased in a high-glucose environment. However, addition of inhibitors to H9C2 cells in a high-glucose environment resulted in alleviation of both apoptosis and proliferation inhibition.
CONCLUSION The inhibition of apoptosis and proliferation of cardiomyocytes in a high-glucose environment may be closely related to activation of the TRPC6/P-CaMKII pathway.
Collapse
Affiliation(s)
- Shi-Jun Jiang
- School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
44
|
Lakomkin VL, Abramov AA, Lukoshkova EV, Studneva IM, Prosvirin AV, Kapelko VI. Normalisation of diabetic heart pump function at decreased functional load. KARDIOLOGIIA 2022; 62:34-39. [PMID: 35414359 DOI: 10.18087/cardio.2022.3.n1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/14/2023]
Abstract
Aim To study left ventricular (LV) hemodynamics in presence of decreased blood inflow to the heart as well as changes in myocardial content of energy metabolites in diabetic rats.Material and methods Diabetic cardiomyopathy is characterized by impaired heart contractility and by transition of cardiomyocyte energy metabolism fatty acids exclusively as a source of energy. This reduces the efficiency of energy utilization and increases the heart vulnerability to hypoxia. This study was performed on rats with type 1 diabetes mellitus induced by administration of streptozotocin (60 mg/kg). The LV pump function was studied with a catheter that allows simultaneous measurement of LV pressure and volume in each cardiac cycle.Results Blood glucose was approximately sixfold increased at 2 weeks. Heart failure was detected with decreases in ejection fraction by 27%, minute volume by 39%, and stroke work by 41%. Systolic dysfunction was based on a decrease in LV peak ejection velocity by more than 50%. Furthermore, the LV developed pressure and contractility index were within the normal range, while 1.5 times increased arterial stiffness was the factor that hampered ejection. The sum of adenine nucleotides was decreased by 21%, the ATP content was decreased by 29%, and also creatine phosphate formation was reduced in the myocardium of diabetic rats. Lactate content in the diabetic myocardium was increased almost threefold, which indicated mobilization of aerobic glycolysis. With the reduced preload, equal diastolic volume (0.3 ml), and equal blood pressure (60 mm Hg), the diabetic heart pump function did not differ from the control.Conclusion In type 1 diabetes mellitus, decreases in functional load and oxygen consumption normalize the myocardial pump function with disturbed energy metabolism.
Collapse
Affiliation(s)
| | - A A Abramov
- National Medical Research Center of Cardiology
| | | | | | | | - V I Kapelko
- National Medical Research Center of Cardiology
| |
Collapse
|
45
|
Murugasamy K, Munjal A, Sundaresan NR. Emerging Roles of SIRT3 in Cardiac Metabolism. Front Cardiovasc Med 2022; 9:850340. [PMID: 35369299 PMCID: PMC8971545 DOI: 10.3389/fcvm.2022.850340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
The heart is a highly metabolically active organ that predominantly utilizes fatty acids as an energy substrate. The heart also derives some part of its energy by oxidation of other substrates, including glucose, lactose, amino acids and ketones. The critical feature of cardiac pathology is metabolic remodeling and loss of metabolic flexibility. Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins (SIRT1 to SIRT7), with NAD+ dependent deacetylase activity. SIRT3 is expressed in high levels in healthy hearts but downregulated in the aged or diseased hearts. Experimental evidence shows that increasing SIRT3 levels or activity can ameliorate several cardiac pathologies. The primary deacetylation targets of SIRT3 are mitochondrial proteins, most of which are involved in energy metabolism. Thus, SIRT3 improves cardiac health by modulating cardiac energetics. In this review, we discuss the essential role of SIRT3 in regulating cardiac metabolism in the context of physiology and pathology. Specifically, we summarize the recent advancements that emphasize the critical role of SIRT3 as a master regulator of cardiac metabolism. We also present a comprehensive view of all known activators of SIRT3, and elaborate on their therapeutic potential to ameliorate energetic abnormalities in various cardiac pathologies.
Collapse
|
46
|
Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, Alibhai FJ, Gustafson D, Raju S, Wu R, Zarrin Khat D, Wang Y, Caballero A, Meagher P, Lau E, Pepic L, Cheng HS, Galant NJ, Howe KL, Li RK, Connelly KA, Husain M, Delgado-Olguin P, Fish JE. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol 2022; 21:31. [PMID: 35209901 PMCID: PMC8876371 DOI: 10.1186/s12933-022-01458-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Background Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. Methods The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). Results We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid β-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid β-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. Conclusions MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01458-z.
Collapse
Affiliation(s)
- Shawn Veitch
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark Chandy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ahsan Siraj
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - HaoQi Mak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kai Yu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Zhiqi Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dakota Gustafson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dorrin Zarrin Khat
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amalia Caballero
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Meagher
- Keenan Biomedical Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lejla Pepic
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry S Cheng
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Natalie J Galant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kim A Connelly
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada. .,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada. .,Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
47
|
Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, Alibhai FJ, Gustafson D, Raju S, Wu R, Zarrin Khat D, Wang Y, Caballero A, Meagher P, Lau E, Pepic L, Cheng HS, Galant NJ, Howe KL, Li RK, Connelly KA, Husain M, Delgado-Olguin P, Fish JE. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol 2022; 21:31. [PMID: 35209901 PMCID: PMC8876371 DOI: 10.1186/s12933-022-01458-z 10.2174/1566523222666220303102951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. METHODS The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). RESULTS We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid β-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid β-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. CONCLUSIONS MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart.
