1
|
Hunter SK, Senefeld JW. Sex differences in human performance. J Physiol 2024; 602:4129-4156. [PMID: 39106346 DOI: 10.1113/jp284198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Sex as a biological variable is an underappreciated aspect of biomedical research, with its importance emerging in more recent years. This review assesses the current understanding of sex differences in human physical performance. Males outperform females in many physical capacities because they are faster, stronger and more powerful, particularly after male puberty. This review highlights key sex differences in physiological and anatomical systems (generally conferred via sex steroids and puberty) that contribute to these sex differences in human physical performance. Specifically, we address the effects of the primary sex steroids that affect human physical development, discuss insight gained from an observational study of 'real-world data' and elite athletes, and highlight the key physiological mechanisms that contribute to sex differences in several aspects of physical performance. Physiological mechanisms discussed include those for the varying magnitude of the sex differences in performance involving: (1) absolute muscular strength and power; (2) fatigability of limb muscles as a measure of relative performance; and (3) maximal aerobic power and endurance. The profound sex-based differences in human performance involving strength, power, speed and endurance, and that are largely attributable to the direct and indirect effects of sex-steroid hormones, sex chromosomes and epigenetics, provide a scientific rationale and framework for policy decisions on sex-based categories in sports during puberty and adulthood. Finally, we highlight the sex bias and problem in human performance research of insufficient studies and information on females across many areas of biology and physiology, creating knowledge gaps and opportunities for high-impact studies.
Collapse
Affiliation(s)
- Sandra K Hunter
- Movement Science Program, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathon W Senefeld
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Sebastian F, Vargas AI, Clarin J, Hurgoi A, Amini R. Meta Data Analysis of Sex Distribution of Study Samples Reported in Summer Biomechanics, Bioengineering, and Biotransport Annual Conference Abstracts. J Biomech Eng 2024; 146:060906. [PMID: 37943115 DOI: 10.1115/1.4064032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The biased use of male subjects in biomedical research has created limitations, underscoring the importance of including women to enhance the outcomes of evidence-based medicine and to promote human health. While federal policies (e.g., the 1993 Revitalization Act and the 2016 Sex as a Biological Variable Act) have aimed to improve sex balance in studies funded by the National Institutes of Health (NIH), data on sex inclusivity in non-NIH funded research remain limited. The objective of this study was to analyze the trend of sex inclusion in abstracts submitted to the Summer Biomechanics, Bioengineering, & Biotransport Conference (SB3C) over 7 years. We scored every abstract accepted to SB3C, and the findings revealed that approximately 20% of total abstracts included sex-related information, and this trend remained stable. Surprisingly, there was no significant increase in abstracts, including both sexes and those with balanced female and male samples. The proportion of abstracts with balanced sexes was notably lower than those including both sexes. Additionally, we examined whether the exclusion of one sex from the corresponding studies was justified by the research questions. Female-only studies had a 50% justification rate, while male-only studies had only 2% justification. Disparity in sex inclusion in SB3C abstracts was apparent, prompting us to encourage scientists to be more mindful of the sex of the research samples. Addressing sex inclusivity in biomechanics and mechanobiology research is essential for advancing medical knowledge and for promoting better healthcare outcomes for everyone.
Collapse
Affiliation(s)
| | - Ana I Vargas
- Department of Bioengineering, Northeastern University, Boston, MA 02120
| | - Julia Clarin
- Department of Bioengineering, Northeastern University, Boston, MA 02120
| | - Anthony Hurgoi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
- Northeastern University
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA 02115; Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
3
|
McClain AK, Monteleone PP, Zoldan J. Sex in cardiovascular disease: Why this biological variable should be considered in in vitro models. SCIENCE ADVANCES 2024; 10:eadn3510. [PMID: 38728407 PMCID: PMC11086622 DOI: 10.1126/sciadv.adn3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Cardiovascular disease (CVD), the world's leading cause of death, exhibits notable epidemiological, clinical, and pathophysiological differences between sexes. Many such differences can be linked back to cardiovascular sexual dimorphism, yet sex-specific in vitro models are still not the norm. A lack of sex reporting and apparent male bias raises the question of whether in vitro CVD models faithfully recapitulate the biology of intended treatment recipients. To ensure equitable treatment for the overlooked female patient population, sex as a biological variable (SABV) inclusion must become commonplace in CVD preclinical research. Here, we discuss the role of sex in CVD and underlying cardiovascular (patho)physiology. We review shortcomings in current SABV practices, describe the relevance of sex, and highlight emerging strategies for SABV inclusion in three major in vitro model types: primary cell, stem cell, and three-dimensional models. Last, we identify key barriers to inclusive design and suggest techniques for overcoming them.
Collapse
Affiliation(s)
- Anna K. McClain
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78751, USA
| | - Peter P. Monteleone
- Ascension Texas Cardiovascular, Austin, TX 78705, USA
- Dell School of Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78751, USA
| |
Collapse
|
4
|
Bethea M, Silvers S, Franklin L, Robinson RAS, Brady LJ, Vue N, Beasley HK, Kirabo A, Wanjalla CN, Shuler HD, Hinton A, McReynolds MR. A guide to establishing, implementing, and optimizing diversity, equity, inclusion, and accessibility (DEIA) committees. Am J Physiol Heart Circ Physiol 2024; 326:H786-H796. [PMID: 38276949 PMCID: PMC11221803 DOI: 10.1152/ajpheart.00583.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Diversity, equity, inclusion, and accessibility (DEIA) efforts are increasingly recognized as critical for the success of academic institutions. These efforts are facilitated mainly through the formation of dedicated DEIA committees. DEIA committees enhance professional development and create a more inclusive environment, which benefits all members of the institution. Although leadership and faculty membership have recognized the importance and necessity of DEIA, the roles of DEIA committees may be more ambiguous. Although leadership and faculty may seek to support DEIA at their institutions, they may not always fully understand the necessity of these committees or how to successfully create a committee, foster and promote its success, and sustain its impact. Thus, here, we offer a background rationale and guide for strategically setting up DEIA committees for success and impact within an academic institution with applicability to scientific societies.
Collapse
Affiliation(s)
- Maigen Bethea
- Department of Pediatrics, Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sophielle Silvers
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Latisha Franklin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Lillian J Brady
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, Alabama, United States
| | - Neng Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Haysetta D Shuler
- Department of Biological Sciences, Winston-Salem State University, Winston-Salem, North Carolina, United States
- Shuler Consulting, Winston-Salem, North Carolina, United States
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States
- The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|