Collapse
Affiliation(s)
- Shawn Veitch
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark Chandy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ahsan Siraj
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - HaoQi Mak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kai Yu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Zhiqi Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dakota Gustafson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dorrin Zarrin Khat
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amalia Caballero
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Meagher
- Keenan Biomedical Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lejla Pepic
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry S Cheng
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Natalie J Galant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kim A Connelly
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
48
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Gao Z, Ti Y, Lu B, Song FQ, Zhang L, Hu BA, Xie JY, Zhang W, Han L, Zhong M. STAMP2 Attenuates Cardiac Dysfunction and Insulin Resistance in Diabetic Cardiomyopathy via NMRAL1-Mediated NF-κB Inhibition in Type 2 Diabetic Rats. Diabetes Metab Syndr Obes 2022; 15:3219-3229. [PMID: 36276296 PMCID: PMC9581721 DOI: 10.2147/dmso.s374784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous studies have reported that six transmembrane protein of prostate 2 (STAMP2) attenuates metabolic inflammation and insulin resistance in diabetes mellitus. However, the role of STAMP2 in the diabetic heart is still unclear. METHODS A diabetic rat cardiomyopathy model was established via intraperitoneal STZ injection. STAMP2 was overexpressed in the treatment group using adeno-associated virus. Rat heart diastolic function was measured using echocardiography and a left ventricular catheter, and cardiac interstitial fibrosis was detected by immunohistochemistry and histological staining. Insulin sensitivity and NF-κB expression were shown by Western blotting. NMRAL1 distribution was illustrated by immunofluorescence. RESULTS STAMP2 expression in the diabetic rat heart was reduced, and exogenous overexpression of STAMP2 improved glucose tolerance and insulin sensitivity and alleviated diastolic dysfunction and myocardial fibrosis. Furthermore, we found that NF-κB signaling is activated in the diabetic heart and that exogenous overexpression of STAMP2 promotes NMRAL1 translocation from the cytoplasm to the nucleus and inhibits p65 phosphorylation. CONCLUSION STAMP2 attenuates cardiac dysfunction and insulin resistance in diabetic cardiomyopathy, likely by promoting NMRAL1 retranslocation and NF-κB signaling inhibition.
Collapse
Affiliation(s)
- Zhan Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Bin Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Fang-qiang Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Critical Care Medicine, Tengzhou Central People’s Hospital, Tengzhou, People’s Republic of China
| | - Lei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Bo-ang Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jia-ying Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of General Practice, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Lu Han; Ming Zhong, Email ;
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Qilu College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
50
|
Laurila S, Rebelos E, Lahesmaa M, Sun L, Schnabl K, Peltomaa TM, Klén R, U-Din M, Honka MJ, Eskola O, Kirjavainen AK, Nummenmaa L, Klingenspor M, Virtanen KA, Nuutila P. Novel effects of the gastrointestinal hormone secretin on cardiac metabolism and renal function. Am J Physiol Endocrinol Metab 2022; 322:E54-E62. [PMID: 34806426 PMCID: PMC8791786 DOI: 10.1152/ajpendo.00260.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
The cardiac benefits of gastrointestinal hormones have been of interest in recent years. The aim of this study was to explore the myocardial and renal effects of the gastrointestinal hormone secretin in the GUTBAT trial (NCT03290846). A placebo-controlled crossover study was conducted on 15 healthy males in fasting conditions, where subjects were blinded to the intervention. Myocardial glucose uptake was measured with [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography. Kidney function was measured with [18F]FDG renal clearance and estimated glomerular filtration rate (eGFR). Secretin increased myocardial glucose uptake compared with placebo (secretin vs. placebo, means ± SD, 15.5 ± 7.4 vs. 9.7 ± 4.9 μmol/100 g/min, 95% confidence interval (CI) [2.2, 9.4], P = 0.004). Secretin also increased [18F]FDG renal clearance (44.5 ± 5.4 vs. 39.5 ± 8.5 mL/min, 95%CI [1.9, 8.1], P = 0.004), and eGFR was significantly increased from baseline after secretin, compared with placebo (17.8 ± 9.8 vs. 6.0 ± 5.2 ΔmL/min/1.73 m2, 95%CI [6.0, 17.6], P = 0.001). Our results implicate that secretin increases heart work and renal filtration, making it an interesting drug candidate for future studies in heart and kidney failure.NEW & NOTEWORTHY Secretin increases myocardial glucose uptake compared with placebo, supporting a previously proposed inotropic effect. Secretin also increased renal filtration rate.
Collapse
Affiliation(s)
- Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
- Heart Center, Satakunta Central Hospital, Pori, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | - Minna Lahesmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Internal Medicine, Jorvi Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Lihua Sun
- Turku PET Centre, University of Turku, Turku, Finland
| | - Katharina Schnabl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Riku Klén
- Turku PET Centre, University of Turku, Turku, Finland
| | - Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | - Olli Eskola
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
- Department of Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|